Supporting Information

Similar documents
Supporting Information For:

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol.

Supporting Information

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

SUPPORTING INFORMATION

Supporting Information

SUPPORTING INFORMATION

hydroxyanthraquinones related to proisocrinins

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

Phil S. Baran*, Jeremy M. Richter and David W. Lin SUPPORTING INFORMATION

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Supporting Information

Department of Chemistry, Colorado State University, Fort Collins, Colorado University of Colorado Cancer Center, Aurora, Colorado 80045

Efficient Pd-Catalyzed Amination of Heteroaryl Halides

Supporting Information

Supporting Information

Supporting Information

Bulletin of the Chemical Society of Japan

Supporting Information

SYNTHESIS OF A 3-THIOMANNOSIDE

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information

Organocatalytic Enantioselective (3+2) Cycloaddition using Stable Azomethine Ylides

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J.

Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801.

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and

Supporting Information

Supporting Information for

Metal-free general procedure for oxidation of secondary amines to nitrones

Supporting Information:

Supplementary Information. Novel Stereocontrolled Amidoglycosylation of Alcohols with Acetylated Glycals and Sulfamate Ester

Supporting Information

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

SUPPLEMENTARY INFORMATION

Simplified platensimycin analogues as antibacterial agents

Synthesis of densely functionalized enantiopure indolizidines by ring-closing metathesis. (RCM) of hydroxylamines from carbohydrate-derived nitrones

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Efficient Syntheses of the Keto-carotenoids Canthaxanthin, Astaxanthin, and Astacene

Enantioselective Synthesis of Fused Heterocycles with Contiguous Stereogenic Centers by Chiral Phosphoric Acid-Catalyzed Symmetry Breaking

Supporting Information

Supporting information. Enantioselective synthesis of 2-methyl indoline by palladium catalysed asymmetric C(sp 3 )-H activation/cyclisation.

Supporting Information

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is The Royal Society of Chemistry 2012

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials

Supporting Information

Supporting Information

Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2MgCl 2 2LiCl ** Stefan H. Wunderlich and Paul Knochel*

Experimental details

A Sumanene-based Aryne, Sumanyne

Parallel sheet structure in cyclopropane γ-peptides stabilized by C-H O hydrogen bonds

Preparation and ring-opening reactions of N- diphenylphosphinyl vinyl aziridines

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes

Iridium-catalyzed regioselective decarboxylative allylation of. β-ketoacids: efficient construction of γ, δ-unsaturated ketones

Maksim A. Kolosov*, Olesia G. Kulyk, Elena G. Shvets, Valeriy D. Orlov

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

A Highly Chemoselective and Enantioselective Aza-Henry Reaction of Cyclic -Carbonyl Ketimines under Bifunctional Catalysis

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Supplementry Information for

Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones

Supporting Information

How to build and race a fast nanocar Synthesis Information

Supporting Information

Electronic Supplementary Information. An Ultrafast Surface-Bound Photo-active Molecular. Motor

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

Structural Elucidation of Sumanene and Generation of its Benzylic Anions

Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine

Total Synthesis of (±)-Vibsanin E. Brett D. Schwartz, Justin R. Denton, Huw M. L. Davies and Craig. M. Williams. Supporting Information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Supplementary Information (Manuscript C005066K)

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy

Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition

Zn-Catalyzed Diastereo- and Enantioselective Cascade. Reaction of 3-Isothiocyanato Oxindoles and 3-Nitroindoles:

Eur. J. Org. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN X SUPPORTING INFORMATION

Supporting Information

Supplementary Material

Supplementary Material for: Unexpected Decarbonylation during an Acid- Mediated Cyclization to Access the Carbocyclic Core of Zoanthenol.

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK

Table of Contents 1. General procedure for the chiral phosphoric acid catalyzed asymmetric reductive amination using benzothiazoline

Supporting Information

Electronic Supplementary Information (12 pages)

Supporting information. A Brønsted Acid-Catalyzed Generation of Palladium Complexes: Efficient Head-to-Tail Dimerization of Alkynes.

Supporting Information

Supporting Information

Asymmetric Michael Addition Reactions of Nitroalkanes to 2-Furanones Catalyzed by Bifunctional Thiourea catalysts

Enantioselective Organocatalytic Michael Addition of Malonate Esters to Nitro Olefins Using Bifunctional Cinchonine Derivatives

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Regioselective Silylation of Pyranosides Using a Boronic Acid / Lewis Base Co-Catalyst System

Dual role of Allylsamarium Bromide as Grignard Reagent and a. Single Electron Transfer Reagent in the One-Pot Synthesis of.

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane

Supporting Information

An improved preparation of isatins from indoles

Supporting Information

A Highly Efficient Synthesis of Telaprevir by Strategic Use of Biocatalysis and Multicomponent Reactions

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Transcription:

Supporting Information Wiley-VC 2005 69451 Weinheim, Germany

First [2+1] Cycloaddition of Terminal Alkynes to Norbornene Derivatives Catalyzed by New Palladium-Phosphinous Acid Complexes Julie Bigeault, Laurent Giordano and Gérard Buono* Materials and methods All solvents were purified by standard procedures. TF and Et 2 were predried over type 4- A molecular sieves and distilled prior to use from sodium/benzophenone under nitrogen. Toluene was distilled from sodium and stored over type 4-A molecular sieves under nitrogen. C 2 Cl 2, C 3 CN and DMF were distilled from Ca 2 under nitrogen prior to use. Ligth petroleum ether refers to the fraction with bp 40-60 C. Thin layer chromatography was carried out on Merck silica gel 60 F 254 and visualised under ultraviolet light (254 and 366 nm), or through spraying with 5% phosphomolybdic acid in Et, or by placing in iodine vapour. Flash chromatography was performed with Merck silica gel 60 (230-400 mesh). Physical and Analytical Measurements Melting points (uncorrected) were determined in a capillary tube with a Metler LP61 apparatus. IR spectra were recorded on a IRTF Perking-Elmer 1700X spectrophotometer. [α] 20 D values were determined with a Perking-Elmer Polarimeter 341. 1 NMR and 13 C NMR spectra were recorded on Bruker Avance spectrometers at 200, 300, 400, and 500 Mz for 1, 50 Mz for 13 C and 81 Mz for 31 P, with CDCl 3 unless otherwise stated. As external reference for 31 P NMR spectra, 85% phosphoric acid was used. Chemical shifts (δ) are reported in ppm relative to CCl 3 (δ = 7.26 for 1 and δ = 77.0 for 13 C). J values are given in z. The solvents for chiral chromatography (n-hexane, 2-Pr, Et) are PLC grade from SDS (Peypin, France). They are degassed and filtered on Millipore membrane 0.45µm before use. Cellulose tris(paramethylbenzoate) chiral stationary phases, CIRALCEL J- (250*4.6mm), Amylose tris[(s)alpha-phenethyl]carbamate CIRALPAK AS (250*10mm) 1

