Biogeochemistry of Wetlands

Similar documents
Amino sugars 5-10% Purine and Pyrimidine Bases trace amounts. Undescribed Lots - non-protein N Crude proteins Lignin - N

Nutrients; Aerobic Carbon Production and Consumption

Nutrients; Aerobic Carbon Production and Consumption

Nutrients; Aerobic Carbon Production and Consumption

Physiological diversity

Biogeochemical Cycles

Biogeochemistry of Wetlands

Physiological diversity. Recommended text books. Physiological diversity. Sulfate and nitrate reducers. ! Principles. ! Energetic considerations

Term paper topics, due February 8

Sun. Photosynthesis (performed by plants, algae, and some bacteria) Respiration (performed by all organisms) 6 O 2 6 CO 2.

Microbial Biogeochemistry

Term paper topics, due February 9

BIOL 695 NITROGEN. Chapter 7 MENGEL et al, 5th Ed NITROGEN CYCLE. Leaching

Anaerobic processes. Annual production of cells a -1 Mean generation time in sediments

Prokaryotes Vs. Eukaryotes

Nutrient Cycling in Land Plants

AQA Biology A-level Topic 5: Energy transfers in and between organisms

PHOTOSYNTHESIS PHOTOSYNTHESIS

BIOGEOCHEMISTRY OF NITROGEN

The Tree of Life. Metabolic Pathways. Calculation Of Energy Yields

7 Nitrogen Transformation, factors affecting nitrogen availability,deficiency and toxicity symptoms

Aquatic Chemistry (10 hrs)

Oxidation-Reduction (Redox) Reactions

The Marine Nitrogen Cycle Experiments

Title: Plant Nitrogen Speaker: Bill Pan. online.wsu.edu

Lecture 16: Soil Acidity; Introduction to Soil Ecology

Mineral and Organic Components. Soil Organisms, Biology, and Nutrients. Homework III: The State Soil of Florida. Posted on website.

Biology 213 Exam 3 Practice Key

Igneous rocks + acid volatiles = sedimentary rocks + salty oceans

Lesson 3.1 Matter and the Environment. Water s abundance is a primary reason there is life on Earth.

CLASS EXERCISE 5.1 List processes occurring in soils that cause changes in the levels of ions.

CO2 in atmosphere is influenced by pco2 of surface water (partial pressure of water is the CO2 (gas) that would be in equilibrium with water).

Oxidation States. 1. Redox potential Oxic vs. anoxic Simple electrochemical cell Redox potential in nature

- Cation exchange capacity

Feedback between nutrient availability, NPP and N release

5. Chemical Properties of Soils. ENVS 334: Applied Soil Science and Land Management INSTR.: R.M. Bajracharya

AP Biology Energy Exam Study Guide. Enzymes, Cellular Respiration, Metabolic Patterns, and Photosynthesis

Acid Soil. Soil Acidity and ph

AQA, OCR, Edexcel. A Level. A Level Biology. Photosynthesis, Respiration Succession and Nutrient Cycle Answers. Name: Total Marks:

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism

S Illustrate and explain how carbon, nitrogen, and oxygen are cycled through an ecosystem.

CHAPTER 2. Stoichiometry a nd and Bacterial Energetics

Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.)

Sulfur Biogeochemical Cycle

Lecture 5. More Aqueous Geochemistry of Natural Waters OXIDATION/REDUCTION (aka Redox)

Lecture 2 Carbon and Energy Transformations

+ 3 can also be bound to the soil complex,

Interactions Between Microorganisms and Higher Plants from Competition to Symbiosis p. 184

Lecture Summary. Physical properties of water exert profound control on nutrient cycling and NPP in lakes

Nutrient Cycling in Land Plants

Electrons, life and the evolution of Earth s chemical cycles*

Soil ph: Review of Concepts

Nutrient Cycling in Land Vegetation and Soils

REDOX CHEMISTRY and Eh-pH Diagrams

Biology Reading Assignment: Chapter 9 in textbook

Biostimulants to enhance Nutrient Use Efficiency in Crop Plants

Soil Biology. Chapter 10

Global Carbon Cycle - I Systematics: Reservoirs and Fluxes

Soil Organisms. Organisms log (# / g) kg / ha

Chapter 15 Organic Matter Diagenesis Jim Murray (5/09/01) Univ. Washington NO 3

The Global Carbon Cycle Recording the Evolution of Earth, from the origin of life to the industrialization of the planet

Nutrient Cycling in Land Vegetation and Soils

Mycorrhizal Fungi. Symbiotic relationship with plants -- form sheath around fine roots and extend hyphae into soil and sometimes into root cells

Reference pg and in Textbook

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully.

