QUELQUES APPLICATIONS D UN SCHEMA SCHEMA MIXTE-ELEMENT-VOLUME A LA LES, A L ACOUSTIQUE, AUX INTERFACES

Similar documents
Extension to moving grids

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

On a class of numerical schemes. for compressible flows

Wave propagation methods for hyperbolic problems on mapped grids

A recovery-assisted DG code for the compressible Navier-Stokes equations

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

APPLICATION OF HYBRID CFD/CAA TECHNIQUE FOR MODELING PRESSURE FLUCTUATIONS IN TRANSONIC FLOWS

Solving the Euler Equations!

arxiv: v4 [physics.flu-dyn] 23 Mar 2019

NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS WITH DYNAMIC FRACTURE

Finite Volume Method

Assessment of VMS-LES and hybrid RANS VMS-LES models

RANS Equations in Curvilinear Coordinates

Space-time Discontinuous Galerkin Methods for Compressible Flows

Angular momentum preserving CFD on general grids

Entropy stable schemes for compressible flows on unstructured meshes

What is a flux? The Things We Does Know

A Higher-Order Generalized Ghost Fluid Method for the Poor for the Three-Dimensional Two-Phase Flow Computation of Underwater Implosions

THE numerical simulation of the creation and evolution

SAROD Conference, Hyderabad, december 2005 CONTINUOUS MESH ADAPTATION MODELS FOR CFD

Finite difference MAC scheme for compressible Navier-Stokes equations

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Block-Structured Adaptive Mesh Refinement

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models

Curved grid generation and DG computation for the DLR-F11 high lift configuration

CFD in Industrial Applications and a Mesh Improvement Shock-Filter for Multiple Discontinuities Capturing. Lakhdar Remaki

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Introduction to Turbulence and Turbulence Modeling

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations

Zonal modelling approach in aerodynamic simulation

Deforming Composite Grids for Fluid Structure Interactions

( ) A i,j. Appendices. A. Sensitivity of the Van Leer Fluxes The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in

Chapter 2. General concepts. 2.1 The Navier-Stokes equations

HIGH ORDER FINITE VOLUME SCHEMES

Numerical resolution of a two-component compressible fluid model with interfaces

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg

A conservative Embedded Boundary method for an inviscid compressible flow coupled with a fragmenting structure

Due Tuesday, November 23 nd, 12:00 midnight

Variational multiscale large-eddy simulations of the flow past a circular cylinder : Reynolds number effects

Numerical Solutions to Partial Differential Equations

Introduction to Finite Volume projection methods. On Interfaces with non-zero mass flux

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach coefficients

Eulerian interface-sharpening methods for hyperbolic problems

A General Technique for Eliminating Spurious Oscillations in Conservative Schemes for Multiphase and Multispecies Euler Equations

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach regimes

Admissibility and asymptotic-preserving scheme

arxiv: v1 [math.na] 23 Jun 2017

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods

HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS

LECTURE 3: DISCRETE GRADIENT FLOWS

Force analysis of underwater object with supercavitation evolution

A High-Order Implicit-Explicit Fluid-Structure Interaction Method for Flapping Flight

Improvements of Unsteady Simulations for Compressible Navier Stokes Based on a RK/Implicit Smoother Scheme

Governing Equations of Fluid Dynamics

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

A method for avoiding the acoustic time step restriction in compressible flow

Flow simulation on moving boundary-fitted grids and application to fluid-structure interaction problems

Experimental and numerical study of the initial stages in the interaction process between a planar shock wave and a water column

Équation de Burgers avec particule ponctuelle

From Navier-Stokes to Saint-Venant

Large Eddy Simulation of a turbulent premixed flame stabilized by a backward facing step.

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes

Some remarks on grad-div stabilization of incompressible flow simulations

ρ t + (ρu j ) = 0 (2.1) x j +U j = 0 (2.3) ρ +ρ U j ρ

Numerical Solution of Partial Differential Equations governing compressible flows

Hybrid RANS/LES simulations of a cavitating flow in Venturi

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

A Multi-Dimensional Limiter for Hybrid Grid

Positivity-preserving Lagrangian scheme for multi-material compressible flow. Abstract

Introduction to numerical simulation of fluid flows

Elmer :Heat transfert with phase change solid-solid in transient problem Application to silicon properties. SIF file : phasechange solid-solid

A finite-volume algorithm for all speed flows

International Engineering Research Journal

On the behavior of upwind schemes in the low Mach number limit. IV : P0 Approximation on triangular and tetrahedral cells

