Impact of neutral atoms on plasma turbulence in the tokamak edge region

Similar documents
A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva

A comparison between a refined two-point model for the limited tokamak SOL and self-consistent plasma turbulence simulations

Modeling neutral-plasma interactions in scrape-off layer (SOLT) simulations*

Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer

Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT-60U

Modelling of JT-60U Detached Divertor Plasma using SONIC code

Verification & Validation: application to the TORPEX basic plasma physics experiment

Modelling of plasma edge turbulence with neutrals

L-H transitions driven by ion heating in scrape-off layer turbulence (SOLT) model simulations

A first-principles self-consistent model of plasma turbulence and kinetic neutral dynamics in the tokamak scrape-off layer

Overview of edge modeling efforts for advanced divertor configurations in NSTX-U with magnetic perturbation fields

Plasma-neutrals transport modeling of the ORNL plasma-materials test stand target cell

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas

The Levitated Dipole Experiment: Towards Fusion Without Tritium

A neoclassical model for toroidal rotation and the radial electric field in the edge pedestal. W. M. Stacey

TURBULENT TRANSPORT THEORY

On the locality of parallel transport of heat carrying electrons in the SOL

Operational Phase Space of the Edge Plasma in Alcator C-Mod

Kinetic theory of ions in the magnetic presheath

Predicting the Rotation Profile in ITER

Fluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Helium-3 transport experiments in the scrape-off layer with the Alcator C-Mod omegatron ion mass spectrometer

Partially Coherent Fluctuations in Novel High Confinement Regimes of a Tokamak

Connections between Particle Transport and Turbulence Structures in the Edge and SOL of Alcator C-Mod

Intrinsic rotation due to non- Maxwellian equilibria in tokamak plasmas. Jungpyo (J.P.) Lee (Part 1) Michael Barnes (Part 2) Felix I.

Simple examples of MHD equilibria

Impact of diverted geometry on turbulence and transport barrier formation in 3D global simulations of tokamak edge plasma

Inter-linkage of transports and its bridging mechanism

Effect of Neutrals on Scrape-Off-Layer and Divertor Stability in Tokamaks

Gyrokinetic Theory and Dynamics of the Tokamak Edge

3D analysis of impurity transport and radiation for ITER limiter start-up configurations

The physics of the heat flux narrow decay length in the TCV scrape-off layer: experiments and simulations

Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit

Alcator C-Mod. Particle Transport in the Alcator C-Mod Scrape-off Layer

Neoclassical transport

Flow measurements in the Scrape-Off Layer of Alcator C-Mod using Impurity Plumes

Total Flow Vector in the C-Mod SOL

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Characteristics of the H-mode H and Extrapolation to ITER

Physics of the detached radiative divertor regime in DIII-D

UEDGE Modeling of the Effect of Changes in the Private Flux Wall in DIII-D on Divertor Performance

0 Magnetically Confined Plasma

Edge Momentum Transport by Neutrals

Low Temperature Plasma Technology Laboratory

14. Energy transport.

Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices

INTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE

Turbulence and Transport The Secrets of Magnetic Confinement

Parallel transport and profile of boundary plasma with a low recycling wall

Progress in Turbulence Modeling JET SOL and edge phenomena

Alcator C-Mod. Particle Transport in the Scrape-off Layer and Relationship to Discharge Density Limit in Alcator C-Mod

Modeling of ELM Dynamics for ITER

Stability of a plasma confined in a dipole field

Simulation of Plasma Blobs in Realistic Tokamak Geometry

Erosion and Confinement of Tungsten in ASDEX Upgrade

Divertor Plasma Detachment

Fundamentals of Plasma Physics Transport in weakly ionized plasmas

Plasma Science and Fusion Center

Some Notes on the Window Frame Method for Assessing the Magnitude and Nature of Plasma-Wall Contact

Theory Work in Support of C-Mod

Toroidal confinement devices

Flow and dynamo measurements in the HIST double pulsing CHI experiment

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5.

ArbiTER studies of filamentary structures in the SOL of spherical tokamaks

Divertor Heat Flux Reduction and Detachment in NSTX

Bursty Transport in Tokamaks with Internal Transport Barriers

Divertor Requirements and Performance in ITER

Particle transport results from collisionality scans and perturbative experiments on DIII-D

Turbulence in Tokamak Plasmas

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

Magnetized ion collection by oblique surfaces including self-consistent drifts: Mach-probes of arbitrary shape.

