Part II => PROTEINS and ENZYMES. 2.3 PROTEIN STRUCTURE 2.3a Secondary Structure 2.3b Tertiary Structure 2.3c Quaternary Structure

Similar documents
Introduction to Comparative Protein Modeling. Chapter 4 Part I

Protein Structure. Hierarchy of Protein Structure. Tertiary structure. independently stable structural unit. includes disulfide bonds

Protein Structure and Function. Protein Architecture:

Physiochemical Properties of Residues

Introduction to" Protein Structure

Protein Structure Basics

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES

titin, has 35,213 amino acid residues (the human version of titin is smaller, with only 34,350 residues in the full length protein).

Biomolecules: lecture 10

Conformational Geometry of Peptides and Proteins:

Introduction to Protein Folding

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target.

Outline. Levels of Protein Structure. Primary (1 ) Structure. Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins

Supersecondary Structures (structural motifs)

Basics of protein structure

Outline. Levels of Protein Structure. Primary (1 ) Structure. Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins

BCH 4053 Spring 2003 Chapter 6 Lecture Notes

From Amino Acids to Proteins - in 4 Easy Steps

Section Week 3. Junaid Malek, M.D.

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig

Secondary and sidechain structures

1. What is an ångstrom unit, and why is it used to describe molecular structures?

Ramachandran and his Map

The Structure and Functions of Proteins

Model Mélange. Physical Models of Peptides and Proteins

Structure Determination by NMR Spectroscopy #3-1

Lecture 26: Polymers: DNA Packing and Protein folding 26.1 Problem Set 4 due today. Reading for Lectures 22 24: PKT Chapter 8 [ ].

Lecture 10 (10/4/17) Lecture 10 (10/4/17)

Useful background reading

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lectures 3-4. Based on Profs. Kevin Gardner & Reza Khayat

Announcements. Primary (1 ) Structure. Lecture 7 & 8: PROTEIN ARCHITECTURE IV: Tertiary and Quaternary Structure

Protein Structure & Motifs

Details of Protein Structure

NMR, X-ray Diffraction, Protein Structure, and RasMol

LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE

Dana Alsulaibi. Jaleel G.Sweis. Mamoon Ahram

Protein structure (and biomolecular structure more generally) CS/CME/BioE/Biophys/BMI 279 Sept. 28 and Oct. 3, 2017 Ron Dror

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769

Biochemistry: Concepts and Connections

CAP 5510 Lecture 3 Protein Structures

Read more about Pauling and more scientists at: Profiles in Science, The National Library of Medicine, profiles.nlm.nih.gov

Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate

Objective: Students will be able identify peptide bonds in proteins and describe the overall reaction between amino acids that create peptide bonds.

BSc and MSc Degree Examinations

4 Proteins: Structure, Function, Folding W. H. Freeman and Company

Get familiar with PDBsum and the PDB Extract atomic coordinates from protein data files Compute bond angles and dihedral angles

Charged amino acids (side-chains)

BIBC 100. Structural Biochemistry

Molecular Modeling lecture 2

NH 2. Biochemistry I, Fall Term Sept 9, Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter

Biomolecules: lecture 9

AP Biology. Proteins. AP Biology. Proteins. Multipurpose molecules

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy

Detailed description of overall and active site architecture of PPDC- 3dThDP, PPDC-2HE3dThDP, PPDC-3dThDP-PPA and PPDC- 3dThDP-POVA

Experimental Techniques in Protein Structure Determination

Bulk behaviour. Alanine. FIG. 1. Chemical structure of the RKLPDA peptide. Numbers on the left mark alpha carbons.

Nanobiotechnology. Place: IOP 1 st Meeting Room Time: 9:30-12:00. Reference: Review Papers. Grade: 40% midterm, 60% final report (oral + written)

Lecture 11: Protein Folding & Stability

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding

Overview. The peptide bond. Page 1

Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013

CHEM 463: Advanced Inorganic Chemistry Modeling Metalloproteins for Structural Analysis

Central Dogma. modifications genome transcriptome proteome

Tamer Barakat. Razi Kittaneh. Mohammed Bio. Diala Abu-Hassan

Ch 3: Chemistry of Life. Chemistry Water Macromolecules Enzymes

Orientational degeneracy in the presence of one alignment tensor.