DAICEL and CIRALPAK AS (250*4.6mm) columns are available from Merck-Eurolab. The chiral PLC analyses were performed on a screening unit composed of Merck D-7000 system manager, Merck-Lachrom L-7100 pump, Merck-Lachrom L-7360 oven, Merck- Lachrom L-7400 UV detector and Jasco R-1590 polarimeter. The semi-preparative PLC separations were performed with Merck-itachi LiChrograph L-6000 pump, Merck-itachi L-4000 UV detector and Merck D-7000 system manager. Mass spectra were recorded on API III plus triple quadrupole mass spectrometer (Sciex, Toronto, Canada) equipped with a pneumatically assisted electrospray source. Elemental analyses were performed by the Elemental Microanalysis Service of the Faculté de Saint Jérôme. Preparation of Secondary Phosphane xides (±)-tert-butyl(phenyl)phosphane xide L1 L1 P The ligand L1 was synthesized following literature procedure. 1 Pure enantiomers were obtained by preparative PLC according to a literature procedure. 2 (±)-Cyclohexyl(phenyl)phosphane xide L2 L2 P Preparation of dichlorocyclohexylphosphine: a solution of cyclohexylchloride (7.11 g, 7.11 ml, 60 mmol) in dry TF (40 ml) was added to Mg turnings (1.75 g, 72 mmol) and dibromoethane (1%) in dry TF (5 ml). After the addition, stirring was continued for 3h under reflux. The resulting solution was then cooled in an ice bath, and was transferred by syringe to the dropping funnel. Cyclohexylmagnesium chloride solution was added slowly to 2

a stirred and cooled (-78 C) solution of PCl 3 (9.89 g, 6.27 ml, 72 mmol) in dry TF (55 ml) and the solution was allowed to come back to room temperature. After 12h, the TF was removed under reduced pressure to give a salt that was suspended in dry Et 2 (50 ml) and filtered under vacuum. Purification by distillation under vacuum (b.p. 50.5-51.5 C/0.4 mmg) afforded 5.70 g (51 %) of dichlorocyclohexylphosphine as a colorless oil. 31 P { 1 } NMR (81 Mz, CDCl 3, 1 decoupled): δ 196.29 (s). 1 NMR (200 Mz, CDCl 3 ): δ 1.19-1.46 (m, 5), 1.73-2.08 (m, 6). Preparation of Cyclohexyl(phenyl)phosphane oxide : The phenyl magnesium bromide was prepared in a similar manner as for cyclohexylmagnesium chloride (see above) but starting from bromobenzene (1.33 g, 0.892 ml, 8.5 mmol) and Mg (0.26 g, 10.5 mmol). The resulting grey solution was added dropwise to a stirred and cooled solution (-40 C) of dichlorocyclohexylphosphine (1.50 g, 1.24 ml 8.1 mmol) in dry TF (30 ml). After 3h at room temperature, the mixture was cooled in an ice bath, water (1 ml), ether (40 ml) and Si 2 (400 mg) were added. After 12h, the solution was filtered over celite and then treated with Cl (0.05 M, 10 ml). The organic phase was separated off, and the aqueous phase was extracted twice with Et 2 (30 ml). After drying (Na 2 S 4 ), and solvents removal, rapid chromatography (Et 2 /Light Petroleum 1/1) on deactivated (10% 2 0) silica gel of the crude afforded 0.80 g (3.9 mmol, 47%) of cyclohexyl(phenyl)phosphane oxide L2 as a colorless oil. L2 is higtly hygroscopic and elemental analysis is consistent with C 12 17 P.1/2 2 (see below). Colorless oil. 31 P { 1 } NMR (81 Mz, CDCl 3 ): δ 37.76 (s). 31 P NMR (81 Mz, CDCl 3, 1 - coupled): δ 37.76 (d, 1 J P- = 453.8 z). 1 NMR (200 Mz, CDCl 3 ): δ 1.08-1.48 (m, 5), 1.61-2.01 (m, 6), 7.19 (dd, J P- = 456.4, 2.6 z, 1), 7.45-7.74 (m, 5). 13 C NMR (CDCl 3, 50 Mz): δ 24.4 (d, J P-C = 2.6 z), 25.1 (d, J P-C = 1.6 z), 25.6 (d, J P-C = 1.9 z), 25.7 (d, J P-C = 1.9 z), 25.9 (d, J P-C = 2.4 z), 38.4 (d, 1 J P-C = 69.8 z), 128.6 (d, J P-C = 11.8 z), 130.1(d, J P-C = 10.8 z), 130.5 (d, 1 J P-C = 92.8 z), 132.2 (d, J P-C = 2.7 z). IR ν max (thin film, NaCl 3

plate): 3436, 3081, 1654, 1438, 756, 696 cm -1. TLC : Rf = 0.22 (Et 2 ). Anal. Calcd. for C 12 17 P: C, 69.21;, 8.23. Found: C, 65.83;, 8.39. Enantiomerically pure ligands were obtained by semi-preparative chiral PLC on CIRALPAK AS (250*10mm) : mobile phase ethanol, flow-rate = 4.5mL/min, UV detection 20 254 nm, Rt (-) = 5.44min, [α] D = -13.8 (c=0.5 in CCl 3 ), Rt (+) = 6.90 min, [α] 20 D = +13.6 (c=0.5 in CCl 3 ), k (-) = 0.81, k (+) = 1.29, α = 1.60 and Resolution = 2.00. The NMR spectrum of the two separated enantiomers was identical to that of the racemic compound. Diphenylphosphane xide L3 L3 P Ligand L3 was prepared according to a literature procedure. 3 Dihydrogen Di-m-acetatotetrakis[(S)-(-)-tert-butylphenylphosphinito-k-P]dipalladate(2-) 1 1 Ph t-bu t-bu Ph P Pd P Ph t-bu P Pd P t-bu Ph A solution of Pd(Ac) 2 (31 mg, 0.138 mmol) and (S)-(-)-tert-Butyl(phenyl)phosphane oxide L1 (20 mg, 0.276 mmol) was stirred at 50 C in toluene (3 ml). After 2 h, the solvent was removed under vacuo followed by addition of dry Et 2 (10 ml) to the crude reaction mixture. Rapid filtration through a silica gel pad and solvent evaporation afforded 73 mg (94%) of Pd complex 1 as a yellow powder. The acetato-bridged structure was supported by the ESIM spectrum of the Palladium complex 1 (ESIM m/z (M + ) + = 1059, see below). The 1 NMR spectrum of complex shows two singlets at δ 2.12 and 2.35 ppm (signals of acetate groups), 4