Effect of divertor nitrogen seeding on the power exhaust channel width in Alcator C-Mod

12. MHD Approximation.

Magnetically Confined Fusion: Transport in the core and in the Scrape- off Layer Bogdan Hnat

Transport and drift-driven plasma flow components in the Alcator C-Mod boundary plasma

Neutral gas modelling

Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal

Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas

TH/P4-9. T. Takizuka 1), K. Shimizu 1), N. Hayashi 1), M. Hosokawa 2), M. Yagi 3)

TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a)

Mean-field and turbulent transport in divertor geometry Davide Galassi

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison

CHAPTER 6 SCRAPE-OFF LAYER TRANSPORT ON JET

A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows *

History of PARASOL! T. Takizuka! Graduate School of Engineering, Osaka University!! PARASOL was developed at Japan Atomic Energy Agency!

Recent Theoretical Progress in Understanding Coherent Structures in Edge and SOL Turbulence

Interaction between plasma and neutrals near the divertor : the effect of particle and energy reflection

A.G. PEETERS UNIVERSITY OF BAYREUTH

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Non-Solenoidal Plasma Startup in

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER

Fusion Development Facility (FDF) Divertor Plans and Research Options

DIVIMP simulation of W transport in the SOL of JET H-mode plasmas

Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport

Blob motion and control. simple magnetized plasmas

GA A26119 MEASUREMENTS AND SIMULATIONS OF SCRAPE-OFF LAYER FLOWS IN THE DIII-D TOKAMAK

Blob sizes and velocities in the Alcator C-Mod scrapeoff

Transcription:

Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint Varenna-Lausanne International Workshop 29.08. - 02.09. 2016

Physics at the periphery of a fusion plasma Toroidal limiter Limiter Core Edge SOL Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Plasma Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Plasma Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Recombination on the limiter Plasma Neutrals Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Recombination on the limiter Ionization of neutrals Ionization Density source Energy sink Plasma Neutrals Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Recombination on the limiter Ionization of neutrals Ionization Density source Energy sink Plasma Neutrals Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

Physics at the periphery of a fusion plasma Toroidal limiter Radial transport due to turbulence Parallel flow in the SOL to the limiter Recombination on the limiter Ionization of neutrals Ionization Recycling Density source Energy sink Plasma Neutrals Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 37

Movie Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 3 / 37

The tokamak scrape-off layer (SOL) Heat exhaust Confinement Impurities Fusion ash removal Fueling the plasma (recycling) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 4 / 37

1. Modeling the periphery 2. A refined two-point model with neutrals 3. Gas puff fueling simulations Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 5 / 37

Modeling the periphery Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

Modeling the periphery High plasma collisionality, local Maxwellian Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Drift-reduced Braginskii equations n,ω,v e,v,i,t e,t i Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Drift-reduced Braginskii equations n,ω,v e,v,i,t e,t i Flux-driven, no separation between equilibrium and fluctuations Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Drift-reduced Braginskii equations n,ω,v e,v,i,t e,t i Flux-driven, no separation between equilibrium and fluctuations Kinetic neutral equation Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

Modeling the periphery High plasma collisionality, local Maxwellian d/dt ω ci,k 2 k 2 Drift-reduced Braginskii equations n,ω,v e,v,i,t e,t i Flux-driven, no separation between equilibrium and fluctuations Kinetic neutral equation Interplay between plasma outflow from the core, turbulent transport, sheath losses, and recycling Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 6 / 37

Fluid plasma model and interaction with neutrals n = ρ 1 [φ,n] + 2 t B [C(pe) nc(φ)] (nv e ) + Dn(n) + Sn+nnν iz nν rec (1) ω t v e t v i t T e t T i t = ρ 1 [φ, ω] v i ω + B2 = ρ 1 [φ,v e ] v e v e + m i m e n j + 2B n C(p) + D nn ω ( ω) n νcx ω (2) ( ν j ) n + φ 1 n pe 0.71 Te = ρ 1 [φ,v i ] v i v i 1 n p + Dv i (v nn i )+ = ρ 1 [φ,t e] v e T e + 4Te 3B [ 1 n C(pe) + 5 C(Te) C(φ) 2 + D Te (T e) + D Te (Te) + S Te + nn n ν iz ( 2 3 E iz T e + me = ρ 1 [φ,t i ] v i T i + 4T [ i 1 3B n C(pe) τ 5 ] 2 C(T i ) C(φ) + D v e (v e )+ nn n (νen + 2ν iz )(v n v e ) n (ν iz + ν cx )(v n v i ) (4) ] [ ] + 2Te 0.71 3 n j v e (5) v m e (v e 4 i 3 v n [ + 2T i 3 + D Ti (T i ) + D T i (T i ) + S Ti + nn n (ν iz + ν cx )(T n T i + 1 3 (v n v i )2 ) 2 φ =ω, ρ = ρs/r, f = b 0 f, ω = ω + τ 2 T i, p = n(t e + τt i ) nn me 2 )) + νen n m i (v i v e ) n n v e 3 v e (v n v e )) ] (3) (6) + boundary conditions + kinetic neutral equation Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 7 / 37

