Surveying the Milky Way

Similar documents
StarTalk. Sanjay Yengul May "To know ourselves, we must know the stars."

Modern Astronomy Review #1

The light from the stars we see at night travel great distances to reach Earth. Other than the sun, Proxima Centauriis the next closest

Chapter 10 Measuring the Stars

Stars and Galaxies 1

Vocabulary. Section Resources

Beyond Our Solar System Chapter 24

Basic Properties of the Stars

Parallax: Measuring the distance to Stars

COLOR MAGNITUDE DIAGRAMS

Chapter 28 Stars and Their Characteristics

Determining the Properties of the Stars

a. Star A c. The two stars are the same distance b. Star B d. Not enough information

Astronomical Measurements: Brightness-Luminosity-Distance-Radius- Temperature-Mass. Dr. Ugur GUVEN

Stars & Galaxies. Chapter 27 Modern Earth Science

The Family of Stars. Chapter 13. Triangulation. Trigonometric Parallax. Calculating Distance Using Parallax. Calculating Distance Using Parallax

Astronomy 210 Spring 2017: Quiz 5 Question Packet 1. can: 2. An electron moving between energy levels

Chapter 11 Surveying the Stars

The Cosmic Perspective. Surveying the Properties of Stars. Surveying the Stars. How do we measure stellar luminosities?

Chapter 21 Earth Science 11

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0.

Types of Stars and the HR diagram

HOMEWORK - Chapter 17 The Stars

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift

Chapter 15: Surveying the Stars

Galaxies: The Nature of Galaxies

OPEN CLUSTER PRELAB The first place to look for answers is in the lab script!

CHAPTER 28 STARS AND GALAXIES

Stellar Composition. How do we determine what a star is made of?

Spectral Classification of Stars

Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc.

GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran

Chapter 14 The Milky Way Galaxy

Mass-Luminosity and Stellar Lifetimes WS

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

Guiding Questions. Measuring Stars

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift

Hertzsprung-Russel Diagrams and Distance to Stars

3. c 4. a 5. f 6. b 7. e. 1. Stars are bright and hot. 2. Distances between stars are measured in light-years. 3. The sun is a yellow star.

ASTR-1020: Astronomy II Course Lecture Notes Section III

ASTR Look over Chapter 15. Good things to Know. Triangulation

Chapter 15 Surveying the Stars Pearson Education, Inc.

Chapter 15 Surveying the Stars

Chapter 15 The Milky Way Galaxy

Chapter 9: Measuring the Stars

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Remember from Stefan-Boltzmann that 4 2 4

Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process.

Cosmic Microwave Background Radiation

Lecture Outlines. Chapter 17. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Figure 19.19: HST photo called Hubble Deep Field.

Astronomy, Astrophysics, and Cosmology

Chapter 15 Surveying the Stars Properties of Stars

OTHER MOTIONS. Just so far away they appear to move very slowly

TAKE A LOOK 2. Identify This star is in the last stage of its life cycle. What is that stage?

Stars: Stars and their Properties

Lecture 16 The Measuring the Stars 3/26/2018

o Terms to know o Big Bang Theory o Doppler Effect o Redshift o Universe

E1. This question is about stars. (a) Distinguish between apparent magnitude and absolute magnitude. [2]

Lecture Outlines. Chapter 23. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

IB Physics - Astronomy

Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars

The Milky Way - Chapter 23

HUBBLE SPACE TELESCOPE

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

Astronomy Part 1 Regents Questions

λ = 650 nm = c = m s 1 f =? c = fλ f = c λ = ( m s 1 ) ( m) = = Hz T = 1 f 4.

301 Physics 1/20/09. The Family of Stars. Chapter 12. Triangulation. Trigonometric Parallax. Course/Syllabus Overview Review of 301 stuff Start Ch.

Distances to Stars. Important as determines actual brightness but hard to measure as stars are so far away

OPTION E, ASTROPHYSICS TEST REVIEW

Directions: For numbers 1-30 please choose the letter that best fits the description.