indicating the presence of dimer (dim) and monomer (mon) forms in solution. The ratio between the two forms depends of the sample concentration. This 1 NMR spectrum was recorded at C = 0.006 M. 31 P { 1 } NMR (81 Mz, CDCl 3 ): δ 96.78 (s). 1 NMR (300 Mz, CDCl 3 ): δ 1.05 (d, J = 16.8 z, 45, dim + mon), 2.12 (s, 6, dim), 2.35 (s, 1.6, mon), 7.17 (m, 2.3, mon), 7.40-7.54 (m, 15, dim + mon), 7.91 (t, J = 8.8 z, 8, dim), the proton signal was observed at 15.22. [α] 20 D = +163.6 (c = 0.5 in CCl 3 ). ESIMS (low resolution) m/z: Calcd. for C 44 64 8 P 4 Pd 2 (M+) + : 1059. Found: 1059 (M + ) +, 989 (M - Ac) +. Anal. Calcd. for C 44 64 8 P 4 Pd 2 : C, 49.97;, 6.10. Found: C, 49.84;, 6.03. When the complex 1 is prepared from racemic L1, 31 P NMR spectrum shows two singlets at δ = 96.92 (d,l) and δ = 98.18 (meso), indicating the presence of two diastereomers in 2/1 ratio. Dihydrogen Di-m-chlorotetrakis[(R)-(+)-tert-butylphenylphosphinito-k-P]dipalladate(2-) 5 4 5 Ph t-bu t-bu Ph P Cl P Pd Pd P Cl P Ph t-bu t-bu Ph Preparation of the complexe [(R)-(+)-tert-butylphenylphosphinous acid]palladium (II) A solution of PdCl 2 (C 3 CN) 2 (65 mg, 0.25 mmol) and (R)-(+)-tert-Butyl(phenyl)phosphane oxide (91 mg, 0.5 mmol) was stirred for 1 h at room temperature in C 2 Cl 2 (7 ml). The solvent was concentrated under vacuum and the crude product was dissolved in Et 2 /Light Petroleum (1/3). Filtration of solid residues over celite, and evaporation of solvents gave 120 mg (89%) of [PdCl 2 {PPh(tert-Butyl)()} 2 ] as a light-yellow solid. The 31 PNMR septrum of [PdCl 2 {PPh(tert-Butyl)()} 2 ] shows two singlets at δ = 96.91 and δ = 99.77 for cis and trans isomers. 5

Preparation of Dihydrogen Di-µ-chlorotetrakis[(R)-(+)-tert-butyl(phenyl)phosphinito-κ- P]dipalladate(2-) To a solution of dichloro [(R)-(+)-tert-butylphenylphosphinous acid] 2 palladium (II) (112 mg, 0.21 mmol) dissolved in C 2 Cl 2 (2 ml), dry Et 3 N (104 mg, 145µL, 1.03 mmol) was added slowly under open-to-air conditions. The resulting solution was stirred at room temperature for 4 h, then, the solvent was removed under vacuum followed by addition of dry Et 2 (10 ml) to the crude reaction mixture. Rapid filtration through a silica gel pad and solvent evaporation afforded 96 mg (91%) of Pd complex 5 as a yellow powder. 31 P { 1 } NMR (81Mz, CDCl 3 ): δ 96.88 (s). 1 NMR (200Mz, CDCl 3 ): δ 1.13 (d, J = 16.6 20 z, 36), 7.37-7.51 (m, 12), 7.91 (t, J = 8.3 z, 8), 15.75 (m, 2); [α] D = +5.5 (c = 0.5 in CCl 3 ). ESIMS (low resolution) m/z: Calcd. for C 40 58 4 Cl 2 P 4 Pd 2 (M+) + : 1011. Found: 1011 (M + ) +, 965 (M - Cl) +. Anal. Calcd. for C 40 58 4 Cl 2 P 4 Pd 2 : C, 47.55;, 5.79. Found: C, 48.23;, 5.80. For a single crystal X-ray analysis, the complex 5 was recristallized from hexane/c 2 Cl 2 giving the product as yellow crystals. General procedure for palladium catalyzed alkylidenecyclopropanation In a 10 ml flame-dried schlenk Pd(ΟΑc) 2 (11.2 mg, 0.05 mmol, 5 mol%) and the ligand (0.1 mmol, 10 mol%) were dissolved under argon in dry and degassed toluene (2 ml), then, the resulting yellow solution was stirred at room temperature. After 30 min, were added successively a solution of alkene (2 mmol) and alkyne 3 (1 mmol) respectively in 1 and 2 ml of dry and degassed toluene.* The resulting mixture was stirred at 20-50 C for 20-72 h, then, the solvent was concentrated in vacuum to afford a yellow or dark crude. Purification by flash chromatography, affords 9-94% of alkylidenecyclopropanes 4. For alkynes 3i and 3m, reactions were carried out in TF. 6

