Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne

Similar documents
Quantum Dots for optical applications

Quantum dots: Physics, technology and applications

Quantum Dot Lasers. Jose Mayen ECE 355

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

THREE-dimensional electronic confinement in semiconductor

Semiconductor Quantum Dots: A Multifunctional Gain Material for Advanced Optoelectronics

Emission Spectra of the typical DH laser

GeSi Quantum Dot Superlattices

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots

A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Introduction to Optoelectronic Device Simulation by Joachim Piprek

Electrically Driven Polariton Devices

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes

EE 472 Solutions to some chapter 4 problems

1300nm-Range GaInNAs-Based Quantum Well Lasers with High Characteristic Temperature

Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics

SUPPLEMENTARY INFORMATION

Semiconductor Quantum Structures And Energy Conversion. Itaru Kamiya Toyota Technological Institute

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Self-Assembled InAs Quantum Dots

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Saturation and noise properties of quantum-dot optical amplifiers

Semiconductor Quantum Dots

Polariton laser in micropillar cavities

THE DEVELOPMENT OF SIMULATION MODEL OF CARRIER INJECTION IN QUANTUM DOT LASER SYSTEM

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

INSTITUTE BECKMAN. K. Hess, Y. Liu, F. Oyafuso, W.C. Ng and B.D. Klein. The Beckman Institute University of Illinois at Urbana-Champaign

Optoelectronics ELEC-E3210

Optical Investigation of the Localization Effect in the Quantum Well Structures

THz QCL sources based on intracavity difference-frequency mixing

1 Semiconductor Quantum Dots for Ultrafast Optoelectronics

Broadband Quantum-Dot/Dash Lasers

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

(Al,In)GaN laser diodes in spectral, spatial, and time domain: near-field measurements and basic simulations

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

Chapter 5. Semiconductor Laser

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Electron spins in nonmagnetic semiconductors

Stimulated Emission Devices: LASERS

solidi current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates

ISSN Review. Progress to a Gallium-Arsenide Deep-Center Laser

S. Blair February 15,

Study on Quantum Dot Lasers and their advantages

Quantum Dot Laser. Johann Peter Reithmaier. Technische Physik Institute of Nanostructure Technologies & Analytics (INA) University of Kassel

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

6. Light emitting devices

High Power Diode Lasers

Defense Technical Information Center Compilation Part Notice

Spin Dynamics in Single GaAs Nanowires

Photoluminescence characterization of quantum dot laser epitaxy

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA.

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

Diode Lasers and Photonic Integrated Circuits

Signal regeneration - optical amplifiers

Pressure and Temperature Dependence of Threshold Current in Semiconductor Lasers Based on InGaAs/GaAs Quantum-Well Systems

Distributed feedback semiconductor lasers

ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING

Nanostrutture a confinamento quantistico elettronico: i quantum dot

Photonic devices for quantum information processing:

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Supplementary Materials

InGaAs-AlAsSb quantum cascade lasers

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1

Investigation of the formation of InAs QD's in a AlGaAs matrix

Short wavelength and strain compensated InGaAs-AlAsSb. AlAsSb quantum cascade lasers. D.Revin, S.Zhang, J.Cockburn, L.Wilson, S.

Fabrication / Synthesis Techniques

Wavelength Stabilized High-Power Quantum Dot Lasers

Room-temperature continuous-wave operation of GaInNAs/GaAs quantum dot laser with GaAsN barrier grown by solid source molecular beam epitaxy

Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Luminescence basics. Slide # 1

SELF-ASSEMBLED QUANTUM DOTS FOR OPTOELECTRONIC DEVICES: PROGRESS AND CHALLENGES

Defense Technical Information Center Compilation Part Notice

Optical Nonlinearities in Quantum Wells

Chapter 3 Properties of Nanostructures

Internal Efficiency of Semiconductor Lasers With a Quantum-Confined Active Region

Nanoscience galore: hybrid and nanoscale photonics

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

Supplementary Information for

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes

Electro-optic and electro-absorption characterization of InAs quantum dot waveguides

Columnar quantum dots (QD) in polarization insensitive SOA and non-radiative Auger processes in QD: a theoretical study

