MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

Similar documents
x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

1 The fundamental theorems of calculus.

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

Fundamental Theorem of Calculus

1 The fundamental theorems of calculus.

Interpreting Integrals and the Fundamental Theorem

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Chapters 4 & 5 Integrals & Applications

INTRODUCTION TO INTEGRATION

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

An Overview of Integration

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

Chapter 8.2: The Integral

7.2 The Definite Integral

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Section 6: Area, Volume, and Average Value

4.4 Areas, Integrals and Antiderivatives

The practical version

Review of Calculus, cont d

1 The Riemann Integral

Math 116 Calculus II

Big idea in Calculus: approximation

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

Math Calculus with Analytic Geometry II

Topics Covered AP Calculus AB

Overview of Calculus I

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

SYDE 112, LECTURES 3 & 4: The Fundamental Theorem of Calculus

Time in Seconds Speed in ft/sec (a) Sketch a possible graph for this function.

The Evaluation Theorem

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

MA 124 January 18, Derivatives are. Integrals are.

Section 6.1 INTRO to LAPLACE TRANSFORMS

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

MATH , Calculus 2, Fall 2018

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

The Regulated and Riemann Integrals

5 Accumulated Change: The Definite Integral

Unit Six AP Calculus Unit 6 Review Definite Integrals. Name Period Date NON-CALCULATOR SECTION

Section 5.4 Fundamental Theorem of Calculus 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus 1

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).

Section 4: Integration ECO4112F 2011

1 Techniques of Integration

5: The Definite Integral

Riemann Sums and Riemann Integrals

AP Calculus AB Unit 5 (Ch. 6): The Definite Integral: Day 12 Chapter 6 Review

( ) Same as above but m = f x = f x - symmetric to y-axis. find where f ( x) Relative: Find where f ( x) x a + lim exists ( lim f exists.

Review of basic calculus

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Riemann Sums and Riemann Integrals

Integrals - Motivation

Unit #10 De+inite Integration & The Fundamental Theorem Of Calculus

Indefinite Integral. Chapter Integration - reverse of differentiation

Review Exercises for Chapter 4

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

MAT 168: Calculus II with Analytic Geometry. James V. Lambers

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

2.4 Linear Inequalities and Interval Notation

Evaluating Definite Integrals. There are a few properties that you should remember in order to assist you in evaluating definite integrals.

The Fundamental Theorem of Calculus

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

Week 10: Riemann integral and its properties

Chapter 6 Techniques of Integration

7.2 Riemann Integrable Functions

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

Linear Inequalities. Work Sheet 1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35

MATH 144: Business Calculus Final Review

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

7. Indefinite Integrals

The Fundamental Theorem of Calculus, Particle Motion, and Average Value

5.1 How do we Measure Distance Traveled given Velocity? Student Notes

Stuff You Need to Know From Calculus

10 Vector Integral Calculus


Main topics for the First Midterm

Distance And Velocity

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

Main topics for the Second Midterm

Section 6.1 Definite Integral

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

Math 190 Chapter 5 Lecture Notes. Professor Miguel Ornelas

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MAT137 Calculus! Lecture 27

11 An introduction to Riemann Integration

1. Find the derivative of the following functions. a) f(x) = 2 + 3x b) f(x) = (5 2x) 8 c) f(x) = e2x

x = b a N. (13-1) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is

Polynomials and Division Theory

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

Calculus II: Integrations and Series

Sample Problems for the Final of Math 121, Fall, 2005

Final Exam - Review MATH Spring 2017

1 Probability Density Functions

Transcription:

MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus. Lern how to compute the ntiderivtive of some sic functions. Lern how to use the sustitution method to compute the ntiderivtive of more complex functions. Lern how to solve re nd distnce trveled prolems y mens of ntiderivtives. Assignment 22 Assignment 23 Assignment 24 (Review) So fr we hve lerned out the ide of the integrl, nd wht is ment y computing the definite integrl of function f(x) over the intervl [,]. As in the cse of derivtives, we now study procedures for computing the definite integrl of function f(x) over the intervl [,] tht re esier thn computing limits of Riemnn sums. As with derivtives, however, the definition is importnt ecuse it is only through the definition tht we cn understnd why the integrl gives the nswers to prticulr prolems. Ide of the Fundmentl Theorem of Clculus: The esiest procedure for computing definite integrls is not y computing limit of Riemnn sum, ut y relting integrls to (nti)derivtives. This reltionship is so importnt in Clculus tht the theorem tht descries the reltionships is clled the Fundmentl Theorem of Clculus. Computing some ntiderivtives: In previous chpters we were given function f(x) nd we found the derivtive f (x). In this section, we will do the reverse. We will e given function f(x) tht is the derivtive of nother function F(x) nd will compute F(x). In other words find function F(x) such tht F (x) = f(x). F(x) is clled n ntiderivtive of f(x). For exmple (x 3 ) = 3x 2 so n ntiderivtive of f(x) = 3x 2 is F(x) = x 3. Note tht F(x) = x 3 +2 is lso n ntiderivtive of f(x) = 3x 2 ecuse (x 3 +2) = 3x 2. In generl, if F(x) is n ntiderivtive of f(x), then so is F(x)+C where C is ny constnt. This leds to the following nottion. Definition of the indefinite integrl: The indefinite integrl of f(x), denoted y f(x)dx without limits of integrtion, is the generl ntiderivtive of f(x). For exmple, it is esy to check tht 3t 2 dt = t 3 +c, where c is ny constnt. Recll tht the power rule for derivtives gives us (x n ) = nx n 1. We multiply y n nd sutrct 1 from the exponent. Since ntiderivtives re the reverse of derivtives, to compute n the ntiderivtive we first increse the power y 1, then divide y the new power. 15

The formuls elow cn e verified y differentiting the righthnd side of ech expression. Some sic indefinite integrls: 1. x n dx = 1 n+1 xn+1 +C n 1 2. e x dx = e x +C n = 1 in formul 1 leds to division y zero, ut for this specil cse we my use (ln(x)) = 1 x : 1 3. dx = ln x +C x Rules for indefinite integrls: ( ) ( A. cf(x)dx = c f(x)dx B. (f(x)±g(x))dx = f(x)dx ± Exmple 1: Evlute the indefinite integrl (t 3 +3t 2 +4t+9)dt. ) g(x) dx Exmple 2: Evlute the indefinite integrl 6 t dt. Wrning: We do not hve simple derivtive rules for products nd quotients, so we should not expect simple integrl rules for products nd quotients. Exmple 3: Evlute the indefinite integrl t 3 (t+2)dt. 16

Exmple 4: Evlute the indefinite integrl 2 +9 dx. x 2 We now hve some experience computing ntiderivtives. We will now see how ntiderivtives give us n elegnt method for finding res under curves. Exmple 5: Find formul for A(x) = 1 (4t + 2)dt, tht is, evlute the definite integrl of the function f(t) = 4t+2 over the intervl [1,x] inside [1,1]. (Hint: think of this definite integrl s n re.) Find the vlues A(5), A(1), A(1). Wht is the derivtive of A(x) with respect to x? y f(t) = 4t+2 6 A(x) 1 x 1 t Oservtions: There re two importnt things to notice out the function A(x) nlyzed in Exmple 1: A(1) = 1 1 (4t+2)dt = A (x) = d ( ) (4t+2)dt = 4x+2. dx 1 }{{} A(x) Notice wht the lst equlity sys: The instntneous rte of chnge of the re under the curve y = 4t+2 t t = x is simply equl to the vlue of the curve evluted t t = x. Why? A(x) mesures the re of some geometric figure. As x increses, the width of the figure increses, nd so the re increses. A (x) mesures the rte of increse of the figure. Now, s x increses, the right wll of the figure sweeps out dditionl re, so the rte t which the re increses should e equl to the height of the right wll. The following pges will mke this ide more precise. 17