Exo-3-benzylidenetricyclo[3.2.1.0 2,4 ]oct-6-ene 4a 4a Chemical yield : 80%. Colorless oil. 1 NMR (200 Mz, CDCl 3 ): δ 0.97 (d, J = 8.4 z, 1), 1.14 (d, J = 8.4 z, 1), 1.63 (d, J = 8.0 z, 1), 1.87 (dd, J = 7.9, 1.1 z, 1), 3.11 (d, J = 1.5 z, 1), 3.23 (d, J = 1.5 z, 1), 6.43 (m, 2), 6.56 (s, 1), 7.16-7.37 (m, 3), 7.48-7.53 (m, 2). 13 C NMR (50 Mz, CDCl 3 ): δ 25.0 (d), 28.5 (d), 42.5 (t), 44.5 (d), 45.1 (d), 117.2 (d), 126.5 (d), 126.6 (d), 128.4 (d), 137.8 (s), 139.2 (d), 139.7(d), 141.1 (s). IR ν max (thin film, NaCl plate): 3115, 3062, 2976, 1597, 1554 cm -1. ESIMS (low resolution) m/z: Calcd. for C 15 14 (M+) + : 195. Found: 195 (M + ) +, 212 (M + N 4 ) +, 233 (M + K) +. TLC: Rf = 0.54 (Light Petroleum). Anal. Calcd. for C 15 14 : C, 92.74;, 7.26. Found: C, 92.81;, 7.18. Enantiomeric excesses were determined by PLC analysis on a Daicel Chiralcel J- column at λ = 254 nm ; flow rate 1 ml/min ; eluent : hexane/i-pr 99/1, t 1 = 6.4 min, t 2 =7.1 min. Exo-3-mono-deuterobenzylidenetricyclo[3.2.1.0 2,4 ]oct-6-ene 4a-D Starting from mono-deuterophenylacetylene 3a-D, under similar conditions, the reaction led to compound 4a-D in 88 % yield with a 80% incorporation of deuterium on the external double bond (see NMR Spectra p.18). The proportion of 4a- : 4a-D was determinated by 1 NMR comparing the signal integrations of Csp 2 - at δ = 6.55 ppm (external double bond) and δ = 6.43 ppm (internal double bond). Colorless oil. 1 NMR (200 Mz, CDCl 3 ): δ 0.96 (d, J = 8.6 z, 1), 1.13 (d, J = 8.5 z, 1), 1.63 (d, J = 7.9z, 1), 1.87 (dd, J = 7.9z, 1), 3.11 (d, J = 1.5 z, 1), 3.22 (d, J = 1.5 z, 1), 6.43 (m, 2), 6.55 (s, 0.2, 4a-), 7.17-7.34 (m, 3), 7.50-7.53 (m, 2). 13 C NMR (50 Mz, CDCl 3 ): δ 25.0 (d), 28.4 (d), 42.5 (t), 44.5 (d), 45.1 (d), 116.9 (t, 4a-D), 117.2 7

(d), 126.5 (d), 126.6 (d), 128.4 (d), 137.7 (s, 4a-D), 137.8 (s, 4a-), 139.2 (d), 139.7(d), 141.0 (s, 4a-D), 141.1 (s, 4a-). Exo-3-pentylidenetricyclo[3.2.1.0 2,4 ]oct-6-ene 4b 4b Chemical yield : 9%. Colorless oil. 1 NMR (200 Mz, CDCl 3 ): δ 0.90 (t, J = 7.0 z, 3 +1), 1.11 (d, J = 8.3 z, 1), 1.17-1.56 (m, 6), 2.13 (q, J = 6.7 z, 2), 2.94 (br s, 2), 5.58 (br t, J = 6.7 z, 1), 6.33 (m, 2). 13 C NMR (50 Mz, CDCl 3,): δ 13.9 (q), 22.3 (t), 26.2 (d), 26.3 (d), 31.1 (t), 31.5 (t), 41.9 (t), 43.8 (d), 44.1 (d), 117.6 (d), 138.1 (s), 139.2 (d). IR ν max (thin film, NaCl plate): 3056, 2959, 1600 cm -1. TLC : Rf = 0.90 (Light Petroleum). Exo-3-[2-(benzyloxy)ethylidene]tricyclo[3.2.1.0 2,4 ]oct-6-ene 4d 4d Chemical yield : 70%. Colorless oil. 1 NMR (200 Mz, CDCl 3,): δ 0.94 (d, J = 8.5 z, 1), 1.11 (d, J = 8.5 z, 1), 1.57 (br s, 2), 3.01 (m, 2), 4.11 (br s, 1), 4.14 (br s, 1), 4.47 (d, J A-B = 12.2 z, 1), 4.53 (d, J A-B = 12.2 z, 1), 5.80 (tt, J = 6.7, 1.1 z, 1), 6.36 (m, 2), 7.26-7.39 (m, 5). 13 C NMR (CDCl 3, 50 Mz): δ 26.4 (d), 26.9 (d), 42.2 (t), 44.1 (d), 44.2 (d), 69.9(t), 71.7(t), 114.0 (d), 127.5 (d), 127.7 (d), 128.3 (d), 138.5 (s), 139.2 (d), 139.3(d), 143.4 (s). IR ν max (thin film, NaCl plate): 3116, 3057, 2974, 1950, 1866, 1808, 1602, 1551 cm -1. TLC : Rf = 0.47 (Light Petroleum/AcEt 5/95). Anal. Calcd. for C 17 18 : C, 85.67;, 7.61. Found: C, 85.48;, 7.56. 8

Exo-2-tricyclo[3.2.1.0 2,4 ]oct-6-en-3-ylideneethyl acetate 4e 4e Chemical yield : 73%. Colorless oil. 1 NMR (200 Mz, CDCl 3,): δ 0.92 (d, J = 8.5 z, 1), 1.05 (d, J = 8.5 z, 1), 1.58 (br s, 2), 2.07 (s, 3), 3.02 (m, 2), 4.61 (dd, J = 14.7, 6.6 z, 1), 4.68 (dd, J = 14.7, 6.4 z, 1), 5.77 (tt, J = 6.6, 1.2 z, 1), 6.36 (m, 2). 13 C NMR (CDCl 3, 50 Mz): δ 20.8 (q), 26.4 (d), 26.7 (d), 42.0 (t), 44.1 (d), 44.2 (d), 64.1 (t), 111.3 (d), 139.2 (d), 139.3(d), 144.4 (s), 170.6 (s). IR ν max (thin film, NaCl plate) 3121, 3056, 2976, 1736, 1554 cm -1. TLC: Rf = 0.32 (Light Petroleum/AcEt 5/95). Anal. Calcd. for C 12 14 2 : C, 75.76;, 7.42. Found: C, 75.65;, 7.36. Exo-2-tricyclo[3.2.1.0 2,4 ]oct-6-en-3-ylideneethanol 4f 4f Chemical yield : 57%. Colorless oil. 1 NMR (200 Mz, CDCl 3 ): δ 0.93 (d, J = 8.6 z, 1), 1.08 (d, J = 8.6 z, 1), 1.45 (m, 1, ), 1.54 (d, J = 8.7 z, 1), 1.60 (d, J = 8.7 z, 1), 3.02 (m, 2), 4.19 (d, J = 13.3 z, 1), 4.28 (dd, J = 13.3 z, 1), 5.83 (tt, J = 6.0, 1.2 z, 1), 6.36 (m, 2). 13 C NMR (50 Mz, CDCl 3,): δ 26.0 (d), 26.2 (d), 42.0 (t), 44.1 (d), 44.2 (d), 62.7 (t), 116.3 (d), 139.2 (d), 140.9 (s). IR ν max (thin film, NaCl plate): 3335, 3116, 3055, 2976, 1638, 1596 cm -1. TLC: Rf = 0.33 (Light Petroleum/AcEt 4/1). Anal. Calcd. for C 10 12 : C, 81.04;, 8.16. Found: C, 80.78;, 8.03. 9