Major Stars of the Orion Constellation

The Electromagnetic Spectrum

The star Proxima Centauri is about 100 million times farther away

Measuring the Stars. The measurement of distances The family of distance-measurement techniques used by astronomers to chart the universe is called

The Evening Sky in February 2019

Characteristics of Stars

The Milky Way Galaxy (ch. 23)

Chapter 8: The Family of Stars

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way. The Curtis View. Our Galaxy. The Shapley View 3/27/18

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

The Universe. But first, let s talk about light! 2012 Pearson Education, Inc.

HR Diagram Lab. Area 1 Area 4. Area 5. Area 2. Area 6 Area 3

A1101, Lab 5: The Hertzsprung- Russell Diagram Laboratory Worksheet

The Milky Way Galaxy Guiding Questions

The Milky Way Galaxy

Properties of Stars & H-R Diagram

My God, it s full of stars! AST 248

Properties of Stars (continued) Some Properties of Stars. What is brightness?

Astronomy 10 Test #2 Practice Version

Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam]

Astronomy 122 Outline

Beyond the Solar System 2006 Oct 17 Page 1 of 5

Astronomy Exam 3 - Sun and Stars

Miami Dade County Public Schools Educational Transformation Office and the Division of Academics: Department of Science

Chapter 23 The Milky Way Galaxy Pearson Education, Inc.

Gaia Launched in Dec D map of the stars near Sun = 10% of Galaxy Measure the positions of a billion stars to brightness V=20 Precise to

29:50 Stars, Galaxies, and the Universe First Hour Exam October 6, 2010 Form A

Transcription:

Surveying the Milky Way How Astronomers Prepared a Detailed Map of the Nearby Regions of Space By the 1920 s Primary References: Astronomy:The Evolving Universe, Michael Zeilik, Second Edition, Harper & Row, 1979. Software: Starry Night Pro 3.1 February, 2002

What Can We See? Looking between Cygnus and Scorpius with binoculars, the more intently we look at the sky in this region, the more stars we see. Cygnus, Alson Wong, Celestron C9.25 2

Vocabulary! Spectrum - light of various wavelengths emitted by a star. " Electromagnetic radiation carries almost all of the information from celestial bodies to the Earth. " Solar system objects like the Sun, planets, and asteroids are very close to us compared to other stars. " Luminosity is the total amount of energy emitted by an object, a star or a light bulb, and is measured in Watts, like a 100 W light bulb. " A Kelvin is a unit of temperature. " 1 K = -273 C = -459 F. 3

Overview Historically, astronomers have attacked this puzzle by showing the key importance of distance measurements and the properties of stars. They eventually discovered that we live in a spiral galaxy a vast, flat, pinwheel of stars, gas and dust. Our Sun is only one of billions of stars in our galaxy. It resides about three quarters of the way out from the center, in one of the spiral arms. 4

Herschel s Star Count In the latter part of the 18 th century, William Herschel used systematic observational techniques to attack the problem of the Milky Way s structure. He used the most powerful telescopes of his day to conduct a star count in selected regions of the sky. He believed that the directions where he found large numbers of faint stars were places where the Milky Way extended the farthest. 5

Assumptions As a starting point, Herschel assumed: " Brightness means nearness (or faintness means farness) " All stars were essentially the same and gave off the same amount of light. They were equally luminous. (Reasonable beginning assumption) " If all stars were placed the same distance from earth, they would all have the same brightness. 6

Herschel s Conclusions With this and other assumptions, Herschel s star counting program allowed him to estimate the distance to the edge of the galaxy. He concluded that the stars were arranged in a thin slab, with the Sun not far from the center of the galaxy. 7

Herschel s Counting Results A. Fewer stars in this direction Earth B. More stars in this direction This implies that the Milky Way extends further in direction B than A. 8

Herschel s Hypothesis M81 and M82, Jeff Ball, 130mm Astro-Physics Herscel believed that all spiral shaped nebulosities were distant stellar systems that could ultimately be resolved into stars by large enough telescopes. He thought these clouds were other galaxies, viewed from a great distance. 9

Modified Assumptions Herschel s assumptions were only a good starting point. They have since been modified as we ve come to understand more about stars: " All stars are not the same and do not give off the same amount of light. " They are not equally luminous. (Correct assumption) 10

Brightness of a Star Two factors determine the brightness of a star:! Luminosity - how much energy it puts out in a given time! Distance - how far it is from us Double Cluster, Jeff Ball, 130mm Astro-Physics 11

