Fractional Integral Operator and Olsen Inequality in the Non-Homogeneous Classic Morrey Space

Similar documents
Weighted BMO Estimates for Commutators of Riesz Transforms Associated with Schrödinger Operator Wenhua GAO

NORM ESTIMATES FOR BESSEL-RIESZ OPERATORS ON GENERALIZED MORREY SPACES

Boundedness for multilinear commutator of singular integral operator with weighted Lipschitz functions

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

The Australian Journal of Mathematical Analysis and Applications

A WEAK-(p, q) INEQUALITY FOR FRACTIONAL INTEGRAL OPERATOR ON MORREY SPACES OVER METRIC MEASURE SPACES

Local and global estimates for solutions of systems involving the p-laplacian in unbounded domains

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Positive solutions of singular (k,n-k) conjugate boundary value problem

Approximation properties of (p, q)-bernstein type operators

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

Generalized Likelihood Functions and Random Measures

Fractional integral operators on generalized Morrey spaces of non-homogeneous type 1. I. Sihwaningrum and H. Gunawan

Heat Equation: Maximum Principles

On the 2-Domination Number of Complete Grid Graphs

DENSITY OF THE SET OF ALL INFINITELY DIFFERENTIABLE FUNCTIONS WITH COMPACT SUPPORT IN WEIGHTED SOBOLEV SPACES

ABSOLUTE CONVERGENCE OF THE DOUBLE SERIES OF FOURIER HAAR COEFFICIENTS

1 Riesz Potential and Enbeddings Theorems

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

ON WEIGHTED ESTIMATES FOR STEIN S MAXIMAL FUNCTION. Hendra Gunawan

On the Tang and Wang Decomposition of Labour Productivity Growth into Sectoral Effects

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution

On Certain Sums Extended over Prime Factors

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

446 EIICHI NAKAI where The f p;f = 8 >< sup sup f(r) f(r) L ;f (R )= jb(a; r)j jf(x)j p dx! =p ; 0 <p<; ess sup jf(x)j; p = : x2 ( f0g; if 0<r< f(r) =

Equations and Inequalities Involving v p (n!)

Science & Technologies COMMUTATIONAL PROPERTIES OF OPERATORS OF MIXED TYPE PRESERVING THE POWERS - I

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences

Boundedness of Calderón-Zygmund Operator and Their Commutator on Herz Spaces with Variable Exponent

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

A NOTE ON SOME OPERATORS ACTING ON CENTRAL MORREY SPACES. Martha Guzmán-Partida. 1. Introduction

AN APPLICATION OF HYPERHARMONIC NUMBERS IN MATRICES

arxiv: v1 [math.nt] 5 Sep 2014

Some remarks on the paper Some elementary inequalities of G. Bennett

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry

Ž n. Matematicki Fakultet, Studentski trg 16, Belgrade, p.p , Yugosla ia. Submitted by Paul S. Muhly. Received December 17, 1997

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

LECTURE 13 SIMULTANEOUS EQUATIONS

On Summability Factors for N, p n k

Turan inequalities for the digamma and polygamma functions

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation

On Some Identities and Generating Functions for Mersenne Numbers and Polynomials

SYMMETRIC POSITIVE SEMI-DEFINITE SOLUTIONS OF AX = B AND XC = D

A REFINEMENT OF JENSEN S INEQUALITY WITH APPLICATIONS. S. S. Dragomir 1. INTRODUCTION

We will look for series solutions to (1) around (at most) regular singular points, which without

A New Criterion for Meromorphic Multivalent Starlike Functions of Order γ defined by Dziok and Srivastava Operator

On Cesáro means for Fox-Wright functions

A tail bound for sums of independent random variables : application to the symmetric Pareto distribution

A Note on Sums of Independent Random Variables

The Performance of Feedback Control Systems

ON CONVERGENCE OF SINGULAR SERIES FOR A PAIR OF QUADRATIC FORMS

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

EECE 301 Signals & Systems Prof. Mark Fowler

Generalized Weighted Norlund-Euler. Statistical Convergence

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

8.6 Order-Recursive LS s[n]

Inclusion Properties of Orlicz and Weak Orlicz Spaces

Some Common Fixed Point Theorems in Cone Rectangular Metric Space under T Kannan and T Reich Contractive Conditions