Ide: Suppose tht for ny function f(t) it were true tht the re function A(x) = A() = f(t)dt = A (x) = d dx ( ) f(t)dt = f(x). f(t) dt stisfies Moreover, suppose tht F(x) is ny ndtiderivtive of f(x) (i.e., F (x) = f(x) = A (x).) By The Constnt Function Theorem (Chpter 6), there exists constnt vlue c such tht F(x) = A(x)+c. All these fcts put together help us esily evlute f(t) dt. Indeed, f(t)dt = A() = A() = A() A() = F() F() = [A()+c] [A()+c] The ove specultions re ctully true for ny continuous function on the intervl over which we re integrting. These results re stted in the following theorem, which is divided into two prts: The Fundmentl Theorem of Clculus: PART I: Let f(t) e continuous function on the intervl [,]. Then the function A(x), defined y the formul A(x) = f(t)dt for ll x in the intervl [,], is n ntiderivtive of f(x), tht is A (x) = d ( ) f(t)dt = f(x) dx for ll x in the intervl [,]. PART II: Let F(x) e ny ntiderivtive of f(x) on [,], so tht F (x) = f(x) for ll x in the intervl [,]. Then f(x)dx = F() F(). Specil nottions: The ove theorem tells us tht evluting definite integrl is two-step process: find ny ntiderivtive F(x) of the function f(x) nd then compute the difference F() F(). A nottion hs een devised to seprte the two steps of this process: F(x) stnds for the difference F() F(). Thus f(x)dx = F(x) = F() F(). 18

Some properties of definite integrls: 1. 3. 4. f(x)dx = 2. ( (f(x)±g(x))dx = f(x)dx+ c f(x)dx = ) ( f(x)dx ± c ) g(x) dx f(x)dx 5. 6. If m f(x) M on [,] then m( ) Geometric illustrtion of some of the ove properties: f(x)dx M( ) kf(x)dx = k f(x)dx = f(x)dx f(x)dx Property 3. sys tht if f nd g re positive vlued Property 4. sys tht if f(x) is positive vlued functions with f greter thn g. Then function then the re underneth the grph of f(x) y y etween nd plus f (f(x) g(x))dx the re underneth gives the re etween the grph of f(x) etween nd c equls the grphs of f nd g the re underneth g f(x)dx g(x) dx the grph of f(x) x x etween nd c. c Property 5. follows from Properties 4. nd 1. y letting c =. Alterntively, the Fundmentl Theorem of Clculus gives us f(x)dx = F(x) = F() F() = [F() F()] = F(x) = f(x)dx. Property 6. is illustrted in the picture tht ccompnies the proof of the Fundmentl Theorem of Clculus. An ide of the proof of the Fundmentl Theorem of Clculus: We lredy gve n explntion of why the second prt of the Fundmentl Theorem of Clculus follows from the first one. To prove the first prt we need to use the definition of the derivtive. More precisely, we must show tht A A(x+h) A(x) (x) = lim = f(x). h h For convenience, let us ssume tht f is positive vlued function. Given tht A(x) is defined y quotient is f(t)dt, the numertor of the ove difference M m y h A(x+h) A(x) = +h f(t)dt f(t)dt. Using properties 4. nd 5. of definite integrls, the ove difference equls +h x x x+h f(t)dt. As the function f is continuous over the intervl [x,x +h], the Extreme Vlue Theorem sys tht there re vlues c 1 nd c 2 in [x,x+h] wheref ttins theminimumndmximumvlues, sy mndm, respectively. Thus m f(t) M on [x,x+h]. As the length of the intervl [x,x+h] is h, y property 6. of definite integrls we hve tht t f(c 1 )h = mh +h x f(t)dt Mh = f(c 2 )h or, equivlently, f(c 1 ) +h x f(t)dt h f(c 2 ). Finlly, s f is continuous we hve tht lim h f(c 1 ) = f(x) = lim h f(c 2 ). This concludes the proof. 19

Exmples illustrting the First Fundmentl Theorem of Clculus: Exmple 6: Compute the derivtive of F(x) if F(x) = 2 (t 4 +t 3 +t+9)dt. Exmple 7: Compute the derivtive of g(s) if g(s) = s 5 8 u 2 +u+2 du. Exmple 8: Suppose f(x) = 1 t 2 7t+12.25dt. For which positive vlue of x does f (x) equl? Exmple 9: Find the vlue of x t which F(x) = intervl [3,1]. The vlue of x tht gives minimum of F(x) is. 3 (t 8 +t 6 +t 4 +t 2 +1)dt tkes its minimum on the 11