Example A searchlight puts out more light than a penlight. That is, the searchlight is more luminous. If that searchlight is 5 miles away from you, however, it will not be as bright because light intensity decreases with distance squared. A searchlight 5 miles from you may look as bright as a penlight 6 inches away from you. The same is true for stars. 12

Inverse-Square Law This relationship is called an inverse-square relationship. As you move farther away from the bulb, the radiation is spread over a larger area. # The surface area of a sphere is directly related to its radius squared: Surface Area of a Sphere = 4π r 2 The light energy spreads out more and more on spheres that are larger and larger. 13

Example Anyone can tell that the star Sirius appears brighter than Rigel in Orion, but did you know that Rigel is really Sirius thousands of times more luminous than Sirius? Since stars are at different distances, this implies that Sirius is much brighter than Rigel because it is much closer. Rigel 14

The Parsec Standard Scientists needed a level playing field in order to compare the "absolute" brightness of many stars, so they decided to determine what a star's magnitude would be if it were placed 32.6 light-years (10 parsecs) away from Earth. After placing the stars at this distance we find an absolute magnitude range from 8 (bright) to +15 (dim) with Sirius being at +2, Rigel equal to -7 and the Sun close to the middle at +5. 15

The Magnitude Scale There are two kinds of Magnitudes: " Apparent Magnitude (m) How bright a star appears from Earth. # Apparent magnitude is affected by how luminous the star is and how far away the star is from Earth. " Absolute Magnitude (M) How bright a star would be from Earth if the star was placed 10 parsecs (32.6 ly) from Earth. # If all stars were placed the same standard distance from the Earth, then absolute magnitudes would represent differences in actual luminosities. 16

Inverse-Square Law The inverse-square law relates absolute and apparent magnitudes. If d is the distance to a star in parsecs, m is its apparent magnitude and M is its absolute magnitude: m M = 5 log d - 5 17

Inverse-Square Law # If we could figure out a star s Absolute Magnitude, and then measure how bright the star looks from Earth, we could use the Inverse-Square Law to figure out how far away it is. 18

Surveying the Milky Way Stars Move Through Space

Stars Move In 1718, Edmund Halley compared positions he had found for the stars Arcturus and Sirius with those given by Ptolemy. He found that these stars had moved a considerable amount in 1500 years. He discovered that some of the fixed stars were actually moving through space. 20

Movement of Big Dipper Stars Over 100,000 years the constellation of Ursa Major changes significantly. 50,000 BC 1 BC 50,000 AD 21

Swiftness Means Nearness As seen from Earth, the change in position of a star due to its motion in space with respect to other stars is called its Proper Motion. In estimating stellar distances, a rule of thumb is, swiftness means closeness (slowness means farness.) 22

Components of a Star s Motion The motion of stars consists of two components: " Proper Motion across our line of sight " Motion along our line of sight called Radial Velocity Radial velocity is measured by using the Doppler Effect. " The frequency of the spectrum is increased if the star is moving toward you (shifted toward the blue end of the spectrum) and the frequency is decreased if the star is moving away from you (shifted toward the red end of the spectrum). 23

Components of a Star s Motion Using both proper motion and radial velocities, and if we know the distance to a star, we can determine its motion through space. Radial Motion - Part of motion along line of sight Observed Proper Motion Proper Motion - Part of motion across line of sight Actual motion of the star through space 24

Measuring Distances to Stars Astronomers can only directly measure distances to nearby stars by using heliocentric (Sun-centered) trigonometric parallaxes. 25

Parallax Explained Imagine your finger held out at arms length is a star, the distant background to be more distant stars, and your eyes the sighting positions of the Earth in orbit around the sun separated by a time of 6 months. Earth - Summer Nearby Star 2 AU Distant Fixed Stars Earth - Winter 26

The Challenge Visually, parallax can be detected only by careful observation and measurement of a star s position. If a star is within about 400 light years, astronomers can measure its distance using heliocentric (Sun-centered) parallax. But what if it s not? If we could figure out a star s luminosity independent of any distance measurement we could determine its distance. 27