Computational Analysis of an Imploding Gas:

Finite volumes schemes preserving the low Mach number limit for the Euler system

Failsafe FCT algorithms for strongly time-dependent flows with application to an idealized Z-pinch implosion model

Y. Abe, N. Iizuka, T. Nonomura, K. Fujii Corresponding author:

Part I. Discrete Models. Part I: Discrete Models. Scientific Computing I. Motivation: Heat Transfer. A Wiremesh Model (2) A Wiremesh Model

Numerical Study of Natural Unsteadiness Using Wall-Distance-Free Turbulence Models

LES of turbulent shear flow and pressure driven flow on shallow continental shelves.

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

An Introduction to the Discontinuous Galerkin Method

Regularization modeling of turbulent mixing; sweeping the scales

The incompressible Navier-Stokes equations in vacuum

Efficient and Flexible Solution Strategies for Large- Scale, Strongly Coupled Multi-Physics Analysis and Optimization Problems

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement

Physical Diffusion Cures the Carbuncle Phenomenon

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations

Modelling and numerical simulation of bi-temperature Euler Equations in toroidal geometry

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement

High-Order Hyperbolic Navier-Stokes Reconstructed Discontinuous Galerkin Method

Efficient BDF time discretization of the Navier Stokes equations with VMS LES modeling in a High Performance Computing framework

Comparison of cell-centered and node-centered formulations of a high-resolution well-balanced finite volume scheme: application to shallow water flows

The Shallow Water Equations

Direct Numerical Simulations of a Two-dimensional Viscous Flow in a Shocktube using a Kinetic Energy Preserving Scheme

Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells

Convergence of QuickFlow

Numerical Methods for Modern Traffic Flow Models. Alexander Kurganov

Transcription:

1 QUELQUES APPLICATIONS D UN SCHEMA SCHEMA MIXTE-ELEMENT-VOLUME A LA LES, A L ACOUSTIQUE, AUX INTERFACES O. ALLAIN(*), A. DERVIEUX(**), I. ABALAKIN(***), S. CAMARRI(****), H. GUILLARD(**), B. KOOBUS(*****), T. KOZUBSKAYA(***), A.-C. LESAGE(*), A. MURRONE(**), M.-V. SALVETTI(****), S. WORNOM(**) (*)Societe Lemma, La Roquette sur Siagne, France, (**)INRIA, route des Lucioles, Sophia-Antipolis, France, (***)Institute for athematical Modeling, Moscou, Russie, (****)U. de Pise, Italie, (*****)U. de Montpellier IMFT, Toulouse, 9 mars 2005 1

2 Overview Ingredients of the Mixed Element Volume (MEV) method: Finite Element: Finite Volume: P1 exactness, H1 consistency. conservations, positivity. IMFT, Toulouse, 9 mars 2005 2

3 Outline of the talk 1. Basic options of the numerical method 2. Multiple levels/scales 3. Conservations 4. Positivity IMFT, Toulouse, 9 mars 2005 3

4 1. BASIC OPTIONS OF THE MEV METHOD degrees of freedom at vertices i median dual cells C i variational or integral formulation with two types of test functions: φ i, continuous-p 1, and χ i, characteristic of C i. Finite-Element evaluation of second derivatives Finite-Element/Finite-Volume evaluation of first derivatives IMFT, Toulouse, 9 mars 2005 4

5 First-order MEV W t + divf = divr Vol(i) n+1 (Wi Wi n ) = Σ j N(i) Φ ij t R(W ). φ i dx Upwind numerical integration (Roe): Φ ij = 1 2 (F(W i).n ij + F(W j ).n ij ) + 1 2 A (W j W i ) A = d dw F(W ).n ij IMFT, Toulouse, 9 mars 2005 5

6 First extension: MUSCL Edge-based reconstructions using upwind elements of each edge. ( W ) ij = 1 W 3 F EM (T ij ) + 2 W 3 F EM (T ijk ) W ij = W i + ( W ) ij. ij Φ ij = 0.5(Φ(W ij ) + Φ(W ji )) + 0.5 δ A (W ji (W ij ). IMFT, Toulouse, 9 mars 2005 6