RNA and Protein Structure Prediction

F. Piazza Center for Molecular Biophysics and University of Orléans, France. Selected topic in Physical Biology. Lecture 1

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Peptides And Proteins

Basic structures of proteins

Bioinformatics. Macromolecular structure

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a

1. Amino Acids and Peptides Structures and Properties

D Dobbs ISU - BCB 444/544X 1

STRUCTURAL BIOINFORMATICS. Barry Grant University of Michigan

What is the central dogma of biology?

Analysis and Prediction of Protein Structure (I)

Proteins. Division Ave. High School Ms. Foglia AP Biology. Proteins. Proteins. Multipurpose molecules

Biological Macromolecules

Protein structure analysis. Risto Laakso 10th January 2005

CHAPTER 29 HW: AMINO ACIDS + PROTEINS

The Structure of Enzymes!

The Structure of Enzymes!

1. (5) Draw a diagram of an isomeric molecule to demonstrate a structural, geometric, and an enantiomer organization.

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration:

BIOCHEMISTRY Course Outline (Fall, 2011)

Signal Transduction Phosphorylation Protein kinases. Misfolding diseases. Protein Engineering Lysozyme variants

Protein Structures. 11/19/2002 Lecture 24 1

BBS501 Section 1 9:00 am 10:00 am Monday thru Friday LRC 105 A & B

Computational Biology 1

Biochemistry Prof. S. DasGupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 06 Protein Structure IV

2: CHEMICAL COMPOSITION OF THE BODY

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP

Chem. 27 Section 1 Conformational Analysis Week of Feb. 6, TF: Walter E. Kowtoniuk Mallinckrodt 303 Liu Laboratory

Transcription:

Part II => PROTEINS and ENZYMES 2.3 PROTEIN STRUCTURE 2.3a Secondary Structure 2.3b Tertiary Structure 2.3c Quaternary Structure

Section 2.3a: Secondary Structure

Synopsis 2.3a - Secondary structure refers to the local ordered conformation of residues within a polypeptide chain - Many polypeptides adopt such ordered secondary structural elements in the form of so-called α helices or β sheets (or strictly speaking strands!) - Not all polypeptides or polypeptide segments form regular secondary structure such as α helices or β sheets such polypeptides are referred to as structurally disordered or intrinsically disordered proteins - The majority of amino acid residues (!) in proteins adopt such disordered conformations whoever said that the 3D structure of a protein is critical to its function must have roamed the protein landscape in the 20 th century!!

Levels of Protein Structure: Overview

Levels of Protein Structure: Description Primary (1 ) Structure The amino acid sequence of a polypetide chain Secondary (2 ) Structure The local ordered conformation of residues within a polypeptide chain these are referred to as secondary structure elements such as helices and sheets (or strictly strands!) Tertiary (3 ) Structure The spatial arrangement or organization of various secondary structural elements such as helices and sheets connected via turns and loops into a three-dimensional (3D) fold Quaternary (4 ) Structure The spatial arrangement or organization of individual polypeptide chains with a well-defined 3D fold relative to each other

Peptide Bonds Assume Trans Conformation - The peptide bond is planar due to electron delocalization (resonance interactions) - The peptide bond adopts the trans-conformation due to steric interference a thermodynamically favorable arrangement - Such steric interference is minimal for Pro residues, implying that it can exist in cis-trans equilibrium

Polypeptide Backbone Is defined by Torsion Angles H C N H H R C N R C O H O = 180 = angle about N C bond Newman Projections = angle about C C bond H C N R O H = 180 - A polypeptide chain can freely rotate about its N C and C C backbone bonds, while the C N backbone bond is usually restricted to 180 (typical trans-conformation) or 0 (rare cis-conformation) - The angle of polypeptide backbone rotation is defined by the so-called torsion (or dihedral) angles as: (1) Phi ( ) the angle of rotation about the N C bond (2) Psi ( ) the angle of rotation about the C C bond (3) Omega ( ) the angle of rotation about the C N bond

Extended Conformation of Polypeptide H H H C N H C O = angle about N C bond = angle about C C bond R N H = 180 C O N H Newman Projections C R O = 180 - The conformation of the polypeptide backbone is described by the and torsion angles ( is usually restricted to 180 ) - For an extended polypeptide conformation (so as to minimize steric interference): = = = 180