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Time Dependent Perturbation Theory. Andreas Wacker Mathematical Physics Lund University

- Outline. Chapter 4 Optical Source. 4.1 Semiconductor physics

ECE 484 Semiconductor Lasers

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

Lecture 2. Electron states and optical properties of semiconductor nanostructures

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Dynamic Properties of Quantum Dot Distributed Feedback Lasers

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Einstein s Approach to Gain and Spontaneous Emission

Semiconductor Lasers for Optical Communication

Electroluminescence from Silicon and Germanium Nanostructures

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells

Transcription:

Quantum Dot Lasers Ecole Polytechnique Fédérale de Lausanne Outline: Quantum-confined active regions Self-assembled quantum dots Laser applications

Electronic states in semiconductors Schrödinger eq.: ψ = k ( r ) u ( r ) χ( r ) k m + V crist()+ r V het () r ψ()= r Eψ() r p u k : Bloch function χ : envelope function p + V m* het χ = ( r ) ( r ) Eχ( r ) CB E bulk : V het E = = 0, χ k m* ( r ) = e ik r VB k

Energy quantization χ ik r ( r ) = e kl x kl y kl z = mπ x = mπ y = mπ z L E k 4π E = = x y + m* m* L ( m + m m ) z E 4π m* L Wavefunction confinement with heterostructure potential: E 1 L E>>kT at RT L<<30 nm

D nanostructures: Quantum Wells k x ky > 1> > 1> E z AlGaAs GaAs AlGaAs k x, k y V het = V i( k x+ k y) x y = e χ z kx + k y E = En + m * ( z), χ( r ) ( ) ( ) Confinement in one dimension Continuum of energy states

1D nanostructures: Quantum Wires k y > 1> > 1> E AlGaAs GaAs AlGaAs k y V het = V χ k y E = En + m * ik y y ( x, z), χ( r ) = e ( x, z)

0D nanostructures: Quantum Dots > E 1> AlGaAs GaAs AlGaAs > 1> V het ( x, y, z), ( r ) = χ( x, y z) = V χ, E = E n Only in a 0D nanostructures the energy levels are completely discrete! Semiconductor atoms

Electronic transitions Fermi's golden rule: w f H'i u r χ r A r pu r χ r if c ( ) c( ) ( ) v( ) v( ) + = = ( ) ˆ ( ) χc( r) χv( r) χc( r) ˆ χv ( r) u ( r) uv ( r) A uc r e p uv r e p c A u r u r c ( ) eˆ p v( ) χc ( r) χv ( r) =0 Material Heterostructure NB: Dimensionality has little influence on transition probability (apart from selection rules)! Neglecting excitonic effects!

Density of states Memo: Born-von-Karman boundary conditions k-space density of states g ( k) = const. k + dispersion relation: E = g( E) m * Bulk: ρc ( E ) E Ec Density of states E c Energy

Density of states QWs ρ c ( E) = const. ρ c QWires ( E) 1 E E n c s ( E) ( E En) ρ δ Density of states E 1 E Density of states E 1 E Density of states E 1 E Energy Energy Energy > 1> AlGaAs GaAs AlGaAs More confinement Less degrees of freedom Density of states more singular

Quantization: What for? Photonics: Shape of density of states Gain spectral width Number of states Transparency current 3D carrier confinement Energy tuning

Density of states and carrier distribution n ( E) = g( E) f ( E) Bulk: Density of states Fermi distribution Carrier distribution f(e) n(e) g(e) Problem with bulk: Continuous and increasing g(e) Broad carrier distribution Energy

Carrier distribution in nanostructures Carrier distribution f(e) n(e) QWs g(e) Carrier distribution f(e) QWires n(e) g(e) Carrier distribution f(e) s n(e) g(e) Energy Energy Energy Gain calculation: Proposed by Asada et al., JQE 1986 NB: Idealized picture!!!

Number of states In a semiconductor laser: Need to reach transparency must fill at least half of the available states Transparency current: I tr = eg ( E ) E τ g( E ) N quantum dots N states With low-dimensional heterostructures we can "engineer" the number of states Reduce I tr NB: Small g(e) Small max gain!