2-Methyl-1-tricyclo[3.2.1.0 2,4 ]oct-6-en-3-ylidene-propan-2-ol 4g 4g The highly sensitive 3g was obtained after rapid chromatography on deactivated (15% Et 3 N) silica gel. Chemical yield : 75%. Pale yellow oil. 1 NMR (300 Mz, CDCl 3,): δ 0.92 (d, J = 8.5 z, 1), 1.07 (d, J = 8.5 z, 1), 1.38 (s, 6), 1.45 (d, J = 7.0 z, 1), 1.62 (d, J = 7.0 z, 1), 1.82 (br s, 1), 3.00 (m, 2), 5.80 (s, 1), 6.36 (m, 2). 13 C NMR (50 Mz, CDCl 3,): δ 24 (q), 27.2 (q), 29.6 (d), 29.7 (d), 41.7 (t), 44.0 (d), 44.2 (d), 71.6 (s), 125.0 (d), 135.7 (s), 138.8 (d), 139.4 (d). IR ν max (thin film, NaCl plate): 3360, 3060, 2972, 1551, 1143 cm -1. TLC: Rf = 0.48 (Light Petroleum/ Et 2 1/1). Exo-dimethyl (2-tricyclo[3.2.1.0 2,4 ]oct-6-en-3-ylideneethyl) malonate 4h 4h Chemical yield : 52%. Colorless oil. 1 NMR (200 Mz, CDCl 3,): δ 0.88 (d, J = 8.3 z, 1), 0.99 (d, J = 8.3 z, 1), 1.50 (br s, 2), 2.74 (dd, J = 7.3, 6.6 z, 1), 2.95 (m, 1), 2.97 (m, 1), 3.57 (t, J = 7.6 z, 1), 3.72 (s, 6) 5.57 (tt, J = 6.6, 1.1 z, 1), 6.34 (m, 2). 13 C NMR (50 Mz, CDCl 3 ): δ 26.4 (d), 26.6 (d), 30.6 (t), 41.8 (t), 43.8 (d), 44.1 (d), 51.2 (d), 52.3 (q), 112.6 (d), 139.1 (d), 139.2 (d), 141.2 (s), 169.3 (s), 169.4 (s). IR ν max (thin film, NaCl plate): 3116, 3052, 2974, 1738, 1551 cm -1. TLC : Rf = 0.44 (Light Petroleum/AcEt 4/1). Anal. Calcd. for C 15 18 4 : C, 68.68;, 6.92. Found: C, 68.51;, 6.86. 10

Exo-3-[2-(phenylsulfonyl)ethylidene]tricyclo[3.2.1.0 2,4 ]oct-6-ene 4i 4i S 2 Ph Chemical yield : 66%. White solid m.p.: 86-87 C. 1 NMR (200 Mz, CDCl 3 ): δ 0.56 (d, J = 8.6 z, 1), 0.73 (d, J = 8.6 z, 1), 1.13 (d, J = 8.1 z, 1), 1.53 (d, J = 8.1 z, 1), 2.77 (m, 1), 2.95 (m, 1), 3.88 (dd, J = 13.9, 7.3 z, 1), 3.93 (dd, J = 13.9, 7.6 z, 1), 5.58 (tt, J = 7.4, 1.1 z, 1), 6.28 (m, 2), 7.45-7.66 (m, 3), 7.80-7.90 (m, 2). 13 C NMR (50 Mz, CDCl 3 ): δ 26.4 (d), 28.6 (d), 42.2 (t), 44.4 (d), 59.1 (t), 103.6 (d), 128.2 (d), 128.9 (d), 133.4(d), 138.5 (s), 139.2 (d), 139.4(d), 150.2 (s). IR ν max (thin film, NaCl plate): 3063, 2980, 1584, 1445, 1320, 1143 cm -1. ESIMS (low resolution) m/z: Calcd. for C 16 16 2 S (M+) + : 273. Found: 273 (M + ) +, 290 (M + N 4 ) +, 295 (M + Na) +, 311 (M + K) +. TLC: Rf = 0.41 (Light Petroleum/AcEt 4/1). Anal. Calcd. For C 16 16 2 S: C, 70.56;, 5.92; S, 11.77. Found: C, 70.33;, 5.82; S, 11.99. For a single crystal X-ray analysis, the compound 4i was recristallized from CCl 3 giving the product as white crystals. Exo-4-(2-tricyclo[3.2.1.0 2,4 ]oct-6-en-3-ylideneethyl) morpholine 3j 4j N Chemical yield : 60%. Colorless oil. 1 NMR (200 Mz, CDCl 3,): δ 0.92 (d, J = 8.3 z, 1), 1.06 (d, J = 8.3z, 1), 1.51 (d, J = 7.9 z, 1), 1.55 (d, J = 7.9 z, 1), 2.45 (m, 4), 2.99 (m, 2), 3.06 (dd, J = 12.8, 7.3 z, 1), 3.12 (dd, J = 12.8, 6.8 z, 1), 3.72 (t, J = 4.7 z, 4), 5.77 (br t, J = 7.0 z, 1), 6.36 (m, 2). 13 C NMR (50 Mz, CDCl 3,): δ 26.2 (d), 27.0 (d), 42.0 (t), 43.8 (d), 44.0 (d), 53.3 (t), 59.9 (t), 66.7 (t), 113.1 (d), 139.1 (d), 139.2(d), 142.8 11