Exmple 1: Find the vlue of x t which G(x) = [ 5,1]. The vlue of x tht gives mximum of G(x) is. 5 ( t +2)dt tkes its mximum on the intervl Exmples illustrting the Second Fundmentl Theorem of Clculus: Exmple 11: Evlute the integrl 5 (t 2 +1)dt. Exmple 12: Evlute the integrl 5 7 ( ) 1 2 dt. t Exmple 13: Evlute the integrl 2 e x dx. 111

Exmple 14: Evlute the integrl 2 2 (t 5 +t 4 +t 3 +t 2 +t+1)dt. Exmple 15: Evlute the integrl 12 6 t dt. Exmple 16: Evlute the integrl 5 2 ( 3u 5 + 7 ) du. u Exmple 17: Suppose Evlute the integrl 5 f(x)dx. 2x, x 2; f(x) = 8 x, x > 2. 112

The sustitution rule for integrls: suintervl I nd f is continuous on I, then In cse of definite integrls the sustitution rule ecomes Exmple 18: Evlute the integrl If u = g(t) is differentile function whose rnge is f(g(t))g (t)dt = f(u)du. (t+9) 2 dt. f(g(t))g (t)dt = g() g() f(u)du. Exmple 19: Evlute the integrl 3t+7dt. Exmple 2: Evlute the integrl 1 (5t+4) 2 dt. Exmple 21: Evlute the integrl 5 2t+1dt. 113

Exmple 22: Evlute the integrl 1 5e 5x+1 dx Exmple 23: Evlute the integrl 3 2x x 2 +1 dx. Exmple 24: Compute the derivtive of F(x) if F(x) = (Hint: Write F(x) = g(f(x)) where f(x) = x 2 nd g(x) = 2 2tdt. 2tdt nd use the chin rule to find F (x).) Generl formul: If F(x) = f(x) H(t)dt then F (x) = d dx f(x) H(t)dt = H(f(x)) f (x). 114

Word prolems: If the velocity v(t) of n oject t time t is lwys positive, then the re underneth the grph of the velocity function nd lyingove thet-xis represents thetotl distnce trveled y theoject from t = to t =. Exmple 25: A trin trvels long trck nd its velocity (in miles per hour) is given y v(t) = 76t for the first hlf hour of trvel. Its velocity is constnt nd equl to v(t) = 76/2 fter the first hlf hour. Here time t is mesured in hours. How fr (in miles) does the trin trvel in the second hour of trvel? Exmple 26: A trin trvels long trck nd its velocity (in miles per hour) is given y v(t) = 76t for the first hlf hour of trvel. Its velocity is constnt nd equl to v(t) = 76/2 fter the first hlf hour. Here time t is mesured in hours. How fr (in miles) does the trin trvel in the first hour of trvel? Exmple 27: A rock is dropped from height of 21 feet. Its velocity in feet per second t time t fter it is dropped is given y v(t) = 32t where time t is mesured in seconds. How fr is the rock from the ground one second fter it is dropped? 115

Exmple 28: Suppose n oject is thrown down from cliff with n initil speed of 5 feet per sec, nd its speed in ft/sec fter t seconds is given y s(t) = 1t+5. If the oject lnds fter 7 seconds, how high (in ft) is the cliff? (Hint: how fr did the oject trvel?) Exmple 29: A cr is trveling due est. Its velocity (in miles per hour) t time t hours is given y v(t) = 2.5t 2 +1t+5. How fr did the cr trvel during the first five hours of the trip? Averge Vlues: The verge of finitely mny numers y 1,y 2,...,y n is y ve = y 1 +y 2 + +y n. Wht n if we re deling with infinitely mny vlues? More generlly, how cn we compute the verge of function f defined on n intervl? Averge of function: Theverge offunctionf onnintervl [,] y equls the integrl of f over the intervl divided y thelength of the intervl: Geometric mening: f(x)dx f ve =. x If f is positive vlued function, f ve is tht numer such tht the rectngle with se [,] nd height f ve hs the sme re s the region underneth the grph of f from to. Exmple 3: Wht is the verge of f(x) = x 2 over the intervl [,6]? f ve 116

117