PERIODS OF FIBONACCI SEQUENCES MODULO m. 1. Preliminaries Definition 1. A generalized Fibonacci sequence is an infinite complex sequence (g n ) n Z

10-716: Advanced Machine Learning Spring Lecture 13: March 5

MAJORIZATION PROBLEMS FOR SUBCLASSES OF ANALYTIC FUNCTIONS INVOLVING

Songklanakarin Journal of Science and Technology SJST R1 Teerapabolarn

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Bangi 43600, Selangor Darul Ehsan, Malaysia (Received 12 February 2010, accepted 21 April 2010)

LANZHE LIU. Changsha University of Science and Technology Changsha , China

Some Mean Inequalities

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces

On n-collinear elements and Riesz theorem

Recurrence Relations

The log-concavity and log-convexity properties associated to hyperpell and hyperpell-lucas sequences

arxiv: v1 [math.ca] 23 Sep 2017

On the Positive Definite Solutions of the Matrix Equation X S + A * X S A = Q

Tauberian theorems for the product of Borel and Hölder summability methods

A NEW NOTE ON LOCAL PROPERTY OF FACTORED FOURIER SERIES

Fig. 1: Streamline coordinates

1+x 1 + α+x. x = 2(α x2 ) 1+x

COMMON FIXED POINT THEOREMS VIA w-distance

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION

IRRATIONALITY MEASURES, IRRATIONALITY BASES, AND A THEOREM OF JARNÍK 1. INTRODUCTION

Sketch of Dirichlet s Theorem on Arithmetic Progressions

Section 11.6 Absolute and Conditional Convergence, Root and Ratio Tests

An operator equality involving a continuous field of operators and its norm inequalities

Logarithm of the Kernel Function. 1 Introduction and Preliminary Results

A Proof of Birkhoff s Ergodic Theorem

ECE534, Spring 2018: Solutions for Problem Set #2

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Positive Schatten-Herz class Toeplitz operators on the ball

INFINITE SEQUENCES AND SERIES

Chapter 6 Infinite Series

Hidden Markov Model Parameters

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

POINTWISE AND GRAND MAXIMAL FUNCTION CHARACTERIZATIONS OF BESOV-TYPE AND TRIEBEL LIZORKIN-TYPE SPACES

ANDRONOV-HOPF S BIFURCATION IN A DYNAMIC MODEL OF CELL POPULATION

Expectation of the Ratio of a Sum of Squares to the Square of the Sum : Exact and Asymptotic results

Bernoulli Numbers and a New Binomial Transform Identity

Transcription:

It Joural of Math Aalyi, Vol 6, 202, o 3, 50-5 Fractioal Itegral Oerator ad Ole Ieuality i the No-Homogeeou Claic Morrey Sace Mohammad Imam Utoyo Deartmet of Mathematic Airlagga Uiverity, Camu C, Mulyorejo Surabaya, 605, Idoeia m oetojo@yahoocom Toto Nuatara Deartmet of Mathematic UM Malag, 6545, Idoeia totouatara@yahoocom Bauki Widodo Deartmet of Mathematic ITS Surabaya, 60, Idoeia b widodo@matematikaitacid Suhariigih Deartmet of Phyic Airlagga Uiverity, Camu C, Mulyorejo Surabaya, 605, Idoeia uhariigih@uairacid Abtract We etablih the eceary ad ufficiet coditio for the boudede of the fractioal itegral oerator I α i the o-homogeeou claic Morrey ace I additio, we alo derive Ole tye ieualitie ivolvig I α I thi aer, we ue the meaure of order which more geeral tha the reviou tudie Coeuetly, the reult of reviou tudie i a articular form of the reult of thi tudy Mathematic Subject Claificatio: 47B38, 42B35, 26A33, 26D0