Plant Function. KEB no office hour on Monday 23 March. Chs 38, 39 (parts), March 2009 ECOL 182R UofA K. E. Bonine

Biological Science Stage 2 Work Samples

Global Biogeochemical Cycles and. II. Biological Metabolism

Plant Function Chs 38, 39 (parts), 40

PhysicsAndMathsTutor.com. Question Number 1(a) 1. (rate at which) energy {incorporated / eq} into {biomass / organic matter } ;

BIS Office Hours

Announcements KEY CONCEPTS

Global Carbon Cycle - I

Settling and resuspension Energetic factors (solar radiation and temperature) Nitrogen biogeochemical cycle

The Prokaryotic World

What is physical treatment? What is chemical treatment?

MICROBIAL GROUPS CE 421/521

Microbiology Helmut Pospiech.

Communities Structure and Dynamics

BIOLOGY CELLS FIRST SEMESTER STUDY GUIDE. Define:

Cellular Respiration Chapter 5 Notes

Lecture 6 Environmental microbiology and Aqueous Geochemistry of Natural Waters

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body

Assessment Schedule 2016 Biology: Demonstrate understanding of biological ideas relating to micro-organisms (90927)

I PELAGIC NITROGEN CYCLING. 1 Primary Productivityand PelagicNitrogenCycling... P. M. Glibert

chapter five: microbial metabolism

Chapter 35 Regulation and Transport in Plants

Biology/Honors Biology Benchmark #2 Review Guide Fall 2016

Agronomy 485/585 Test #1 October 2, 2014

Number of mice analysed

Water Carbon Nitrogen. Nutrient Cycles

Stoichiometries of remineralisation and denitrification in global biogeochemical ocean models

Communities Structure and Dynamics

PHOTOSYNTHESIS. Chapter 10

Success Criteria Life on Earth - National 5

Geology 560, Prof. Thomas Johnson, Fall 2007 Class Notes: 3-6: Redox #2 Eh-pH diagrams, and practical applications

Cellular Respiration Chapter 5 Notes

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1)

Lecture 23: Marine Nitrogen Cycle. Karen Casciotti

Nitrogen in All Its Forms. Assoc. Prof. Kozet YAPSAKLI

Transcription:

Institute of Food and Agricultural Sciences (IFAS) Biogeochemistry of Wetlands Si Science and da Applications NITROGEN Wetland Biogeochemistry Laboratory Soil and Water Science Department University of Florida Instructor : Patrick Inglett pinglett@ufl.edu 6/22/2008 P.W. WBL Inglett 1 1 Introduction Nitrogen N Forms, Distribution, Importance Basic processes of N Cycles Examples of current research Examples of applications Key points learned 6/22/2008 P.W. Inglett 2 1

Nitrogen Learning Objectives Identify the forms of N in wetlands Understand the importance of N in wetlands/global processes Define the major N processes/transformations Understand the importance of microbial activity in N transformations Understand the potential regulators of N processes See the application of N cycle principles to understanding natural and manmade ecosystems 6/22/2008 P.W. Inglett 3 Nitrogen Cycling Plant biomass N N 2 N 2 O (g) Nitrogen Fixation N 2 Litterfall NH 3 Volatilization NO 3 Nitrification NH Organic N Mineralization. Water Column NO Plant 3 [ ] s uptake Denitrification N 2, N 2 O (g) Organic N Peat accretion Microbial Biomass N [ ] s AEROBIC ANAEROBIC Adsorbed 6/22/2008 P.W. Inglett 2