The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 8 / 37

The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 8 / 37

The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 8 / 37

The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 8 / 37

The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 8 / 37

The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 8 / 37

The density equation n t = ρ 1 [φ,n] + 2 B [C(p e) nc(φ)] (nv e ) (7) + S n + n n ν iz nν rec + D n (n) ExB drift Curvature terms Parallel advection Plasma source from core Interaction with neutrals Perpendicular diffusion Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 8 / 37

The kinetic model of the neutrals One mono-atomic neutral species Krook operators for ionization, charge-exchange, and recombination C. Wersal and P. Ricci 2015 Nucl. Fusion 55 123014 Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 9 / 37

The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Φ i = f i /n i Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 10 / 37

The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Φ i = f i /n i Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 10 / 37

The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Φ i = f i /n i Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 10 / 37

The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Φ i = f i /n i Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 10 / 37

The neutral model f n t + v f n x = ν izf n ν cx (f n n n Φ i ) + ν rec n i Φ i (8) ν iz = n e v e σ iz (v e ), ν cx = n i v rel σ cx (v rel ) ν rec = n e v e σ rec (v e ), Boundary conditions Φ i = f i /n i (v in respect to the surface; θ between v and normal vector to the surface) dv v f n ( x w, v) + u i n i = 0 (9) f n ( x w, v) cos(θ)e mv 2 /2T w for v > 0 (10) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 10 / 37

Boundary conditions for the neutrals Partial reflection at the limiters Window averaged particle flux conservation at the outer boundary nn nn Z/ ρ s 200 100 0 100 200 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 Z/ ρ s 200 100 0 100 200 0.14 0.12 0.1 0.08 0.06 0.04 0.02 200 100 0 100 200 R/ ρ s 200 100 0 100 200 R/ ρ s Gas puffs and neutral background Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 11 / 37

Further simplifications Separation of time scales The neutrals time of life is typically shorter than the turbulent time scale T e = 20eV, n 0 = 5 10 13 cm 3 τ neutral losses ν 1 eff 5 10 7 s τ turbulence R 0 L p /c s0 2 10 6 s Assume fn / t 0 Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 12 / 37

Further simplifications Separation of time scales The neutrals time of life is typically shorter than the turbulent time scale T e = 20eV, n 0 = 5 10 13 cm 3 τ neutral losses ν 1 eff 5 10 7 s τ turbulence R 0 L p /c s0 2 10 6 s Assume fn / t 0 Plasma anitrosopy The plasma elongation along the field lines is much longer than the typical neutral mean free path Assume f n 0 Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 12 / 37

Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 13 / 37

Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) v 0 x f n (x,v) (12) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 13 / 37

Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) v 0 x f n (x,v) = x 0 dx (12) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 13 / 37

Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) v (12) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 13 / 37

Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) e 1 x v x dx (ν cx (x )+ν iz (x )) v (12) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 13 / 37

Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) v + f w (v)e 1 v x0 dx (ν cx (x )+ν iz (x )) e v 1 x x dx (ν cx (x )+ν iz (x )) (12) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 13 / 37

Solution of neutral eq. with method of characteristics Example in 1D, no recombination, v > 0 and a wall at x = 0 v f n x = ν cxn n Φ i (ν iz + ν cx )f n (11) 0 x' x v f n (x,v) = x 0 dx ν cx (x )n n (x )Φ i (x,v) v + f w (v)e 1 v x0 dx (ν cx (x )+ν iz (x )) e v 1 x x dx (ν cx (x )+ν iz (x )) (12) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 13 / 37

An equation for the density distribution By imposing f n dv = n n (13) we get a linear integral equation for n n (x) n n (x) = x dx n n (x ) 0 0 + contribution by v < 0 + n w (x) dv ν cx(x )Φ i (x,v) v e d eff ν eff (x x ) v (14) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 14 / 37

The GBS code, a tool to simulate SOL turbulence Evolves scalar fields in 3D geometry n,ω,v e,v,i,t e,t i Kinetic neutral physics Limiter geometry Open and closed field-line region Sources S n and S T mimic plasma outflow from the core (Divertor geometry) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 15 / 37

Questions that we can address How is the temperature at the limiter related to main plasma parameters? How is the plasma fueled? How do neutrals affect plasma turbulence? SOL width? Heat flux? How do diagnostic gas puffs affect the SOL? Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 16 / 37