502 Mohammad Imam Utoyo et al Keyword: Fractioal itegral oerator, o-homogeeou claic Morrey ace, Ole ieuality Itroductio Let R d be euied with a metric ad a Borel meaure µ We ay that a meaure µ atifie the doublig coditio (µ DC ) if there exit a cotat C > 0 uch that for all ball B(a, r), µ(b(a, 2r)) µ(b(a, r)) If µ DC, the R d i called homogeeou ace If µ doe t atify the doublig coditio, the R d i called a o-homogeeou ace The reult of reearch o the boudede of fractioal itegral oerator i homoge ace ca be foud i [, 2, 3, 5, 9, 0] Reearcher have foud that ome reult are till valid eve if µ doe t atify the aumtio of doublig coditio Thee reult ca be ee i [4, 6, 7, 8, ] Our mai object of tudy i thi aer i the fractioal itegral oerator o o-homogeeou ace R d, I α, defied for by the formula f(y) I α f(x) := dy, 0 < α < d R d x y α I thi aer, we aume that µ atifie the growth coditio of order > 0 We ay that a meaure µ atifie the growth coditio (µ GC() ), if there exit a cotat C > 0 uch that for all ball B(a, r), µ(b(a, r)) r I [4, 6, 7, 8, ], reearcher aume that µ GC() with a i the defiitio of I α I thi aer, we will give the eceary ad ufficiet coditio for the boudede of I α i o-homogeeou Lebegue ace L (µ) ad i ohomogeeou claic Morrey ace L,λ (µ) I, additio, we hall alo derive Ole tye ieualitie ivolvig I α We defie a claic Morrey ace a the et of all f L loc (µ) uch that ( f : L,λ (µ) := u B:=B(a,r) f(y) r λ If λ = 0, the L,λ (µ) = L (µ) 2 The boudede of I α i o-homogeeou Lebegue ace Let u begi with ome aumtio ad relevat fact that follow A cutomary the letter C deote cotat, which are ot ecearily the ame from lie B

Fractioal itegral oerator ad Ole ieuality 503 to lie To rove the boudede of I α, we eed the boudede of maximal oerator M i L (µ) The maximum oerator M, defied for > 0, by formula M f(x) := u r>0 f(y) r B(x,r) where f L loc (µ) Theorem 2 The maximal oerator M i boudede i L (µ) Proof Proof thi theorem i imilar to rovig of the boudede of M i L (µ) (ee i [8]) I the ext theorem, we will give the eceary ad ufficiet coditio for the boudede I α from L (µ) to L (µ) Theorem 22 Let < < < The Oerator I α i bouded from L (µ) to L (µ) if ad oly if = ( α) + Proof Neceity Aume that I α i bouded from L (µ) to L (µ) ad B := B(a, r) i be a arbitrary ball i R d Sice χ B : L (µ) = µ(b/, we get χ B L (µ) Therefore I α χ B : L (µ) χ B : L (µ) = µ(b If x, y B, the r α I α χ B (y) Therefore ( r α µ(b+/ = C o B / ( / (r α µ(b)) dµ(x) I α χ B (y) dµ(x) B I α χ B : L (µ) χ B : L (µ) = Cµ(B/, Sice µ GC(), we get = ( α) + µ(b) r ( α) + Sufficiecy Let B := B(x, r) i ball i R d ad f L (µ) Suoe that I α f(x) = I α f (x) + I α f 2 (x) where f (x) = fχ B ad f 2 (x) = fχ B c For f, we have the followig etimate: I α f (x) k= k= 2 k r x y <2 k+ r (2 k r) α+ (2 k+ r) f(y) x y α B(a,2 k+ r) f(y)

504 Mohammad Imam Utoyo et al r α+ M f(x) k= (2 k ) α+ = Cr α+ M f(x), α + > 0 By Hölder ieuality ad the fact that µ GC() where = ( α) +, we have the followig etimate: I α f 2 (x) 2 k r x y <2 k+ r ( (2 k r) α f(y) B(a,2 k+ r) r ( ) α + k= f : L (µ) ( ) α + = Cr f : L (µ), α + f(y) x y α / ( (2 k ) B(a,2 k+ r) ( ) α + ( ) = < 0 ) Combiig the two etimate, we get I α f(x) r α+ (M f(x) + r f : L (µ)) Aumig that f 0 ae, we chooe r = ( ) M f(x) The we have f:l (µ) I α f(x) M f(x) (α +) M f(x) f : L (µ) f : L (µ) (α +) By uig the boudede of M o L (µ), Theorem 22 i comletely roved If we chooe =, the we will get the followig reult which ca be viewed a Hardy-Littlewood-Sobolev tye for o-homogeeou ace Corollary 23 Let < < α ad = α The oerator I α i bouded from L (µ) to L (µ) if ad oly if µ GC() 3 The boudede of I α i o-homogeeou claic Morrey ace Before we reet the boudede of I α i the claic Morrey ace, we have the followig lemma which how articularly that the ace L,λ (µ) i ot emty The lemma will alo be ueful later whe we rove the eceary coditio for the boudede of I α i the claic Morrey ace