Mind the Rotation! The Ramachandran Plot Sheet (parallel) Sheet (antiparallel) Collagen helix Most favorable region/position Less favorable region/position Helix (left-handed) Helix (right-handed) Steric interference between atoms on adjacent peptide bonds Gopal Ramachandran (1922-2001) - In 1968, Ramachandran demonstrated that torsion angles and in a polypeptide chain are not randomly distributed but rather possess a restricted range of values due to steric hindrance and unfavorable van der Waals contacts between the atoms - In what has come be to known as the Ramachandran Plot, a plot of versus shows that the specific secondary structure conformations (such as helices and sheets) of the polypeptide chain occupy a restricted set of torsion angles corresponding to a specific position on the plot

Secondary Structure Elements: -Helix Conformation res = residue (or an amino acid) Linus Pauling (1901-1994) Cartoon representations of -helix - First discovered by Pauling in 1951, helix (or -helix) adopts a coil-like or spiral-like conformation (cf coiled-coil conformation wherein two or more -helices coil/wind/twist/wrap around each other!) - helix is right-handed it spirals in a clockwise direction when viewed along its principal/helical (longitudinal) axis - Such handedness is a chiral property of helix in a manner akin to the right hand helix is a mirror image of left-handed helix ( L ) Pitch - helix is characterized by a: 1) helical twist of 100 /res => (360 /turn)/(100 /res)=3.6res/turn 2) helical pitch of 5.4Å/turn (the distance it rises per helical turn) 3) helical rise of 1.5Å/res => (5.4Å/turn)/(3.6res/turn)=1.5Å/res - In cartoon diagrams of proteins, helix is represented as a cylindrical or rectangular block Helical Axis

Secondary Structure Elements: Helix Stability - helix is largely stabilized by backbone hydrogen bonding between C=O group of the ith residue and NH group of the (i+4)th residue: C=O(i) ------ NH(i+4) => NH(j) ------ C=O(j-4) N-terminus N-terminal end - In addition to backbone H-bonding, additional van der Waals contacts between sidechain groups pointing toward the core of the helix also contribute to the stability of -helix - -helix is sometimes referred to as (3.6) 13 -helix where 3.6 is the number of residues per helical turn, and 13 is the number of BACKBONE atoms involved in the formation of hydrogen bonding ring between C=O group of the ith residue and NH group of the (i+4)th residue C=O(i)(j-4) NH(i+4)(j) - 3 10 -helix (also right-handed) is closely related to helix with 3 residues per helical turn, a pitch of 6.0Å/turn, and hydrogen bonding (with a ring of 10 atoms) characterized by the pattern: C=O(i) ------ NH(i+3) - Simply put, 3 10 -helix is more tightly wound, longer, and thinner than -helix for n number of residues! C-terminus C-terminal end

Secondary Structure Elements: Helix Comparison Parameter Description -Helix L -Helix 3 10 -Helix Helical density Number of residues per turn 3.6res/turn 3.6res/turn 3.0res/turn Helical pitch Distance rise per turn 5.4Å/turn 5.4Å/turn 6.0Å/turn Helical twist Rotation per residue: twist = (360 /turn)/density 100 /res 100 /res 120 /res Helical rise Distance rise per residue: rise = pitch/density 1.5Å/res 1.5Å/res 2.0Å/res H-bond pattern Backbone H-bonding between C=O(i) & NH(i+n) C=O(i) --- NH(i+4) C=O(i) --- NH(i+4) C=O(i) --- NH(i+3) H-bond ring atoms Number of backbone atoms involved in the formation of H-bonding ring 13 13 10 Chirality Asymmetry/Handedness Right-handed Left-handed Right-handed

Secondary Structure Elements: Sheet Conformation Parallel -sheet Antiparallel -sheet - Unlike helix, sheet (or -sheet) is characterized by a roughly extended conformation of the polypeptide chain referred to as strand - A minimum of two strands running laterally to each other are needed to generate a -sheet! - Within a -sheet, the strands can run in the same direction (parallel -sheet) or in the opposite directions (antiparallel -sheet) to each other - In cartoon diagrams of proteins, strands within each -sheet are represented as solid arrows pointing in the same direction (parallel -sheet) or opposite directions (antiparallel -sheet)