(s). IR ν max (thin film, NaCl plate): 3116, 3055, 2964, 1699, 1553 cm -1. TLC: Rf = 0.43 (Et 2 ). Anal. Calcd. for C 14 19 N: C, 77.38;, 8.81. Found: C, 77.02;, 8.70. 3-(2-Methyl-propenylidene)-tricyclo[3.2.1.0 2,4 ]oct-6-ene 7i 7i C Chemical yield : 27%. NMR data are in agreement with ref [5]. 3-Cyclohexylidenemethylene-tricyclo[3.2.1.0 2,4 ]oct-6-ene 7m 7m C Chemical yield : 64%. Colorless oil that solidified on standing m.p.: 36-38 C. 1 NMR (300 Mz, CDCl 3 ): δ 0.98 (d, J = 8.5 z, 1), 1.33 (d, J = 8.5 z, 1), 1.48-1.68 (m, 6), 1.87 (s, 2), 2.18 (d, J = 6.0 z, 2), 2.20 (d, J = 6.0 z, 2), 3.03 (s, 2), 6.33 (t, J = 1.7 z, 2). 13 C NMR (50 Mz, CDCl 3 ): δ 26.1 (t), 27.2 (t), 27.3 (t), 29.4 (d), 32.0 (t), 32.1 (t), 42.2 (t), 43.8 (d), 92.5 (s), 105.2 (s), 138.7 (d), 182.6 (s). IR ν max (thin film, NaCl plate): 2980, 2007, 1551 cm -1.TLC: Rf = 0.58 (Light Petroleum). Anal. Calcd. for C 15 18 : C, 90.85;, 9.15. Found: C, 90.82;, 9.12. Tetracyclo[3.3.0.0 4,6.0 2,8 ]oct-3-ylidene-acetic acid methyl ester 6k 6k Following the general procedure but starting from the propynoic acid methyl ester 3k, only 6k was obtained after chromatography. 12

Chemical yield : 56%. Colorless oil. 1 NMR (200 Mz, CDCl 3 ): δ 1.65 (d, J = 14.5 z, 1), 1.71-1.93 (m, 3), 1.99 (dt, J = 13.1, 4.2 z, 1), 2.25 (dt, J = 5.7, 4.1 z, 1), 2.33 (dt, J = 5.6, 4.1 z, 1), 3.05 (dddm, J = 8.3, 5.4, 3.0 z, 1), 3.68 (m, 1), 5.79 (s, 1). 13 C NMR (50 Mz, CDCl 3 ): δ 26.2 (t), 27.2 (d), 28.4 (d), 29.3 (d), 31.1 (d), 31.4 (d), 33.0 (d), 50.6 (d), 109 (d), 164.8 (s), 167.6 (s). IR ν max (thin film, NaCl plate): 3035, 2987, 2949, 1709, 1640, 1430 cm -1. TLC: Rf = 0.42 (Light Petroleum/Et 2 = 9/1). Exo-3-benzylidenetricyclo[3.2.1.0 2,4 ]octane 13 13 Chemical yield : 94%. Colorless oil. 1 NMR (200 Mz, CDCl 3 ): δ 0.81 (d, J = 9.9 z, 1), 1.02 (d, J = 9.9 z, 1), 1.34 (d, J = 7.3 z, 1), 1.39-1.64 (m, 4), 2.50 (m, 1), 2.62 (m, 1), 6.62 (s, 1), 7.13-7.37 (m, 3), 7.43-7.53 (m, 2). 13 C NMR (50 Mz, CDCl 3 ): δ 19.5 (d), 23.1 (d), 28.6 (t), 28.9 (t), 30.9 (t), 38.0 (d), 38.4 (d), 119.5 (d), 126.4 (d), 126.5 (d), 128.4 (d), 130.7 (s), 138.1 (s). IR ν max (thin film, NaCl plate): 3077, 2955, 1596 cm -1. TLC: Rf = 0.61 (Light Petroleum). Anal. Calcd. for C 15 16 : C, 91.78;, 8.22. Found: C, 91.54;, 8.14. Exo-10-benzylidenetetracyclo[6.3.1.0 2,7.0 9,11 ]dodeca-2,4,6-triene 14 14 Chemical yield : 84%. White solid m.p.: 84-85 C. 1 NMR (200 Mz, CDCl 3 ): δ 0.1.37 (d, J = 9.2 z, 1), 1.52 (d, J = 9.2 z, 1), 1.68 (d, J = 7.6 z, 1), 1.92 (dd, J = 7.6, 1.0 z, 1), 3.54 (br s, 1), 3.67 (br s, 1), 6.72 (s, 1), 7.08 (dd, J = 7.7, 4.8 z, 1), 7.13 (dd, J = 7.7, 4.6 z, 1), 7.20-7.41 (m, 5), 7.50-7.60 (m, 2). 13 C NMR (50 Mz,CDCl 3 ): δ 24.2 13