Fractioal itegral oerator ad Ole ieuality 505 Lemma 3 If B o := B(a o, r o ), the χ Bo L, λ (µ) where χ Bo i the characteritic fuctio of the ball B o Moreover, there exit a cotat C > 0 uch that χ Bo : L, λ ( λ) (µ) r o Proof Let B o := B(a o, r o ) be a arbitrary ball i R d It i eay to ee that ( χ Bo : L, λ µ(b Bo ) (µ) = ub:=b(a,r) r λ We may uoe that B B o If r r o,we ue fact that µ GC(), r ( λ) o, λ > 0 O the other had, if r > r o, the the µ(b Bo) r λ µ(b B o) r λ µ(bo) r λ o µ(b) r λ r ( λ) o Thi comlete the roof of the lemma I the ext theorem, we will give the eceary ad ufficiet coditio for the boudede I α from L, λ (µ) to L,λ 2 (µ) Theorem 32 Let µ GC() with = ( α), < < < ad + 0 < λ < The oerator I α i bouded from L, λ (µ) to L,λ 2 (µ) if ad oly if λ = λ 2 Proof Neceity Aume that I α i bouded from L, λ (µ) to L,λ 2 (µ) ad B o := B(a o, r o ) i ball i R d If x, y B o, the r α µ(b o ) I α χ Bo (y) Bae o Lemma 3, we have r λ 2 +α o µ(b+/ = C ( r λ 2 o (ro α B o µ(b o )) dµ(x) / o ( r λ 2 o B o I α χ Bo (y) dµ(x) / I α χ Bo : L,λ 2 (µ) χ Bo : L, λ ( λ ) (µ) r o, µ(b o + (r o ) λ + λ 2 + α Sice µ GC() where = ( α), we have + = λ + λ 2 + α Thu, + λ = λ 2 Sufficiecy For a R d ad r > 0, let B := B(a, r), B := B(a, 2r), ad f L, λ (µ) Suoe that I α f(x) = I α f (x) + I α f 2 (x) where f (x) = fχ B

506 Mohammad Imam Utoyo et al ad f 2 (x) = fχ Bc Sice f : L (µ) = (2r) λ (2r) λ B f(y) <, we get f L (µ) Bae o Theorem 22 ad the fact that λ = λ 2 we have ( r λ 2 B(a,r) I α f (y) r λ 2 I α f (y) (R d r λ 2 + λ (2r) λ B f(y) f : L, λ (µ) Now we oberve that if x B(a, r) ad y B c the x y > r Hece Hölder ieuality ad the fact that µ GC() with = ( α) ad 0 < + λ < yield I α f 2 (x) B c f(y) x y f(y) x y >r α x y α (2 k r) α 2 k r x y <2 k+ r f(y) ( (2 k r) α f(y) B(x,2 k+ r) ( B(x,2 k+ r) ) (2 k r) α + λ + ( ) (2 k+ r) λ B(x,2 k+ r) f(y) r α + λ + ( ) f : L, λ (µ) 2 k(α + λ + ( ) ) r α + λ + ( ) f : L, λ λ ( ) (µ), α + + < 0