Forms of Nitrogen Organic Nitrogen Inorganic Nitrogen Proteins Ammonium ( ) Amino Sugars Nitrate N (NO 3 ) Nucleic Acids Nitrite N (NO 2 ) Urea Nitrous oxide (N 2 O) Dinitrogen (N 2 ) 6/22/2008 P.W. Inglett 5 N Transformations Solid Phase: Particulate N Bound: NH NO 3 NO 2 Gaseous Phase: N 2 N 2 O DIN Aqueous Phase: NO 3 NO 2 DON Particulate N 6/22/2008 P.W. Inglett 6 3

Reservoirs of Nitrogen Lithosphere 163,600 x 10 18 g Atmosphere 3,860 x 10 18 g Hydrosphere 23 x 10 18 g Biosphere 0.28 x 10 18 g 6/22/2008 P.W. Inglett 7 Forms of Nitrogen Total Soil N Organic Inorganic Protein Amino sugars Heterocyclic N Clayfixed 6/22/2008 P.W. Inglett 8

Nitrogen Transformations 1. Ammonification/Mineralization 2. Immobilization 3. Nitrification. Denitrification 5. Dissimilatory nitrate reduction to ammonia (DNRA) 6. Nitrogen fixation 7. Ammonia volatilization 6/22/2008 P.W. Inglett 9 Transformation of N Species Organic N 2 1 NH 7 3 NH 3 5 8e 3 NO 3 3 NH 2e 2 OH e NO 2e 2 2 e N 2 O 2e 6 3e N 2 1e 3 2 1 0 1 2 3 Oxidation Number 5 6/22/2008 P.W. Inglett 10 5

Nitrogen Cycle Plant/Algae OrgN NO 3 NFixers Nitrifiersifi Denitrifiers ifi Microbial Biomass N 2 N 2 /N 2 O 6/22/2008 P.W. Inglett 11 Productivity 6/22/2008 P.W. Inglett 12 6

Greenhouse Gas Emissions 6/22/2008 P.W. Inglett 13 Nitrogen Budget Biological N 2 fixation Dry and wet deposition Nonpoint sources Wastewaters Plant biomass Microbial biomass Soil organic N Porewater (DIN, DON) Exchangeable N Clay fixed N Volatilization Outflow Gaseous losses Plant harvest 6/22/2008 P.W. Inglett 1 7

1985 Ammonium Ion Wet Deposition 19852003 2003 http://nadp.sws.uiuc.edu/isopleths/ 6/22/2008 P.W. Inglett 15 1985 Nitrate Ion Wet Deposition 19852003 2003 6/22/2008 P.W. Inglett 16 8

1985 Inorganic N Wet Deposition 19852003 2003 6/22/2008 P.W. Inglett 17 Biological Nitrogen Fixation Plant biomass N N 2 N 2 O (g) Nitrogen Fixation N 2 Litterfall NH 3 Volatilization NO 3 Nitrification NH Organic N Mineralization. Water Column NO Plant 3 [ ] s uptake Denitrification N 2, N 2 O (g) Organic N Peat accretion Microbial Biomass N [ ] s AEROBIC ANAEROBIC Adsorbed 6/22/2008 P.W. Inglett 18 9

Nitrogen Fixation Type of fixation N 2 fixed (10 12 g yr 1 ) Nonbiological Industrial about 50 Combustion about 20 Lightning about 10 Total about 80 Biological Agricultural land about 90 Forest and nonagricultural land about 50 Sea about 35 Total about 175 6/22/2008 P.W. Inglett 19 Biological N 2 Fixation N N 8H 8e 16ATP 2NH 3 H 2 16ADP 16P i Nitrogenase 6/22/2008 P.W. Inglett 20 10

Biological N 2 Fixation Prokaryotes Aerobic Azotobacter Beijerinckia Klebsiella Cyanobacteria Anaerobic Clostridium Desulfovibrio Cyanobacteria Associated w/ Plants Rhizobium Frankia Azospirillum 6/22/2008 P.W. Inglett 21 Biological N 2 Fixation Heterocysts (cyanobacteria) Leghaemoglobin (rhizobium) Exopolysaccharides Temporal isolation http://www.bact.wisc.edu/microtextbook/ images/book_/chapter_2/253.jpg 6/22/2008 P.W. Inglett 22 11