Carrier confinement Lateral carrier confinement in 0D nanostructures Suppressed carrier diffusion Can fabricate smaller devices

Outline Quantum-confined active regions Self-assembled quantum dots: growth and physical properties Laser applications

Nanostructure fabrication: Quantum Dots "Straightforward" approach: Fabrication on the nanoscale Need high-resolution lithography Etching Nonradiative defects "Self-organized" methods: Making Nature work for us! Growth on patterned substrates substrate Strain-driven growth on planar substrates substrate

Self-assembled growth Epitaxial growth: Interplay of surface energy and strain "Standard" (Frank-van der Merve) D epitaxial growth: GaAs substrate AlAs Stranski-Krastanow 3D growth mode (strain-driven): InAs substrate

Self-assembled quantum dots MBE growth of InAs on GaAs: 15 nm Atomic Force Microscopy 00 nm Transmission Electron Microscopy Simple growth technique, no pre-growth patterning required High crystalline quality High radiative efficiency at RT Random nucleation sites no control of island position Size dispersion Emission energy dispersion 1.3 µm operation possible

Self-assembled quantum dots Idealized picture: E E>>kT Arakawa, Sakaki 198 Asada et al., 1986 Real s: 15 nm 00 nm PL intensity (arb. un.) 35 30 5 0 15 10 5 FWHM= 31 mev E ideal meas. 0 0.95 1 1.05 1.1 Energy (ev) E

Electronic structure holes electrons s-like p-like d-like Atomistic pseudo-potential approach (Williamson et al, PRB 000)

Emission spectrum 0 1 Intensity (arb. un.) 7 10-8 6 10-8 5 10-8 Low excitation level 93 K 1 A/cm 0 4 10-8 3 10-8 1 10-8 1 10-8 0 0.85 0.95 1.05 1.15 Energy (ev) filling: max electrons per state 1 0 Intensity (arb. un.) 10-7 1.5 10-7 1 10-7 5 10-8 0 0 1 QW 900 A/cm 110 A/cm 7. ka/cm GaAs 0.9 1 1.1 1. 1.3 1.4 1.5 Energy (ev)

Relaxation bottleneck? Prediction of very slow relaxation from excited states to ground state (Benisty et al., PRB 1991) If E h ω opt ph cannot relax from excited to ground state no PL Experiment: Picosecond relaxation times! 1 0 E E Explanation: Auger effect P av =110 mw, 3.1x10 1 cm - el-hole pairs per pulse 4000 0000 resolution: 3.5 ps 5 K Intensity (a.u.) 16000 1000 8000 4000 1.064 ev 1.158 ev 1.47 ev laser 0 0 40 60 80 100 Time (ps) Morris et al, APL 1999

Radiative properties of optimized s Intensity (arb. un.) 5 0 15 10 5 10 W/cm 0 1100 100 1300 1400 Wavelength (nm) 5K 100K 150K 00K 50K 300K Decay time (ps) 1100 1000 900 800 700 600 500 400 400 300 00 100 100K 0 0 1000 000 Time [ps] 300 0 50 100 150 00 50 300 Temperature (K) Markus et al., APL 80, 911 (00) Material properties: High radiative efficiency 0% at RT Long carrier lifetime 1 ns 1300 nm emission at RT Density 10 9-10 10 cm -

excitons: Homogeneous linewidth Single- photoluminescence: (Bayer et al., PRB 00) Γ= = +Γ T τ life Radiative dephasing phon T ( ) Phonon scattering T< K: lifetime-limited K<T<60 K: acoustic phonons T>60 K: optical phonons

Outline Quantum-confined active regions Self-assembled quantum dots: growth and physical properties Laser applications

s: Laser applications Potential advantages: Narrow gain spectrum? No, inhomogeneous broadening Wavelength tuning: Reaching 1.3-1.55 µm on GaAs substrate InAs Local In content can be high with low average strain Low density of states Low transparency current

s vs QWs: Gain Maximum gain per pass in a D system: g max = πe x cv ω e 0 nc ρ( E) ρ( E): density of states per unit energy per unit area QWs: QWs: GaAs InGaAs GaAs E k t InAs s s: GaAs GaAs ρ QW ( E)= m* π ρ ( E) g S E inh g S : E inh : areal dot density inhomogeneous broadening