Surveying the Milky Way The H-R Diagram: The Key To The Stars

Background In 1905, Ejnar Hertsprung discovered that the widths of the dark lines in a star s spectrum are related to its luminosity. Hertsprung independently found distances to groups of stars of the same spectral class (color) using a method called statistical parallaxes. In general, he found that stars of the same spectral type with narrow, dark spectral lines are more luminous than those with broad lines. This discovery led to a way of distinguishing between large and small stars by using their spectra. 29

Temperature and Spectrum Some stars are extremely hot, while others are cool. You can tell by the color of light that the stars give off. If you look at the coals in a charcoal grill, you know that the red glowing coals are cooler than the white hot ones. The same is true for stars. A blue or white star is hotter than a yellow star, which is hotter than a red star. 30

Spectra Examples If you look at the strongest color or wavelength of light emitted by the star, then you can calculate its temperature (temperature in degrees Kelvin = 3 x 10 6 / wavelength in nanometers). A star's spectrum can also tell you the chemical elements that are in that star because different elements (for example, hydrogen, helium, carbon, calcium) absorb light at different wavelengths. 31

Spectra Examples Procyon is a mid- temperature star like our Sun. Its spectrum has fairly balanced colors of the rainbow. Rigel is a star twice the temperature of our Sun and so its spectrum is brighter in blue. Betelgeuse is a star only half the temperature of our Sun and so its spectrum is not only brighter in red but also has almost no blue light. 32

Star s Color Means Temperature Red stars are cooler than blue stars Stars of the same spectral class have the same temperature. All G-stars like the Sun have surface temperatures of about 6000 K. Stars radiate heat in a special way, like a blackbody. 33

Blackbody Radiation A blackbody is an object that absorbs completely any radiation that falls on it. Because it absorbs radiation, it must heat up and also give off radiation. A graph of blackbody radiation intensity versus radiation wavelength has a characteristic shape that depends only on the temperature of the body and not on anything else, like it s composition. 34

Luminosity Depends on Size Betelgeuse is of the same spectral type as Proxima Centauri. (So they have about the same surface temperatures, about 3000 K) Betelgeuse is 100 million times more luminous than Proxima Centauri. The difference must be one of size. Betelgeuse must be much larger than Proxima Centauri and have greater surface area. 35

Luminosity Equation The luminosity of a star depends upon both its surface temperature and surface area. For a spherical blackbody: L = (4πr 2 )(σt 4 ) watts Luminosity Surface Area of a Sphere Temperature Size of Earth s Orbit Size of Supergiant Betelgeuse (Approximately Mars Orbit) 36

Star Color Means Temperature Spectral Classes of Stars Spectral Class Color Ave.Temp. (K) Familiar Examples O Blue-violet 30,000 Mintaka (delta Orionis) B Blue-white 20,000 Rigel, Spica A White 10,000 Vega, Sirius F Yellow-white 8,000 Canopus, procyon G Yellow 6,000 Sun, Capella K Orange 4,000 Arcturus, Aldebaran M Red-orange 3,000 Antares, Betelgeuse 37

The Hertzprung-Russel Diagram (Luminosity Temperature Diagram) Henry Russel determined stellar parallaxes arriving at distances. He used the distances and the stars apparent magnitudes to calculate their absolute magnitudes then plotted them with respect to their spectral class. Plotting absolute magnitude versus spectral class for a group of stars is called a Hertzsprung-Russel Diagram. Today the H-R Diagram guides astronomers to the physical properties of stars. 38

H-R Diagram Spectral Type Stars visible to naked-eye before sunrise Feb. 15 th. (Starry Night Pro 3.1) 39 Super Giants Giants Main Sequence White Dwarfs Absolute Magnitude

Use of the H-R Diagram Once an H-R Diagram has been completed for many stars, we can use it to infer distance to other stars: 1. Find out the spectral type of the star. 2. Use widths of certain spectral lines to determine the stars luminosity class. (An M-type star could be a dwarf (main sequence), giant, or supergiant. 3. Use the H-R Diagram to determine the star s absolute magnitude. # You now know how bright the star looks and how bright the star would look if it was 10 pc away. 40

Bringing It All Together Parallaxes Spectral Type Luminosity H-R Diagram

Kapteyn Universe In 1922, Jacobus Kapteyn used statistical methods and the H-R Diagram and determined a galaxy structure like this: 26,000 ly Sun in center of relatively small, circular galaxy 42