(d), 27.6 (d), 42.1 (t), 45.3 (d), 45.9 (d), 119.8 (d), 121.2 (d), 121.3 (d), 125.3 (d), 126.5 (d), 126.9 (d), 128.5 (d), 137.2 (s), 137.5 (s), 149.5 (s), 149.8 (s). IR ν max (thin film, NaCl plate): 3068, 2976, 1590 cm -1. TLC: Rf = 0.32 (Light Petroleum). Anal. Calcd. for C 19 16 : C, 93.40;, 6.60. Found: C, 93.12;, 6.59. {7-[(acetyloxy)methyl]-exo-3-benzylidenetricyclo[3.2.1.0 2,4 ]oct-6-en-6-yl}methyl acetate 15 15 Chemical yield : 58%. Light-yellow oil. 1 NMR (200 Mz, CDCl 3 ): δ 1.06 (dm, J = 8.7 z, 1), 1.17 (dm, J = 8.3 z, 1), 1.75 (d, J = 7.7 z, 1), 1.99 (ddm, J = 7.7, 0.5 z, 1), 2.08 (s, 3), 2.09 (s, 3), 3.12 (m, 1), 3.25 (m,1), 4.80 (s, 2), 4.82 (s, 2), 6.58 (s, 1), 7.20 (tt, J = 7.3, 1.3 z, 1), 7.32 (dd, J = 8.5, 7.3 z, 2), 7.47 (dd, J = 8.5, 1.4 z, 2). 13 C NMR (50 Mz, CDCl 3 ): δ 20.7 (q), 20.8 (q), 24.8 (d), 28.2 (d), 40.8 (t), 47.0 (d), 47.6 (d), 59.4 (t), 118.2(d), 126.4 (d), 126.7 (d), 128.4 (d), 137.4 (s), 138.0 (s), 144.6 (s), 145.3 (s), 170.6 (d). IR ν max (thin film, NaCl plate): 3062, 2982, 1736, 1596 cm -1. TLC: Rf = 0.51 (Light Petroleum/AcEt 3/1). (3E)-exo-9-benzylidenetetracyclo[5.3.1.0 2,6.0 8,10 ]undec-3-ene 16 16 Chemical yield : 51%. Mixture of two diastereoisomers; colorless oil that solidified on standing m.p.: 38-39 C. 1 NMR (300 Mz, CDCl 3 ): δ 1.06 (d, J = 9.9 z, 1), 1.19-1.23 (m, 1.5), 1.44 (d, J = 7.2 z, 0.5), 1.50 (d, J = 7.2 z, 0.5), 1.73 (d, J = 6.9 z, 0.5), 2.27-2.53 (m, 2.5), 2.62 (m, 1), 2.66-2.77 (m, 1.5) 3.23 (m, 1), 5.67 (m, 1) 5.74 (m, 14

1), 6.68 (s, 1), 7.19 (dd, J = 7.2, 7.1 z, 1), 7.32 (dd, J = 7.7, 7.6 z, 2), 7.46 (dd, J = 7.5, 1.4 z, 2). 13 C NMR (50 Mz, CDCl 3 ): δ 14.5 (d), 17.3 (d), 18.2 (d), 21.1 (d), 32.5 (t), 33.9 (t), 40.9 (d), 41.4 (d), 41.9 (d), 42.8 (d), 43.1 (d), 54.2 (d), 54.5 (d), 120.3 (d), 120.4 (d), 126.8 (d), 126.9 (d), 128.9 (d), 131.4 (s), 131.5 (s), 131.9 (d), 132.0 (d), 132.3 (d), 132.4 (d), 138.7 (s), 138.8 (s). IR ν max (thin film, NaCl plate): 3080, 3019, 1681, 1596 cm -1.TLC : Rf = 0.36 (Light Petroleum). Anal. Calcd. for C 18 18 : C, 92.26;, 7.74. Found: C, 91.92;, 7.87. Exo-10-benzylidene-12-oxatetracyclo[6.3.1.0 2,7.0 9,11 ]dodeca-2,4,6-triene 17 17 Chemical yield : 56%. White solid m.p.: 135-136 C. 1 NMR (300 Mz, CDCl 3 ): δ 0.1.90 (d, J = 6.8 z, 1), 2.13 (d, J = 6.8 z, 1), 5.44 (s, 1), 5.55 (s, 1), 6.77 (s, 1), 7.18 (dd, J = 7.6, 4.6 z, 1), 7.20 (dd, J = 7.6, 4.7 z, 1), 7.25 (m, 1), 7.33-7.42 (m, 4), 7.56 (m, 2). 13 C NMR (CDCl 3, 50 Mz): δ 24.2 (d), 27.3 (d), 79.3 (d), 79.7 (d), 119.5 (d), 120.5 (d), 126.3 (d), 126.8 (d), 127.1 (d), 128.4 (d), 132.1 (s), 137.1 (s), 146.6 (s), 146.9 (s). IR ν max (thin film, NaCl plate): 3080, 3019, 1681, 1596 cm -1. TLC: Rf = 0.72 (Light Petroleum/AcEt 3/1). Anal. Calcd. For C 15 14 : C, 87.78;, 5.73. Found: C, 87.45;, 5.70. General procedure for thermal rearrangements of exo-3-alkylidenetricyclo[3.2.1.0 2,4 ]oct-6-ene 6 Exo-3-alkylidene-tricyclo[3.2.1.0 2,4 ]oct-6-ene 4 (1 mmol) was heated by means of bulb to bulb distilling apparatus (160-180 C/ 1 mmg). After 1 h, purification by flash chromatography, affords 95-96 % of alkylidenetetracyclo[3.3.0 4,6.0 2,8 ]octane 6. 15

3-benzylidenetetracyclo[3.3.0.0 4,6.0 2,8 ]octane 6a 6a Chemical yield : 96%. Colorless oil that solidified on standing m.p.: 25-26 C. 1 NMR (500 Mz, CDCl 3,); δ 1.63 (m, 1), 1.76 (d, J = 12.6 z, 1), 1.78 (m, 1), 1.95 (dt, J = 13.0, 4.4 z, 1), 1.99 (m, 1), 2.09 (dt, J = 5.8, 5.4 z, 1), 2.15 (dt, J = 5.7, 5.6 z, 1), 2.25 (m, 1), 6.44 (s, 1), 7.15 (dd, J = 7.3, 7.1 z, 1), 7.29 (dd, J = 7.7, 7.6 z, 2) 7.34 (d, J = 7.3 z, 2). 13 C NMR (50 Mz, CDCl 3,): δ 23.9 (d), 26.3 (t), 27.0 (d), 27.4 (d), 28.9 (d), 29.0 (d), 33.3 (d), 119.8 (d), 125.5 (d), 128.0 (d), 128.1 (d), 138.8 (s), 143.7 (s). IR ν max (thin film, NaCl plate): 3056, 2976, 1645, 1597, 1484, 1441 cm -1 ESIMS (low resolution) m/z: Calcd. for C 15 14 (M+) + : 194. Found:195 (M + ) +, 212 (M + N 4 ) +, 217 (M + Na) +, 233 (M + K) +. TLC: Rf = 0.41(Light Petroleum). 3-[2-(phenylsulfonyl)ethylidene]tetracyclo[3.3.0.0 4,6.0 2,8 ]octane 6i 6i S Chemical yield : 95%. White solid m.p.: 86-87 C. 1 NMR (400 Mz, CDCl 3 ): δ 1.27 (d, J = 13.0 z, 1), 1.33 (m, 1), 1.48 (m, 1), 1.73 (dt, J = 13.0, 4.4 z, 1), 1.98 (ddd, J = 5.8, 5.7, 4.4 z, 1), 2.03 (ddd, J = 5.9, 5.9, 4.2 z, 1), 3.85 (dd, J = 14.2, 8.3 z, 1), 3.91 (dd, J = 14.2, 7.6 z, 1), 5.28 (t, J = 8.1 z, 1), 7.54 (tm, J = 8.0 z, 2), 7.63 (tm, J = 7.8 z, 1), 7.89 (d, 8.3 z, 2). 13 C NMR (50 Mz, CDCl 3 ): δ 25.6 (d), 25.9 (d), 26.2 (d), 26.6 (d), 28.8 (d), 29.0 (d), 31.4 (t), 57.8 (d), 104.3 (d), 128.6 (d), 128.8 (d), 133.3 (d), 138.8 (s), 151.3 (s). IR ν max (thin film, NaCl plate): 3060, 2981, 1582, 1445, 1319, 1143 cm -1. TLC: Rf 16