Secondary Structure Elements: Sheet Stability 12 12 12 12 C=O(i) ------ NH(j) 10 14 10 14 - Irrespective of their orientations, both types of sheet are characterized by inter-strand hydrogen bonding between C=O(i) and NH(j) groups, where i and j are unrelated integers 7Å - In a parallel -sheet, inter-strand hydrogen bonding between C=O and NH groups runs diagonally, thereby somewhat compromising their stability each H-bonded ring is comprised of a repeating number of 12 backbone atoms! -pleated sheet - In an antiparallel -sheet, inter-strand hydrogen bonding between C=O and NH groups is perfectly aligned up (or optimized) in a vertical fashion, thereby leading to their pronounced stability relative to their parallel counterparts each H-bonded ring is comprised of an alternating number of 10 and 14 backbone atoms! - In order to optimize hydrogen bonding, sheets undergo slight twist and ripple so as to adopt a pleated appearance wherein the sidechain R groups on adjacent residues orient toward the opposite face of the pleated sheet (staggered) separated by a distance of ~7Å

Secondary Structure Elements: turns turn loop turn i+2 i+3 i+2 i+3 N C N C i+1 i+1 - In order to generate a 3D fold, regular secondary structure elements such as helices and sheets are often connected by the so-called turns (or -turns) small stretches of polypeptide that have to undergo abrupt change in direction - Such turns usually consist of a consecutive quartet of residues (usually labeled i, i+1, i+2, and i+3) arranged in two major (and commonest) conformations termed Type I and Type II - While both Type I and Type II -turns are stabilized by hydrogen bonding between the C=O group of ith residue and the NH group of (i+3)th residue within the quartet, their differences arise due to the rotation (or flip) of the peptide bond (C-N) between residues (i+1) and (i+2) by 180, thereby leading to differential and torsion angles - Unordered regions of a polypeptide chain interrupting secondary structure elements such as helices, sheets, and turns are usually referred to as loops i i

Union of Secondary Structure Elements = 3D Fold The spatial arrangement or organization of various secondary structural elements such as helices and sheets connected via turns and loops results in the formation of a three-dimensional (3D) protein fold 3D structures of proteins are largely stabilized by two major non-covalent forces between residues located within - helices and -sheets: (1) van der Waals contacts* (2) Ionic interactions *includes H-bonding PDBID 3CPA Interactive visualization @ http://structuropedia.org

Exercise 2.3a - Describe the four levels of protein structure. Do all proteins exhibit all four levels? - Explain why the conformational freedom of peptide bonds is limited - Summarize the features of the following secondary structure elements: α helix, parallel sheet, and antiparallel β sheet - Visualize the structure of PDBID 3CPA @ http://structuropedia.org

Section 2.3b: Tertiary Structure

Synopsis 2.3b - Many proteins (but not all!) adopt an highly-ordered three-dimensional (3D) shape or structure in order to become biologically active - Knowledge of protein structure is de rigueur to understanding how it works (its biological function) - X-ray crystallography (XRC) and nuclear magnetic resonance (NMR) reign supreme as experimental methods to determine 3D protein structures at atomic level while XRC requires protein crystals, NMR is conducted on proteins in their natural aqueous environment - While protein sequence is the primary determinant of its 3D structure (or shape), two proteins with distinct sequences can also adopt similar 3D folds (convergent evolution) though rare, two proteins with very similar sequences may also adopt distinct 3D folds (divergent evolution) - In 3D structure, apolar residues are usually found in the core or interior of the protein, while polar and charged residues point outwards onto the surface. Why?! - Protein structures are deposited into the online protein databank (PDB) @ http://rcsb.org - Protein structures can be interactively visualized and rendered online @ http://structuropedia.org

Levels of Protein Structure: Description Primary (1 ) Structure The amino acid sequence of a polypetide chain Secondary (2 ) Structure The local ordered conformation of residues within a polypeptide chain these are referred to as secondary structure elements such as helices and sheets (or strictly strands!) Tertiary (3 ) Structure The spatial arrangement or organization of various secondary structural elements such as helices and sheets connected via turns and loops into a three-dimensional (3D) fold Quaternary (4 ) Structure The spatial arrangement or organization of individual polypeptide chains with a well-defined 3D fold relative to each other