Fractioal itegral oerator ad Ole ieuality 507 Bae o the fact that = ( α) + ad λ = λ 2, we have Therefore ( λ 2 B(a,r) λ 2 + α + λ ( ) + + = 0 I α f 2 (x) r λ 2 +α + λ + ( ) + f : L, λ (µ) = C f : L, λ (µ) By Mikowki ieuality, Theorem 32 i comletely roved If we chooe =, the we will get the followig reult which ca be viewed a Sae tye for o-homogeeou ace Corollary 33 Let < <, = α, 0 < λ α <, ad µ GC() The oerator I α i bouded from L,λ (µ) to L,λ 2 (µ) if ad oly if λ = λ 2 We ue the followig lemma whe we rove the eceary coditio for the boudede I α from L,λ (µ) to L,λ (µ) The roof of thi lemma i imilar with Lemma 3 Lemma 34 Let 0 < λ < If B o := B(a o, r o ), the χ Bo L,λ (µ) Moreover, there exit a cotat C > 0 uch that χ Bo : L,λ (µ) r λ o I the ext theorem, we will give the eceary ad ufficiet coditio for the boudede I α from L,λ (µ) to L,λ (µ) Theorem 35 Let < < < ad 0 < λ < The Oerator I α i bouded from L,λ (µ) to L,λ (µ) if ad oly if = α + λ Proof Neceity Aume that I α i bouded from L,λ (µ) to L,λ (µ) ad B o := B(a o, r o ) i a arbitrary ball i R d By uig the ame roce a i theorem 32 we get µ(b o + (r o ) λ + λ + α Sice µ GC(), we have + = λ + λ + α Thu, = α + λ

508 Mohammad Imam Utoyo et al Sufficiecy Let B := B(x, r) i ball i R d ad f L,λ (µ) Suoe that I α f(x) = I α f (x) + I α f 2 (x) where f (x) = fχ B ad f 2 (x) = fχ B c For f, we have the followig etimate: I α f (x) k= r α+ M f(x) k= 2 k r x y <2 k+ r (2 k r) α+ (2 k+ r) k= f(y) x y α B(a,2 k+ r) f(y) (2 k ) α+ = Cr α+ M f(x), α + > 0 By Hölder ieuality ad the fact that µ GC() ad we have the followig etimate: = α + λ, I α f 2 (x) 2 k r x y <2 k+ r ( (2 k r) α f(y) B(a,2 k+ r) (2 k r) ( ) α + + λ ( (2 k+ r) λ f(y) x y α / ( B(a,2 k+ r) B(a,2 k+ r) f(y) ) / r ( ) α + k= + λ f : L,λ (µ) (2 k ) ( ) α + + λ ( ) α + + = Cr λ f : L,λ ( ) (µ), α + + λ = λ < 0 Combiig the two etimate, we get I α f(x) r α (r M f(x) + r ( )+λ f : L,λ (µ)) Aumig that f 0 ae, we chooe r = ( I α f(x) M f(x) (α +) λ M f(x) f:l,λ (µ) f : L (µ) (α +) lambda ) λ The, we have

Fractioal itegral oerator ad Ole ieuality 509 M f(x) f : L (µ) By uig the boudede of M o L (µ), Theorem 35 i comletely roved If we chooe =, the we will get the followig reult which ca be viewed a Adam tye for o-homogeeou ace Corollary 36 Let < <, 0 < λ < α, ad µ GC() The α oerator I α i bouded from L,λ (µ) to L,λ (µ) if ad oly if = 4 Ole Tye Ieualitie α λ I tudyig a Schrödiger euatio with erturbed otetial W o R articularly, for = 3, Ole roved the followig theorem [5] Theorem 4 (Ole) Let < < ad 0 < λ < α If W α L λ α,λ (R ), the the oerator W i bouded o L,λ (R ) Moreover, there exit a cotat C > 0 uch that WI α f : L,λ (R ) W : L λ α,λ (R ) f : L,λ (R ) The reult of tudie about the boudede of WI α o R ca be ee i [7, 0] I thi aer, we will reet here boudede of WI α i ohomogeeou Lebegue ace ad o-homogeeou claic Morrey ace µ GC(), > 0 Theorem 42 Let > 0 ad < < If W L α + (µ), the the oerator W i bouded i L (µ) Moreover, there exit a cotat C > 0 uch that WI α f : L (µ) W : L α + (µ) f : L (µ) Proof Let atify > ad = ( α) By Hölder ieuality, we + have ( R d WI α f(x) dµ(x) ( ) W (x) dµ(x) R d ( f(x) dµ(x) R d ( ) α + ( W (x) α + dµ(x) f(x) dµ(x) R d R d By the boudede of I α from L (µ) to L (µ) (Theorem 22), we get WI α f : L (µ) W : L α + (µ) f : L (µ) Thi comlete the roof of the theorem