Temporal Isolation Nitrogenase activity Heterocystous Nonheterocystous 12:00 2:00 12:00 Time (h) 6/22/2008 P.W. Inglett 23 Biological N 2 Fixation Regulators? Light Concentration of Oxygen Growth limitation Macro nutrients (C, P) Cofactors (Fe, Mo) Inc. Growth Inc. N Demand Species shift Inc. N 2 Fixation 6/22/2008 P.W. Inglett 2 12

Nitrogen Mineralization Plant biomass N N 2 N 2 O (g) Nitrogen Fixation N 2 Litterfall NH 3 Volatilization NO 3 Nitrification NH Organic N Mineralization. Water Column NO Plant 3 [ ] s uptake Denitrification N 2, N 2 O (g) Organic N Peat accretion Microbial Biomass N [ ] s AEROBIC ANAEROBIC Adsorbed 6/22/2008 P.W. Inglett 25 Organic Nitrogen Proteins Amino acids (3050% of total organic N) Nucleic Acids 25 % of total organic N Amino Sugars 313% of total organic N Urea 6/22/2008 P.W. Inglett 26 13

Protein Decomposition Proteins Peptides Amino acids Proteases Arg Pro Ala Peptidases Arg Pro Ala Asp Phe Asp Lys Phe Pro Lys Pro 6/22/2008 P.W. Inglett 27 H H R 1 O N C COH H H H R 2 O N C COH H H H R 3 O N C COH H 2H 2 O H H R 1 O R 2 O R 3 N C C N C C N C C OH H H H H H O Peptide Bonds 6/22/2008 P.W. Inglett 28 1

H H R 1 O N C COH H H H R 2 O N C COH H H H R 3 O N C COH H 2H 2 O H H R 1 O R 2 O R 3 N C C N C C N C C OH H H H H H O Peptide Bonds 6/22/2008 P.W. Inglett 29 Detrital Matter Complex Polymers Cellulose, Hemicellulose, Proteins, Lipids, Waxes, Lignin Enzyme Hydrolysis Monomers Sugars, Amino Acids Fatty Acids Leaching Uptake Bacterial Cell Electron Acceptors: O 2, NO 3, Mn, Fe 3, SO 2, CO 2 Amino acids Products: CO 2, H 2 O,, Mn 2, Fe 2,S 2,CH Energy ATP 6/22/2008 P.W. Inglett 30 15

Urea Decomposition NH 2 Urease C = O H 2 O CO 2 2NH 3 NH 2 6/22/2008 P.W. Inglett 31 Urea Decomposition Urease activity ( 1 C Tracer) [Thorén (2007)] 6/22/2008 P.W. Inglett 32 16

Organic N Ammonification [Mineralization] Ammonium N [Breakdown of Organic Matter] Inorganic N ( N and NO 3 N) Immobilization [Buildup of Organic Matter] Organic N 6/22/2008 P.W. Inglett 33 Ammonification/NMineralization Organic N R HOOC C NH 2 H Ammonium Inorganic N NO 3 NImmobilization Organic N R HOOC C NH 2 H 6/22/2008 P.W. Inglett 3 17

Microbial Biomass C & N [Everglades WCA2A] Mic crobial biomass C (g C kg 1 ) 25 20 15 10 5 0 y = 10.7 x 2.2 R 2 = 0.78 0 0.5 1.0 1.5 2.0 Microbial biomass N (g N kg 1 ) White and Reddy, 2000 6/22/2008 P.W. Inglett 35 Decomposition Microbial Biomass C/N ratio = 10 Efficiency i of carbon assimilation il Aerobic = 2060% Anaerobic = 10% Plant Detritus [100 units] 0% carbon (dry weight basis) = 0 units C Amount of C assimilated during decomposition Aerobic = 16 units [0% efficiency] Anaerobic = units [10% efficiency] 6/22/2008 P.W. Inglett 36 18