History Revisited The Maiden Protein Structures! Myoglobin (1958) Hemoglobin (1960) John Kendrew (1917-1997) The original model of myoglobin built by Kendrew in 1958 the first ever for a protein molecule showing the track of the polypeptide chain (constructed from plasticine) in 3D space supported by wooden rods Kendrew et al (1958) Nature 181, 662-666 Max Perutz (1914-2002) The original model of hemoglobin built by Perutz in 1960 the first ever for a multimeric protein showing the 3D orientation of (white) and (black) subunits within the 2 2 tetramer with the red discs denoting heme cofactor Perutz et al (1960) Nature 185, 416-422

Super-Secondary Structural Motifs -hairpin -hairpin -scissor -meander -motif - Secondary structure elements such as helices and sheets often combine to generate higherorder super-secondary structural motifs - Such structural motifs can exist autonomously as protein domains or modules - They also serve as building blocks for the organization of more complex 3D structural folds Greek-key motif (4-stranded) ( 3 2 1 4 or 4 1 2 3)

Protein Topology: α-fold, β-fold, and α/β-fold PDBID 256B PDBID 7FAB PDBID 6LDH -fold (4-helical bundle with heme cofactor) -fold ( -sandwich comprised of 3- and 4- stranded antiparallel -sheets) -fold (6-stranded parallel -sheet flanked by -helices)

Protein Topology: Modular Proteins N NT A schematic of a modular protein comprised of an N-terminal (NT) and a C-terminal (CT) domain - Simple proteins such as protein phosphatases and kinases are unitary they are comprised of a single functional (catalytic or binding) unit - However, more complex proteins often tend to be modular they harbor more than one functional unit called a module or domain - A protein module or domain is semi-autonomous and imparts an additional function to the protein - For example, the CT domain in a modular protein may be catalytic, but it only becomes active upon the binding of another protein to the NT domain the NT domain thus serves a regulatory role for the CT domain and imparts upon the modular protein a regulatory control in lieu of being constitutively active CT C - Multiple domains within a modular protein may not necessarily interact in 3D space PDBID 1GD1

Protein DataBank (PDB) File: Overview #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 - Protein structures are reproduced or rendered from atomic coordinates stored in a PDB file - A PDB file can be viewed as a form of tabulated data comprised of 11 columns (prefixed #), with each row corresponding to a single atom (not residue!) entry - In the PDB file above, data needed to reproduce 3D positions of only TWO residues (13 and 14) are shown for simplicity, but the complete PDB file harbors such values for all residues

Col Description Protein DataBank (PDB) File: Columns 1-11 #1 A descriptor indicating either one of the 20 standard amino acids or five nucleotides (ATOM) or a nonstandard residue such as a phosphorylated amino acid or a drug molecule (HETATM) this column may also contain info to indicate the termination of each polypeptide chain (TER) or the end of coordinate file (END) #2 Atom number (in sequential order) #3 Atom type within each residue (amino acid or nucleotide) #4 3-letter code for the type of residue (amino acid or nucleotide) #5 Polypeptide chain (usually indicated by letters A-Z) a PDB file may harbor multiple proteins bound together into a macromolecular complex hence the need to add a chain identifier #6 Residue number (usually has no relationship to the native protein sequence numbering so beware!) #7 X-coordinate #8 Y-coordinate #9 Z-coordinate The shape of a protein is reconstructed by simply mapping (plotting) out these values onto a 3D plot computationally! #10 Occupancy the probability that the given XYZ coordinates for an atom are found in a given conformation (many atoms are highly flexible and thus may resonate between multiple conformations) unity (or number 1) denotes a probability of 1 (atom only exists in one conformation!) #11 B-factor (temperature factor) describes the displacement of an atom from an average value and thus serves as an indicator of the flexibility (quality) of structure (ie essentially an error on XYZ coordinates) good structures usually have B-factors less than 30 for most atoms; higher the B-factor greater the flexibility of that atom or region (cf standard deviation on a set of values)