50 Mohammad Imam Utoyo et al Theorem 43 Let < < <, = ( α) ad 0 < λ + < If W L α + (µ), the the oerator W i bouded i L, λ (µ) Moreover, there exit a cotat C > 0 uch that WI α f : L, λ (µ) W : L α + (µ) f : L, λ (µ) Proof Let λ 2 atify λ = λ 2 By Hölder ieuality, we have ( r λ R d WI α f(x) dµ(x) ( ) r λ + λ ( 2 W (x) dµ(x) R d ( W (x) R d ) α + ( α + dµ(x) r λ 2 r λ 2 R d f(x) dµ(x) R d f(x) dµ(x) By the boudede of I α from L, λ (µ) to L,λ 2 (µ) (Theorem 32), we get WI α f : L, λ (µ) W : L α + (µ) f : L, λ Thi comlete the roof of the theorem (µ) Theorem 44 Let > 0, 0 < λ < ad < < If W L λ α + (µ), the the oerator W i bouded i L,λ (µ) Moreover, there exit a cotat C > 0 uch that WI α f : L,λ (µ) W : L λ α + (µ) f : L,λ (µ) Proof Let atify > ad = α + By Hölder ieuality, we λ have (fracr λ WI α f(x) dµ(x) R d ) lec (fracr ( λ W (x) dµ(x) f(x) dµ(x) R d r λ R d ( ) α + ( W (x) r λ α + dµ(x) f(x) dµ(x) R d r λ R d By the boudede of I α from L,λ (µ) to L,λ (µ) (Theorem 35), we get WI α f : L,λ (µ) W : L λ α + (µ) f : L,λ (µ) Thi comlete the roof of the theorem

Fractioal itegral oerator ad Ole ieuality 5 Referece [] D R Adam, A Note o Riez otetial, Duke Math J 42(4) (975), 765-778 [2] F Chiareza, da M Fraca, Morrey Sace ad Hardy Littlewood Maximal Fuctio, Red Mat 7 (987), 273-279 [3] E Nakai, Hardy-Littlewood maximal oerator, igular itegral oeratorad the Riez oteial o geeralized Morrey Sace, Math Nacr 66 (994), 95-03 [4] F Nazarov, S Treil, da A Volberg, Weak Tye Etimate ad Cotlar Ieualitie for Caldero-Zygmud Oerator o o homogeeou Sace, Iteratioal Mathematic Reearch Notice 9 (998), 463-487 [5] H Guawa da Eridai, Fractioal Itegral ad Geeralized Ole Ieualitie, Kyugook Math Joural 49 (2009), 3-39 [6] H Guawa, Y Sawao, da I Sihwaigrum, Fractioal Itegral Oerator i o-homoge Sace, Bulleti of the Autralia Mathematical Society 80(2) (2009), 324-334 [7] I Sihwaigrum, HP Suryama, ad H Guawa, Fractioal itegral oerator ad Ole ieualitie o o-homogeeou ace, Autralia Joural of mathematical Aalyi ad Alicatio 7() (200), -6 [8] J Garcia-Cuerva da J Martell, Two-weight Norm Ieualitie for Maximal Oerator ad Fractioal Itegral o-o homogeeou Sace, Idiaa Uiv Math 50 (200), 24-280 [9] J Peetre, O the Teory of L,λ Sace, J Fuc Aal 4 (969), 7-87 [0] K Kurata, S Nihigaki ad S Sagao, Boudede of itegral oerator o geeralized Morrey ace ad it alicatio to Schrödiger oerator, Proc Amer Math Soc 28 (2002), 25-34 [] Y Sawao da H Taaka, Morrey Sace for No-doublig Meaure, Acta Mathematica Siica, Eglih Serie,Publihed olie: Nov 2, 2005 DOI: 0007/04-005-0660-z, Htt://wwwActaMathcom, 2(6) (2005), 535-544 Received: December, 20