Carbon/Nitrogen Ratio Nitrogen Demand? Microbial Biomass C/N ratio = 10 Aerobic = 1.6 units Anaerobic = 0. units Critical Plant Detritus Nitrogen? Aerobic = 1.6 % Anaerobic = 0.% Critical Carbon/Nitrogen Ratio? Aerobic = [0% C]/[1.6% N] = 25 Anaerobic = [0% C]/[0.% N] = 100 6/22/2008 P.W. Inglett 37 Carbon/Nitrogen Ratio Mineralization [M] vs. Immobilization [I] Aerobic I > M = C/N ratio > 25 M > I = C/N ratio < 25 Anaerobic I > M = C/N ratio > 100 M > I = C/N ratio < 100 6/22/2008 P.W. Inglett 38 19

N Mineralization/Immobilization [Aerobic] In norganic N Rele ease C/N = 15 C/N = 35 C/N = 100 Decomposition (days) 6/22/2008 P.W. Inglett 39 Ca arbon/nitrogen n Ratio N Mineralization/Immobilization 0 30 20 10 0 [Aerobic] Immobilization Mineralization C/N ratio of soil humus/ microbial biomass 0 150 Decomposition Period [days] 6/22/2008 P.W. Inglett 0 20

Regulators of Ammonification Substrate quality C/N ratio of the substrate Secondary compounds N forms (soluble vs. structural compounds) Microbial Activity Extracellular enzyme activity Supply of electron acceptors (Redox) Temperature ph 6/22/2008 P.W. Inglett 1 Mineralizable Nitrogen [EvergladesWCA2A] Mineralization Rate (mg N kg 1 d 1 ) 00 300 200 100 y = 0.317 x 52. R 2 = 0.76 0 0 100 200 300 00 Extractable (mg N kg 1 ) 6/22/2008 P.W. Inglett 2 21

Fate of Ammonium Plant biomass N N 2 N 2 O (g) Nitrogen Fixation N 2 Litterfall NH 3 Volatilization NO 3 Nitrification NH Organic N Mineralization. Water Column NO Plant 3 [ ] s uptake Denitrification N 2, N 2 O (g) Organic N Peat accretion Microbial Biomass N [ ] s AEROBIC ANAEROBIC Adsorbed 6/22/2008 P.W. Inglett 3 Nitrogen Uptake by Rice ( 15 N) TtlN Total uptake tk Nitrogen uptake Added 15 N uptake Nuptake from Soil organic N Growing season 6/22/2008 P.W. Inglett 22

Ammonium Adsorption Aerobic NH Mg 2 K Ca 2 K Ca 2 K Ca 2 Mg 2 Mg 2 K K Ca 2 Adsorbed [Solids] K Ca 2 NH Mg 2 K Dissolved [Pore water] Ca 2 6/22/2008 P.W. Inglett 5 Ammonium Adsorption Anaerobic Fe 2 Ca 2 K Ca 2 Mg 2 Fe 2 Mn 2 K Mn 2 Mg 2 Mg 2 K Fe 2 Mn 2 Adsorbed [Solids] NH Ca 2 K Mg 2 Ca 2 Mn 2 Fe 2 K Dissolved [Pore water] Fe 2 6/22/2008 P.W. Inglett 6 23

6/22/2008 P.W. Inglett 7 Ammonium Fixation Illite Clay Mineral Fixed Ammonium K Ca 2 Mg 2 NH K Mg 2 SiO layer NH Ca2 AlOOH layer K SiO layer NH Mg 2 NH K NH NH NH NH Mg 2 NH K NH NH Interlayer Space Interlayer Space Mg 2 Mg 2 K K Ca 2 6/22/2008 P.W. Inglett 8 2

Adsorption/Desorption Equilibrium NH NH Soil NH NH NH 6/22/2008 P.W. Inglett 9 Adsorption/Desorption Equilibrium Fixed Exchangeable Solution 6/22/2008 P.W. Inglett 50 25

S = K C S 0 ads = K [ ] fixed Am mmonium Adsorbed (mg N kg 1 ) () () K, Partition Coefficient E C 0 S 0 Porewater ammonium (mg N l 1 ) 6/22/2008 P.W. Inglett 51 Ammonium Adsorption Salinity 6/22/2008 P.W. Inglett 52 26