Questions that we can address How is the temperature at the limiter related to main plasma parameters? How is the plasma fueled? How do neutrals affect plasma turbulence? SOL width? Heat flux? How do diagnostic gas puffs affect the SOL? Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 16 / 37

1. Modeling the periphery 2. A refined two-point model with neutrals 3. Gas puff fueling simulations Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 17 / 37

The two-point model Relation between upstream and target plasma properties Limiter Target Widely used experimentally for a quick estimate Derived from 1D model along field lines Core Edge SOL Upstream Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 18 / 37

The SOL unrolled SOL Main Plasma Main Plasma Limiter Limiter SOL LCFS Limiter Wall Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 19 / 37

The SOL unrolled SOL Main Plasma Limiter Main Plasma Limiter Target Upstream SOL LCFS Target Limiter Wall Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 19 / 37

The SOL unrolled SOL Main Plasma Limiter Main Plasma Limiter Target s Upstream SOL LCFS Target Limiter Wall Parallel plasma dynamics projected along poloidal coordinate Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 19 / 37

The SOL unrolled SOL Main Plasma Main Plasma Limiter Limiter s SOL LCFS Limiter Wall Parallel plasma dynamics projected along poloidal coordinate Plasma and energy outflowing from the core are modeled with prescribed S n and S Q Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 19 / 37

The basic two-point model Q = S Q ds = Q cond + Q conv (15) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 20 / 37

The basic two-point model Q = S Q ds = Q cond + Q conv (15) Q cond = χ e0 T 5/2 dt e e dz (16) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 20 / 37

The basic two-point model Q = S Q ds = Q cond + Q conv (15) Q cond = χ e0 T 5/2 dt e e dz (16) Q conv = c e0 ΓT e (17) Γ = nv = S n ds (18) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 20 / 37

The basic two-point model Q = S Q ds = Q cond + Q conv (15) Q cond = χ e0 T 5/2 dt e e dz (16) Q conv = c e0 ΓT e (17) Γ = nv = S n ds (18) Boundary conditions Upstream: dt e /ds = 0 At the limiter: Q L = γ e Γ L T el, γ e 5 Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 20 / 37

The basic two-point model Q = S Q ds = Q cond + Q conv (15) Q cond = χ e0 T 5/2 dt e e dz (16) Q conv = c e0 ΓT e (17) Γ = nv = S n ds (18) Boundary conditions Upstream: dt e /ds = 0 At the limiter: Q L = γ e Γ L T el, γ e 5 S Q,S n T e,u T e,t Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 20 / 37

Simulations with different densities n 0 = 5 10 12 cm 3 n 0 = 5 10 13 cm 3 Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 21 / 37

Simulations with different densities n 0 = 5 10 12 cm 3 n 0 = 5 10 13 cm 3 Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 22 / 37

Simulations with different densities n 0 = 5 10 12 cm 3 n 0 = 5 10 13 cm 3 Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 22 / 37

Poloidal profiles of electron temperature 0.8 0.6 n 0 =5 10 12 cm 3 n 0 =5 10 13 cm 3 Te 0.4 0.2 0 -L 0 L s Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 23 / 37

Poloidal profiles of electron temperature 0.8 0.6 n 0 =5 10 12 cm 3 n 0 =5 10 13 cm 3 Te 0.4 0.2 0 -L 0 L s Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 23 / 37

Temperature ratio upstream to target 2 basic model 1.8 Te,u/Te,t (tpm) 1.6 1.4 1.2 1 5 10 13, no n n 5 10 13 5 10 12, no n n 5 10 12 5 10 13 20x480 5 10 13, E iz = 30 1 1.5 2 T e,u /T e,t (GBS) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 24 / 37

A more refined two-point model Obtain an electron heat equation in quasi-steady state 3 2 T n e t + 3 2 n T e 0 (19) t Assume v e, v i, and neglect small terms (e.g., D Te ) Combine perpendicular transport terms into S Q ( 5 2 nv T e ) χ e0 ( T 5/2 e T e ) v (nt e ) (20) = S Q + S neutrals with S neutrals = n n ν iz (T e )E iz and χ e0 = 3/2 nκ e Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 25 / 37

Further assumptions and relations v is linear from c s to c s c s = T e,t + T i,t 2T e,t nv = [S n + n n ν iz (T e )]ds n n is decaying exponentially from limiter with λ mfp Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 26 / 37

Three external input quantities Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 27 / 37

Three external input quantities Perpendicular heat source, S Q 0.15 0.1 GBS cos fit SQ 0.05 0-0.05 -L 0 L s Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 27 / 37