Affects of Dust and Gas Kapteyn worried about dust and gas in space that might make stars appear dimmer than they really were. The light from the farthest stars would be affected most and lead to a misleadingly small picture of the galaxy. 43

Affects of Dust and Gas Interstellar dust and gas dims the light of the stars behind it. Scorpius, Alson Wong, Celestron C9.25 44

A New Distance Indicator While studying variable stars in the Magellanic Cloud, Henrietta Leavitt discovered that when the apparent magnitudes of a certain type of variable star were plotted against their periods, a definite relationship existed. The longer the period, the greater their luminosity. 45

Period-Luminosity Relationship Hertzprung determined from Leavitt s data that a unique relationship existed between the luminosity of a Cepheid Variable star and its period. To find the distance to cepheids, we use the following method: 46

Cepheid Distance Method 1. Find a cepheid variable star. 2. Measure its period (a relatively task that doesn t depend on any knowledge of the star s distance or spectral class.) 3. Find the star s absolute magnitude from the period-luminosity relationship. 4. Knowing the star s apparent magnitude, calculate its distance. 47

Shapley Dethrones the Sun In the 1920 s, Harlow Shapley proposed a radical idea about the size of the Milky Way and the sun s position within it. The observational foundation rested on using the period-luminosity relationship of cepheids. His model evicted the sun from its central status in the Milky Way, the second significant move of humankind away from special status in the universe. 48

Globular Clusters Have Cepheids When Shapley realized that the variable stars he had observed in globular clusters had the properties of cepheids, he used the periodluminosity method to determine their distance. What he determined shocked the astronomical community. Globular Cluster M13 49

The Galaxy is Much Bigger Globular clusters do not follow the distribution of stars in the galaxy by sticking along the plane. They are widely distributed with an odd concentration in the direction of Sagittarius. Using a period-luminosity scale that he had personally calibrated, Shapley determined the globular cluster M13 to be 100,000 ly distant. The number was staggering. It placed the globular clusters outside the boundaries of the Milky Way as mapped by Kapteyn. 50

The Sun Isn t In The Center The non-uniform distribution of globulars in the sky was a nagging problem. If the globulars were gravitationally allied with the Milky Way, they should be in a uniform distribution throughout the galaxy. But the observed non-uniformity indicated that the Sun was NOT in the Milky Way s center, but much further out along the edge. 51

Non-uniform Globular Distribution If the Sun was in the center of the galaxy, we d count the same number of globular clusters in each direction SUN IN CENTER Few globulars in this direction More globulars in this direction SUN NEAR EDGE 52

The Puzzle Comes Together Over the course of two centuries, astronomers have pieced together the construction of the Milky Way. The fitting together of the celestial map depended on the measurement of distances, which is in turn based on the fundamental properties of stars themselves and electromagnetic radiation. 53

Information From Light Stars have many features that can be measured by studying the light that they emit: Temperature Spectrum or wavelengths of light emitted Brightness Luminosity Size (radius) Mass Movement (toward or away from us) 54

Summary Star counting by Herschel, and Kapteyn gave only the relative shape of the galaxy. Parallaxes were first used to calibrate the distance scale to nearby stars. Later, the H-R diagram was used to get the distances to the other stars. 55

Summary The big breakthrough was Leavitt s discovery of the period-luminosity relationship for cepheids. Once known in terms of absolute magnitude, this relationship could be used to find distances to globular clusters, that the galaxy was large, and with the Sun far from the center. 56

From our neighbor, the Andromeda Galaxy, we might look like this: Our Solar System 100,000 ly 57

Summary By 1920, our galaxy was a much bigger, but better defined place, and our place within it was far less centralized. The rough survey of the local structure had been completed, but many, many details remained unexplored 58

The Heart of the Milky Way An infrared image of our Galaxy taken by the NASA Cosmic Background Explorer (COBE) satellite. The galactic plane runs horizontally along the middle of the image. Absorption by interstellar dust is minimized at infrared wavelengths allowing a clearer view of the plane and center of our Galaxy. 59