Exercise 2.3b - Why do turns and loops most often occur on the protein surface? - Which side chains usually occur on a protein s surface? In its interior? - Describe some of the common protein structural motifs - Summarize the types of information provided in a PDB file - Why is it useful to compare protein structures in addition to protein sequences? - Visualize the structures with PDBIDs 256B, 7FAB and 6LDH @ http://strucuropedia.org

Section 2.3c: Quaternary Structure

Synopsis 2.3c - Many proteins harbor quaternary structure they are composed of multiple polypeptide chains (or subunits), usually arranged symmetrically - Subunits (also called monomers) may be identical (homomers) or non-identical (heteromers) - Subunits usually associate non-covalently in a process termed multimerization or oligomerization however, not all multimers or oligomers are functionally relevant - The physiologically-relevant multimeric form of a protein is called biological unit (or biological assembly) for example, the functional form of hemoglobin is a tetramer comprised of four chains (designated 2 2) - Commonly observed biological units constituted from individual subunits (monomers) are dimers, trimers, tetramers, hexamers and octamers: homodimers / heterodimers homotrimers / heterotrimers homotetramers / heterotetramers - Protein oligomerization confers many advantages eg enhanced stability, greater regulatory control, attaining allosteric/cooperative behavior, functional versatility, and signal amplification

Levels of Protein Structure: Description Primary (1 ) Structure The amino acid sequence of a polypetide chain Secondary (2 ) Structure The local ordered conformation of residues within a polypeptide chain these are referred to as secondary structure elements such as helices and sheets Tertiary (3 ) Structure The spatial arrangement or organization of various secondary structural elements such as helices and sheets connected via turns and loops into a three-dimensional (3D) fold Quaternary (4 ) Structure The spatial arrangement or organization of individual polypeptide chains with a well-defined 3D fold relative to each other

Subunits of Oligomeric Proteins Are Symmetric =180 =120 =72 - Subunits of an oligomeric protein are usually arranged in a symmetrical manner they occupy a geometrically-equivalent (or geometrically-indistinguishable) position relative to each other that are related by rotational symmetry ie when rotated by a certain angle, they look the same again! - One such type of rotational symmetry observed in the assembly of oligomeric proteins is termed cyclic symmetry usually indicated by letters C2 (2-fold), C3 (3-fold), C4 (4-fold), or C5 (5-fold) to denote the n-fold axis of symmetry by which subunits in an oligomer are related - The minimal rotational angle ( ) required to rotate one subunit to a geometrically-equivalent position of another (ie it looks the same from the other side) is simply given by the relationship: = 2 /n = 360 /n where n is the cyclic symmetry (eg C2 n=2) or the number of subunits in an oligomer - Be aware that an n-meric protein does NOT necessarily have n-fold axis of symmetry eg hemoglobin is a tetramer with a 2-fold axis of symmetry! How so?

Quaternary Structure of Hemoglobin (Hb) Heme 2 1 2 1 180 1 2 1 2 Space-filling models of Hb PDBID 2DHB - Hb is comprised of two distinct polypeptide chains termed and which oligomerize into dimer - The physiologically-functional form (biological unit) of Hb is a non-covalent tetramer with the subunit composition 2 2 on symmetrical grounds, it is better envisioned as a dimer of dimer (with 1/ 1 units constituting one dimer and 2/ 2 units the other) - Symmetrically-repeating units within an oligomer are called protomers eg Hb is a dimer of protomers - Hb tetramer harbors a two-fold axis of symmetry counter-clockwise (or clockwise) rotation of one protomer by 180 about an axis perpendicular to the plane of the page and through the center of Hb tetramer will superimpose it upon the other dimer

Exercise 2.3c - List the advantages of multiple subunits in proteins - What axis of symmetry are the following protein oligomers likely to harbor? Dimer, trimer, and tetramer? - Visualize hemoglobin structure (PDBID 1GZX) @ http://strucuropedia.org: (1) Import the tetramer with PDBID (2) Color-code the subunits or chains A/ 1 (yellow), B/ 1 (cyan), C/ 2 (green), and D/ 2 (blue) (3) Rotate the tetramer by 180 in the plane of the page (Z-plane) to observe a two-fold axis of symmetry (4) Display the bound oxygen molecule to each monomer