Increasing salinity 6/22/2008 P.W. Inglett 53 Ammonia Flux NH 3(g) (Volatilization) NH 3(g) Photosynthesis O 2 CH 2 O CO 2 H 2 O Respiration 2H CO 2 3 CO 2 H 2 O NH 3(aq) H (adsorbed) Water Soil 6/22/2008 P.W. Inglett 5 27

Diel ph changes in the Water Column ph 10 9 8 System with low photosynthesis System with high photosynthesis 7 6 12:00 2:00 12:00 Time (h) 6/22/2008 P.W. Inglett 55 Ammonia Volatilization (assuming high ph) Floodwater depth Plant density SAV/Periphyton Density Temperature Wind speed Soil CEC 6/22/2008 P.W. Inglett 56 28

Ammonia Volatilization NH = NH H 3 Temperature High floodwater ph High soil ph High algal activity Plant density Cation exchange capacity of soil Wind speed Floodwater depth 6/22/2008 P.W. Inglett 57 Nitrification Plant biomass N N 2 N 2 O (g) Nitrogen Fixation N 2 Litterfall NH 3 Volatilization NO 3 Nitrification NH Organic N Mineralization. Water Column NO Plant 3 [ ] s uptake Denitrification N 2, N 2 O (g) Organic N Peat accretion Microbial Biomass N [ ] s AEROBIC ANAEROBIC Adsorbed 6/22/2008 P.W. Inglett 58 29

Nitrification NO NH NO2 NO3 Obligate aerobes (O 2 e acceptor) Common nitrifiers (autotrophs) Methanotrophs Heterotrophs t 6/22/2008 P.W. Inglett 59 Sites of Nitrification Aerobic Water column Aerobic Soil/Floodwater Interface O 2 O 2 bic Soil Aerob Anaerobic Soil Aerobic Root Zone O 2 6/22/2008 P.W. Inglett 60 30

Nitrification NO 2 Nitrosomonas ( Nitroso spp.) NO 2 NO 3 Nitrobacter ( Nitro spp.) Obligate aerobes (O 2 e acceptor) Energy/e source: NH Carbon source: CO 2 6/22/2008 P.W. Inglett 61 Nitrification Step I: Nitrosomonas ΔG o = 65 kcal/mole 2H 2 O NO 2 6e 8H 1½ O 2 6e 6H 3H 2 O 1 1 / 2 O 2 NO 2 3H 2 O H Step II: Nitrobacter ΔG o = 18 kcal/mole 2NO 2 2H 2 O 2NO 3 e H O 2 e H 2H 2 O 2NO 2 O 2 2NO 3 6/22/2008 P.W. Inglett 62 31

Heterotrophic Nitrification Bacteria and fungi Poorly studied Only dominant under high C/low N conditions Many facultative (reduce oxidized N to N 2) Nitrifier denitrification 6/22/2008 P.W. Inglett 63 Nitrification Ammonia NH 3 toxic to nitrifying bacteria ph 7 8.5 optimum Sulfide S 2 toxic to nitrifying bacteria 6/22/2008 P.W. Inglett 6 32

Nitrification Ideal Conditions Inhibited NO 3 NO 2 C NO 2 NO 3 Time Time 6/22/2008 P.W. Inglett 65 Nitrification Hydroxylamine Oxygenases oxidoreductase d 2 e 2 e NH 2 OH [NOH] Chemical Oxygen stress 2 e 2 e N NO 2 O 2 NO 3 N 2 O NO 2 NO 3 Nitrite reductase Nitrite reductase 6/22/2008 P.W. Inglett 66 33

Inhibited Nitrification Leaky Pipe Model: NO NO NO 3 N 2 Nitrifiers N 2 O 2 Denitrifiers N 2 O 2 6/22/2008 P.W. Inglett 67 Nitrification Regulators: Ammonia concentration Oxygen availability Alkalinity and CO 2 Temperature Nitrifying population ph CEC 6/22/2008 P.W. Inglett 68 3