= 0.41 (Light Petroleum/AcEt 4/1). Anal. Calcd. for C 16 16 2 S: C, 70.56;, 5.92; S, 11.77. Found: C, 70.42;, 5.84; S, 11.91. For a single crystal X-ray analysis, the compound 6i was recristallized from CCl 3 giving the product as white crystals. {5-[(acetyloxy)methyl]-3-benzylidenetetracyclo[3.3.0.0 4,6.0 2,8 ]oct-1-anyl}methyl acetate 6h 6h Chemical yield : 95%. Colorless oil. 1 NMR (200 Mz, CDCl 3 ): δ 1.47 (m, 1), 1.55 (m, 1), 1.58 (d, J = 12.6 z, 1), 1.72 (ddd, J = 8.5, 5.8, 2.5 z, 1), 1.85 (dt, J = 12.6, 4.5 z, 1), 1.93 (ddd, J = 8.6, 5.8, 2.1 z, 1), 2.01 (ddd, J = 5.9, 5.7, 4.2 z, 1), 2.08 (ddd, J = 5.9, 5.7, 4.2 z, 1), 2.63 (dd, J = 14.3, 7.9 z, 1), 2.72 (dd, J = 14.3, 7.4 z, 1), 3.41 (t, J = 7.5 z, 1), 3.74 (s, 6), 5.24 (t, J = 7.7 z, 1). 13 C NMR (50 Mz, CDCl 3 ): δ 24.6 (d), 25.8 (d), 25.9 (d), 26.0 (t), 28.1 (d), 28.3 (d), 29.2 (t), 31.1 (d), 52.3 (q), 52.4 (d), 114.0 (d), 143.5 (s), 169.4 (s), 169.5 (s). IR ν max (thin film, NaCl plate): 3045, 3000, 2898, 1732, 1650, 1434. TLC: Rf = 0.46 (Light Petroleum/Et 2 = 7/3). Anal. Calcd. For C 15 18 4 : C, 68.68;, 6.92. Found: C, 68.59;, 6.89. 17

NMR Spectra of compounds L2, 1, 5, 4a and 6a L2 P 250 225 200 175 150 125 100 75 50 25 0-25 -50-75 -100 L2 P 2 11 10 9 8 7 6 5 4 3 2 1 0 18

L2 P 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 t-bu Ph t-bu Ph P (+)-1 Pd P Ph t-bu dim P Pd P t-bu Ph Ph t-bu P Pd Ac P Ph t-bu mom NMR 1 400 Mz, ratio dimer/monomer = 1/0.47 15.2 ppm 16.0 15.8 15.6 15.4 15.2 15.0 14.8 14.6 14.4 14.2 14.0 16 14 12 10 8 6 4 2 0-2 19

Ph t-bu t-bu Ph P 1 Pd P Ph t-bu P Pd P t-bu Ph Prepared from racemic L1 Prepared from (-)-L1 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Ph t-bu t-bu Ph P Cl P 5 Pd Pd P Cl P Ph t-bu t-bu Ph NMR 1 200 Mz 15.7 ppm 16.40 16.20 16.00 15.80 15.60 15.40 15.20 15.00 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0-1 20

21 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 110 110 120 120 130 130 140 140 150 150 160 160 170 170 180 180 P P Pd Pd P P t-bu Ph t-bu Ph t-bu Ph Ph t-bu Cl Cl 5 0 1 2 3 4 5 6 7 8 9 200 Mz 4a

4a 4a-D D 0.2/0.8 0.2 2.0 4a 1.0 2.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 4a 50 Mz 200 175 150 125 100 75 50 25 22

23 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 110 111 112 113 114 115 116 117 118 119 120 121 0.2/0.8 117.400 117.226 116.919 116.446 4a 4a-D D 0 1 2 3 4 5 6 7 8 9 500 Mz 6a

6a 50 Mz 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 References: 1. W. Dai, K. K. Y. Yeung, W.. Leung, K.K. aynes, Tetrahedron Asymmetry, 2003, 14, 2821-2826. 2. R. K. aynes, T-L, Au-Yeung, W-A. Lam, Z-Y. Li, L-L. Yeung, A. S. C. Chan, P. Li, M. Koen, C. R. Mitchell, S. C. Vonwiller, Eur. J. rg. Chem. 2000, 3205-3216. 3. a) B. B. unt, B. C. Saunders, J. Chem. Soc., 1957, 2413-2144; b) M. Grayson, C. E. Farley, C. A. Streuli, Tetrahedron, 1967, 23, 1065-1078. 4. a) G. Y. Li, J. rg. Chem. 2002, 67, 3643-3650. b) E. Y. Y. Chan, Q-F. Zhang, Y-K Sau, S. M. F. Lo,.. Y. Sung, I. D. Williams, R. K. aynes, W-. Leung, Inorganic Chemistry 2004, 43, 4921-4926. 5. a) D.. Aue, M.J. Meshishnek, J. Am. Chem. Soc. 1977, 99, 223-231.; b) T. Sasaki, S. Eguchi; M.hno, F. Nakata, J. rg. Chem. 1976, 41, 2408-2410. 24