Three external input quantities Perpendicular heat source, S Q Perpendicular particle source, S n 0.08 0.06 GBS cos fit Sn 0.04 0.02 0-0.02 -L 0 L s Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 27 / 37

Three external input quantities Perpendicular heat source, S Q Perpendicular particle source, S n Ionization particle source, S iz Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 27 / 37

Three external input quantities Perpendicular heat source, S Q Perpendicular particle source, S n Ionization particle source, S iz S Q,S n,s iz T e,u T e,t Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 27 / 37

Temperature ratio upstream to target 2 basic model 2 full model 1.8 1.8 Te,u/Te,t (tpm) 1.6 1.4 1.2 1 5 10 13, no n n 5 10 13 5 10 12, no n n 5 10 12 5 10 13 20x480 5 10 13, E iz = 30 1 1.5 2 T e,u /T e,t (GBS) Te,u/Te,t (tpm) 1.6 1.4 1.2 1 5 10 13, no n n 5 10 13 5 10 12, no n n 5 10 12 5 10 13 20x480 5 10 13, E iz = 30 1 1.2 1.4 1.6 1.8 2 T e,u /T e,t (GBS) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 28 / 37

Questions that we can address How is the temperature at the limiter related to main plasma parameters? How is the plasma fueled? How do neutrals affect plasma turbulence? SOL width? Heat flux? How do diagnostic gas puffs affect the SOL? Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 29 / 37

1. Modeling the periphery 2. A refined two-point model with neutrals 3. Gas puff fueling simulations Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 30 / 37

Gas puff/fueling simulations Open and closed field lines Various gas puff locations (hfs, bot, lfs, top) Small constant main wall recycling n 0 = 10 13 cm 3, T 0 = 20eV, q = 3.87, ρ 1 = 500, a 0 = 200ρ s Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 31 / 37

Neutral density Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 32 / 37

Ionization Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 33 / 37

Radial ExB flow outward/inward flow Ballooning outward transport at the low field side Inward fueling at the high field side Robust feature independent of gas puff location Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 34 / 37

Questions that we can address How is the temperature at the limiter related to main plasma parameters? How is the plasma fueled? How do neutrals affect plasma turbulence? SOL width? Heat flux? How do diagnostic gas puffs affect the SOL? Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 35 / 37

Poloidal ExB flow Poloidal rotation due to radial electric field Shearing of the turbulent eddies Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 36 / 37

Conclusions Plasma turbulence at the periphery and interaction with neutrals are crucial issues on the way to fusion electricity GBS is now able to simulate this complex interplay self-consistently Development of a more refined two-point model, in agreement with GBS Initial study of plasma fueling due to ionization and radial flows, and of plasma poloidal rotation. Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 37 / 37

Reaction rates - Stangeby Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 1 / 4

Reaction rates - openadas 10 13 10 14 σv (m 3 s 1 ) 10 15 10 16 10 17 10 18 10 19 CX ion, n 0 =1e+18 rec, n 0 =1e+18 ion, n 0 =1e+20 rec, n 0 =1e+20 10 0 10 1 10 2 T e,t i (ev) Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 2 / 4

Timescales T 0 (ev) n 0 (m 3 ) τ turbulence (s) τ nnloss (s) λ mfp (m) 1 1e+17 1.0e-05 1.4e-03 2.5e+00 1 1e+18 1.0e-05 1.4e-04 2.5e-01 1 1e+19 1.0e-05 1.4e-05 2.5e-02 1 1e+20 1.0e-05 1.4e-06 2.5e-03 1 1e+21 1.0e-05 1.4e-07 2.5e-04 20 1e+17 2.3e-06 2.6e-04 4.4e-01 20 1e+18 2.3e-06 2.5e-05 4.3e-02 20 1e+19 2.3e-06 2.4e-06 4.1e-03 20 1e+20 2.3e-06 2.2e-07 3.7e-04 20 1e+21 2.3e-06 1.8e-08 3.1e-05 50 1e+17 1.4e-06 1.6e-04 2.8e-01 50 1e+18 1.4e-06 1.6e-05 2.7e-02 50 1e+19 1.4e-06 1.5e-06 2.6e-03 50 1e+20 1.4e-06 1.4e-07 2.4e-04 50 1e+21 1.4e-06 1.2e-08 2.0e-05 Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 3 / 4

The model in steady state Steady state, f n t = 0, first approach Valid if τ neutral losses < τ turbulence e.g. T e = 20eV, n 0 = 5 10 19 m 3 τ neutral losses ν 1 eff 5 10 7 s τ turbulence R 0 L p /c s0 2 10 6 s Otherwise: time dependent model Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 4 / 4