Organic N Volatilization (to atmosphere) Ammonification [NH 3 ] (g) NH Soluble ant/microbial Uptake NH Adsorbed [NO 3 ] Soil Particle Pl Live Organic N 6/22/2008 P.W. Inglett 69 Anaerobic Ammonium Oxidation: Anammox 6/22/2008 P.W. Inglett 70 Kuypers et al. 2003. Nature 22:608 611. 35

Anaerobic Ammonium Oxidation (ANAMMOX) 5 3NO 3 N 2 9H 2 O 2H NH NO 2 N 2 2HO 2 6/22/2008 P.W. Inglett 71 ANAMMOX 6/22/2008 P.W. Inglett 72 36

Denitrification Plant biomass N N 2 N 2 O (g) Nitrogen Fixation N 2 Litterfall NH 3 Volatilization NO 3 Nitrification NH Organic N Mineralization. Water Column NO Plant 3 [ ] s uptake Denitrification N 2, N 2 O (g) Organic N Peat accretion Microbial Biomass N [ ] s AEROBIC ANAEROBIC Adsorbed 6/22/2008 P.W. Inglett 73 Pasteur, L. 1859. Sur la fermentation nitreuse. Bull. Sot. Chim. Fr. 1:21. Nitrates, which the juice of beetroot naturally includes, decompose, and great quantities of nitrous vapor form at the surface of the vats 6/22/2008 P.W. Inglett 7 37

Dehérain and Maquenne, 1882. Sur la reduction des nitrates dans la terre arable. C. R. Acad. Sci. 95: 691693 From experience : Nitrate is reduced under certain conditions in arable land releasing nitrogen gas Nitrate reduction occurs in arable soil which contains a high organic matter We have observed that this reduction occurs when the soil atmosphere is completely stripped of oxygen 6/22/2008 P.W. Inglett 75 Nitrate Reduction Denitrification 5 e NO 3 N 2 Dissimilatory nitrate reduction to ammonia (DNRA) 8 e NO 3 NH Assimilatory nitrate reduction to ammonia NO 3 Proteins 6/22/2008 P.W. Inglett 76 38

Nitrate Reduction Assimilatory NH uptake for growth biosynthesis concentrationmain regulator Growth linked Occurs mainly in aerobic soils Insensitive to O 2 Dissimilatory Functions as an electron acceptor Oxygen concentration main regulator Linked to catabolic reactions Occurs in anaerobic soils Sensitive to O 2 6/22/2008 P.W. Inglett 77 Nitrate Reduction Denitrification NO 3 /NO 2 N 2 5 e transferred Low electron pressure Eh = 200 300 mv O 2 transient conditions Facultative anaerobes DNRA NO 3 8 e transferred High electron pressure Eh = < 0 mv Lake sediments or permanent wetlands Obligate anaerobes 6/22/2008 P.W. Inglett 78 39

Regulators of Denitrification Low O 2 content Low Eh Presence of Electron Acceptor N Oxides Facultative Anaerobes Enzymes Electron Donor Carbon Source Organic carbon compounds Reduced sulfur compounds Temperature Nitrate diffusion/flux to anaerobic zones Plant root density 6/22/2008 P.W. Inglett 79 Sites of Nitrification/Denitrification Aerobic Water column Aerobic Soil/Floodwater Interface O 2 O 2 bic Soil Aerob Anaerobic Soil Aerobic Root Zone O 2 6/22/2008 P.W. Inglett 80 0

Dissimilatory Nitrate Reduction NO 3 NO 2 [HNO] [H 2N 2O 2 2] Biological NH 2 OH N 2 O [HNO] = Nitroxyl [H 2N 2O 2 2] = Hyponitrite NH 2 OH = Hydroxylamine N 2 DNRA Denitrification 6/22/2008 P.W. Inglett 81 Abiotic Nitrate Reduction ( Chemodenitrification ) 6/22/2008 P.W. Inglett 82 1

Abiotic Nitrate Reduction 6/22/2008 P.W. Inglett 83 Lithotrophic Nitrate Reduction Other potential e donors: S 2, H 2 6/22/2008 P.W. Inglett 8 2