Max gain g g QW ρ ρ QW π m * g S E inh 0.1 ( 10 g = 3x10 cm, E = mev ) S inh 0 g QW (1 pass) 1% (1 quantum well) g (1 pass) 0.1% (1 layer, 3x10 10 cm - ) (measured: g =0.03% with 3x10 10 cm -, E=35 mev (Birkedal et al, 000)) s have lower gain than QWs! (at 1300 nm) Laser applications: Minimize losses Stack many layers

stacking for max gain 10 nm spacing: s aligned 5 nm spacing: s not aligned 50nm 50nm Intensity (a.u.) 5 4 3 1 100 K 1 3 s d=5 nm 3 s d=10 nm Strain interaction between dot layers produces vertical alignment and PL broadening 0 1100 100 1300 Wavelength (nm)

lasers EPFL lasers: Laser performance: J th <100 A/cm η ext =30-40% CW up to 80 C Intensity (a.u.) As-cleaved, RT: 7 10-4 6 10-4 5 10-4 4 10-4 3 10-4 10-4 1 10-4 mm, 3 layers, RT 147 A/cm 136 A/cm 0 10 0 1100 1150 100 150 1300 1350 1400 Wavelength (nm) Power (mw) 600 µm, HR coated 95%: J (A/cm ) 0 35 400 800 100 1600 30 pulsed 5 0 15 10 5 0C 30C 40C 50C 60C 70C 80C 0 0 0. 0.4 0.6 0.8 1 Current (A) HR coatings and measurements: O. Gauthier-Lafaye, Opto+

Record threshold current density Single facet power (mw) 8.4 µm x 4 mm layers Current (ma) Huang et al., Electron. Lett. 000 J Voltage (V) Room-temperature: J th =33 A/cm J tr = 9 A/cm The lowest J tr of any semiconductor laser? Theoretical estimate for J tr : (N =, g S =3x10 10 cm -, τ=800 ps) J tr = N eg τ S = 1 A/cm

Gain problem in lasers Ground state lasing only for low loss (L>1.5 mm): Intensity (a.u.) 7 10-4 6 10-4 5 10-4 4 10-4 3 10-4 10-4 1 10-4 3 layers mm 600 µ m 0 10 0 1100 100 1300 Wavelength (nm) 1 0 N High T Higher optical loss Wavelength switch 0-10 -0 g th 1 1 = α + ln L R L= 600µm, HR/HR coated, P= 3 mw. Device width= 3µm 5 C 45 C 65 C Wavelength (nm) 1350 1300 150 100 1150 Ground state Excited state 1100 0 4 Device length (mm) Powe r (dbm) -30-40 -50-60 -70 1150 100 150 1300 1350 Wa ve le ng th (nm)

Max modal gain in lasers g mod 3 cm -1 per layer Klopf et al., PTL 001 N g = α + 1 1 ln L R L min = ln N ( 1/ R) g α 600 µm Need a factor of two in gain for applications

Effect of inhomogeneous broadening Intensity (arb. un.) 0.01 0.001 0.0001 10-5 10-6 10-7 10-8 400 ma 00 ma 100 ma 40 ma increasing current 3 layers, mm, pulsed 93 K - hν - - hν3 - hν1 hν hν3 hν1 10-9 1150 150 1350 Wavelength (nm) Inhomogeneous broadening + absence of thermal equilibrium No population clamping at threshold Broad laser line = many independent lasers!