Backup -

Magnitude Scale The eye doesn t sense brightness in the simple way that you might expect. If an object has twice the luminosity, it doesn t appear twice as bright. Example: " Suppose you tried to estimate the brightness of a 100W and a 200W light bulb. The second bulb will not appear two times as bright because of how the human eye works. 61

Experiment Inverse-Square Law The farther you move away from a light source, the dimmer it appears. Imagine this experiment: " Put a bare light bulb (any wattage) in a socket and turn it on. " Take a light meter and place it 1 m away from the light. Note the reading on the light meter. Call this one unit. " Now move the light meter 2 m away from the bulb. Its reading will be ¼ that at the 1 m position. " Move the light meter to a distance of 3 m, the reading will now be 1/9 that at 1 m. " At 4 m the reading would be 1/16 62

Inverse-Square Law Or In equation form: New Brightness = Old Brightness ( Old Distance ) 2 New Distance ( ) 2 b 2 = d 1 b 1 d 2 63

Inverse-Square Law # Example: If a star is 100 times brighter than another 100 = ( d 1 ) 2 d 2 Where: d 1 = distance to fainter star d 2 = distance to brighter star 10 = d 1 d 2 10 (d 2 ) = d 1 The distance to the fainter star is 10 times more than the brighter star. 64

Magnitude Scale The magnitude scale is defined so that a difference of 5 magnitudes corresponds to a brightness ratio of 100. A difference of 1 magnitude then amounts to a brightness ratio of 2.512. This strange number pops up because: " 2.512 x 2.512 x 2.512 x 2.512 x 2.512 = 100 Or 2.512 5 = 100 Magnitude Difference Equals a Brightness Ratio 0.0 1 2.5 10 5.0 100 7.5 1,000 10.0 10,000 65

Apparent Magnitude As viewed from Earth, a star s brightness is it s apparent magnitude. (m) Astronomers rank the brightness of stars using a magnitude scale in which fainter stars have higher numbers. A star of apparent magnitude +3 is fainter than one with an apparent magnitude of +2. The very brightest stars have magnitudes less than zero. Sirius has an apparent magnitude of 1.4 and is brighter than Vega with an apparent magnitude of 0.0. 66

Definition of a Parsec The distance at which the parallax of 1 AU is one second of arc is called a parsec (approximately 3.26 ly) (Practically speaking 2 AU and 2 of arc) The inverse-square law relates absolute and apparent magnitudes. If d is the distance to a star in parsecs, m is its apparent magnitude and M is its absolute magnitude: m M = 5 log d - 5 Nearby Star 2 AU 2 Distant Fixed Stars 1 pc = 3.26 ly 67

The Question of the Spiral Nebulas The question of Herschel s spiral nebula remained. Were they part of the Milky Way? No one knew because no distances had been determined for them. If they were galaxies like the Milky Way, then the distances to them must be immense. 68

Novas Seen In 1917 at Mt. Wilson Observatory, George Ritchey discovered a nova in a spiral nebula. Since it was known that a nova could occur in a cluster of stars but not in a cloud of gas, the spiral could not just be a nebula. Other photographic plates at Mt. Wilson were searched and 11 other novas were soon discovered. 69

Using Novas to Estimate Distance Since most novas seem to have about the same apparent magnitudes at maximum brightness, a simple method was devised to use novas to determine distances. The assumption was made that novas in our galaxy were the same as novas in other galaxies. Novas in our galaxy had about the same absolute magnitudes of 8. Astronomers used this to estimate that the novas in spiral nebula were very far away outside of our galaxy. 70

Definitions absolute magnitude - apparent magnitude of the star if it was located 10 parsecs from Earth apparent magnitude - a star's brightness as observed from Earth luminosity - total amount of energy emitted from a star per second parsec - distance measurement (3.3 light-years, 19.8 trillion miles, 33 trillion kilometers) light year - distance measurement (6 trillion miles, 10 trillion kilometers) spectrum - light of various wavelengths emitted by a star solar mass - mass of the sun; 1.99 x 10 30 kg (330,000 Earth masses) solar radius - radius of the sun; 418,000 miles (696,000 km) 71

Website References http://www.howstuffworks.com/light.htm http://www.as.net/~takoonce/astro/index.htm 72

H-R Diagram 73