N.R. Coupled to Fe(II) Oxidation: Paddy Soils w/ added NO 3 w/o added NO 3 w/ added NO 3 w/o added NO 3 Fe(II) Fe(III) Ratering and Schnell. 2001. Env. Microbiol. 3(2), 100109. 6/22/2008 P.W. Inglett 85 N.R. Coupled to Fe(II) Oxidation NO 3 Fe(II) NO 2 Fe(III) N 2 NO 3 control Fe(III)culture NO 3 culture Fe(III)control Straub, et al. 2007. Appl. Env. Microbiol. 62: 158160. 6/22/2008 P.W. Inglett 86 3

N 2 NH O 2 /Fe 3 NO 2 NO 3 CH? 6/22/2008 P.W. Inglett 87 6/22/2008 P.W. Inglett 88

Regulators of Denitrification Low O 2 content Low Eh Presence of Nitrogenous Oxides Heterotrophs: Carbon Source Organic carbon compounds, DOC Lithotrophs: Electron Source Reduced Fe, Mn, S compounds, H 2 Temperature Nitrate diffusion/flux to anaerobic zones Plant root density Nitrate uptake, O 2 loss 6/22/2008 P.W. Inglett 89 Denitrification Wetland Houghton Lake Wetland Inflow Zone Interior Zone Orange County ESAWT Inflow Zone Interior Zone EvergladesWCA2a Inflow Zone Interior Zone Denitrification Rate (mg N kg 1 day 1 ) 7 11 9 1 6 1 6/22/2008 P.W. Inglett 90 5

Coupled Nitrification Denitrification Nitrification rate depends on: Ammonification rate Ammonium flux into aerobic zone Denitrification rate depends on: Nitrification rate Nitrate flux into anaerobic zones Nitrificationdenitrification occurs in: Flooded soilwater column with aerobicanaerobic interfaces Aerobicanaerobic interfaces in the root zone Watertable fluctuations/ alternate flooding and draining 6/22/2008 P.W. Inglett 91 Coupled NitrificationDenitrification 6/22/2008 P.W. Inglett 92 From: Reddy (1989) 6

Everglades WCA2A Nitrate source/ High C/Low Eh 10 Nitrate depleted/ High C/Low Eh Nitrate source/ Low C,P/Low Eh 8 trification Rate g N kg 1 hr 1 ) 6 With Glucose Without Glucose Deni (mg 2 0 0 2 6 8 10 Distance (km) 6/22/2008 P.W. Inglett 93 Denitrification Walls: (Schipper et al. 2003) 7

ANAMMOX vs. Denitrification Supply of NO 2 Low NO 2 favors Denitrification, High NO 2 (>10mM) inhibits ANNAMOX Organic matter availability Higher DOC favors Denitrification Temperature ANNAMOX dominant @ low Temp. 6/22/2008 P.W. Inglett 95 6/22/2008 P.W. Inglett 96 8

Denitrification vs. DNRA Supply of NO 3 Low NO 3 favors DNRA Organic matter availability High DOC favors DNRA Hydropattern Denitrifiers are largely facultative 6/22/2008 P.W. Inglett 97 (Of added 15 NO 3 ) ON 6/22/2008 P.W. Inglett 98 9

6/22/2008 P.W. Inglett 99 6/22/2008 P.W. Inglett 100 50

Potential Fate NO 3 Low Organic Matter (Low C:EA) Dissimila atory N N 2 2 N 2 N 2 NO 2 N 2 O H NO N 2 O High Organic Matter (High C:EA) Permanently Anaerobic Aerobic Anaerobic 6/22/2008 P.W. Inglett 101 Potential Fate Burgin and Hamilton. 2007. Front Ecol Environ 5(2): 89 96. 6/22/2008 P.W. Inglett 102 51

Nitrogen Cycling Plant biomass N N 2 N 2 O (g) Nitrogen Fixation N 2 Litterfall NH 3 Volatilization NO 3 Nitrification NH Organic N Mineralization. Water Column NO Plant 3 [ ] s uptake Denitrification N 2, N 2 O (g) Organic N Peat accretion Microbial Biomass N [ ] s AEROBIC ANAEROBIC Adsorbed 6/22/2008 P.W. Inglett 103 52