Dual-wavelength lasing Markus et al., APL 003 Violates population clamping theory??? light population bias

Interpretation of dual-λ lasing "Slow" intraband relaxation (Benisty et al., PRB 1991) τ 0 τ 0 10 ps in our s (PL rise time) Photoluminescence: Laser: τ 0 τ spont 1 1 >> τ0 τ spont no relax. bottleneck τ 0 τ stim 1 fgs 1 τ τ 0 stim ES population Behaviour predicted by Grundmann et al., APL 000

Modeling -λ lasing Rate equation model: WL ES GS τ 0 f WL f ES f GS Model τ 0 8 ps Photon number 0.35 0.3 mm total 0.5 0. GS 0.15 0.1 0.05 ES 0 0 8 16 4 3 40 Carrier injection rate (e/τ ) r Population mm 1.5 ES 1 GS 0.5 ES threshold GS threshold 0 0 8 16 4 3 40 Carrier injection rate (e/τ ) r Exper. Integr. int. (arb. un.) 0.14 0.1 mm total 0.1 93 K 0.08 0.06 GS 0.04 0.0 ES 0 0 00 400 600 800 1000 Current (ma)

3D carrier confinement in s Carrier diffusion limits device scaling: QW s Al O 3 Au GaAs AlGaAs s 300 nm current aperture oxid. edge oxid. edge Fiore et al., Appl. Phys. Lett. (00)

Ultrasmall LEDs: Scaling InGaAs quantum well: Current density (A/cm ) 10 4 10 10 0 10-10 -4 10-6 10-8 Area = aperture area QWs 93 K 9.0 µm.0 µm 940 nm 70 nm 530 nm 0 0. 0.4 0.6 0.8 1 1. 1.4 Voltage (V) L diff Current density (A/cm ) 10 4 10 10 0 10-10 -4 10-6 10-8 Quantum dots: Area = aperture area s 93 K 30 µm 9.1 µm 1.8 µm 1.0 µm 830 nm 600 nm 0 0. 0.4 0.6 0.8 1 1. Voltage (V) Current density (A/cm ) Area = aperture area + diffusion 10 10 0 10-10 -4 10-6 10-8 QWs, L diff =.7 µ m 93 K 9.0 µm.0 µm 940 nm 70 nm 530 nm 0 0. 0.4 0.6 0.8 1 1. 1.4 Voltage (V) Diffusion length:.7 µm in QWs < 100 nm in s! s for nanoscale devices

Real applications for lasers Disadvantage: Low gain Difficult to get VCSELs Advantages: Low threshold currents Low linewidth enhancement factor? Low chirp, insensitivity to optical feedback Broad gain spectrum & high saturation power SOAs, tunable lasers, superluminescent LEDs

Laser chirp Direct laser modulation: 01011... 01011... Problem: Spectral broadening Laser "chirp": laser mode gain λ nl m cav λ m = α dn / dn ν = Γvg g 1 N with : α 4π dn /dn λ λ = n n I N g n I= I() t n= n() t λ =λ() t i Kramers- Kronig linewidth-enhancement factor

Linewidth enhancement factor in lasers Ideally: 4π dneff / dn α = = λ dg / dn 0 Gain Refractive index Energy At low bias: GS population only low α PTL 1999

A more complete picture... Gain (arb. un.) 1.5 1 0.5 0-0.5 G=0 G=10 G=5 G= -1-1.5-0.9 0.95 1 1.05 1.1 1.15 Energy (ev) 1 10 Linewidth enhancement factor in lasers Model α -factor Experiment: 1 10 5 C 8 6 4 0 0 10 0 30 40 50 Current (ma) Markus et al., JSTQE 003 α -factor 8 6 4 0 0 5 10 15 G (el./dot/τ ) rad Need to operate well below GS saturation to have low α

Key features for SOA applications Inhomogeneous broadening from size dispersion: Broad gain spectrum Large reservoir of carriers for replenishing the s: WL ES ES1 GS Large saturation power Polarisation sensitivity? Preliminary evidence of polarisation control by shape engineering (Jayavel, APL 004)

Semiconductor Optical Amplifiers Fujitsu, presented at OFC 004: Large gain bandwidth: Large saturation power:

lasers: Real applications coming up? s do not compete with QWs for high-gain devices (e.g. VCSELs) Threshold current lower in s, but no so useful Practical advantages over QWs for: Broad gain devices (amplifiers, tunable lasers) Long-wavelength on GaAs (1.3 µm OK - 1.55 µm?) Temperature-insensitive operation?