7 Upwind-element reconstruction: 3D Edge-upwind tetrahedra IMFT, Toulouse, 9 mars 2005 7

8 Arbitrary Lagrangian-Eulerian formulation t (V (x,t)w(t)) + F c (w(t),x,ẋ) = R(w(t),x) Ω n+1 i W n+1 i = Ω n i W n i t j V (i) Ω ij Φ ( W n+1 i,w n+1 j, ν ij, xn+1 ij t x n ij ) Φ(W,W,ν,κ) = F (W ) ν x + G(W ) ν y + H(W ) ν z κw. IMFT, Toulouse, 9 mars 2005 8

9 Back to the fluid numerics : V6 ( W ) V6 ij. ij = 1 3 ( W ) Tij. ij + 2 3 (W j W i ) + ξ a ( ( W ) Tij. ij 2(W j W i ) + ( W ) Tji. ij) + ξ b ( ( W ) D ij. ij 2 ( W ) i. ij + ( W ) j. ij ) ( W ) D ij : linear interpolation of nodal gradients in nodes m and n. - Acoustics: (Abalakin-Dervieux-Kozubskaya, IJ Acoustics, 3:2,157-180,2004) IMFT, Toulouse, 9 mars 2005 9

10 V6 : Tam s case for acoustics IMFT, Toulouse, 9 mars 2005 10

11 2. MULTIPLES LEVELS/SCALES Agglomeration: several neighboring cells a coarse one. inconsistency for second-order problems. Agglomeration MG: corrector terms in the assembly of coarse diffusion terms Additive Multi-Level: smoothed basis functions Variational Multi-Scale (VMS) models IMFT, Toulouse, 9 mars 2005 11

12 MEV implementation of Navier-Stokes + + Ω Ω Ω ρ t X i dω + SuppX i ρu.n dγ = 0 ρu t X i dω + ρ uu.n dγ + SuppX i σ φ i dω = 0 Ω E t X i dω + (E + P )u.n dγ + SuppX i λ T. φ i dω = 0 Ω SuppX i P n dγ Ω σu. φ i dω IMFT, Toulouse, 9 mars 2005 12

13 VMS projection C M m(k) : macro-cell containing the cell C k. (V ol(c j ): volume of cell C j ) I k = {j / C j C M m(k) }. φ k = V ol(c k) φ j. V ol(c j ) j I k j I k W = k φ k W k ; W = W W IMFT, Toulouse, 9 mars 2005 13

14 Smagorinski Large Eddy Simulation model S ij = 1 2 ( u i x j + u j x i ), u = (u 1,u 2,u 3), small scale velocity, S = 2S ij S ij, C s = 0.1, l = V ol(t l) 1 3,. µ t = ρ(c s ) 2 S, τ ij = µ t(2s ij 2 3 S kk δ ij). IMFT, Toulouse, 9 mars 2005 14

15 MEV implementation of the VMS LES model (ended) + + Ω Ω Ω ρ t X i dω + SuppX i ρu.nx i dγ = 0 ρu t X i dω + ρ u u nx i dγ + SuppX i σ φ i dω + τ φ i dω = 0 Ω Ω E t X i dω + (E + P )u.nx i dγ + SuppX i C p µ t λ T. φ i dω + T. φ i dω = 0 P r t Ω Ω SuppX i P nx i dγ Ω σu. φ i dω IMFT, Toulouse, 9 mars 2005 15

16 Results: flow past a square cylinder Reynolds=20,000. From Farhat-Koobus, 2003. IMFT, Toulouse, 9 mars 2005 16

17 Results: flow past a square cylinder, end d LES C d C d C l S t l r C pb Classical LES 2.00 0.19 1.01 0.136 1.5 1.31 VMS-LES 2.10 0.18 1.08 0.136 1.4 1.52 Experiments C d C d C l S t l r C pb Lyn et al. 2.10 - - 0.132 1.4 - Luo et al. 2.21 0.18 1.21 0.13-1.52 Bearman et al. 2.28-1.20 0.13-1.60 Tab. 1 Bulk coefficients (*): LES simulations and experimental data (*) l r is the recirculation length behind the square cylinder, and C pb is the mean pressure coefficient on rear face at y = 0. IMFT, Toulouse, 9 mars 2005 17

18 AND NEXT... IMFT, Toulouse, 9 mars 2005 18

19 3. CONSERVATIONS IN ALE FORMULATION - Conservation of extensive quantities. - Geometric Conservation Law (GCL). - Energy budget. IMFT, Toulouse, 9 mars 2005 19

20 Geometric Conservation law A ALE-GCL scheme computes exactly a uniform flow field t Ω n+1 i U n+1 i = Ω n i U n i j V (i) Ω ij Φ ( U n+1 i,u n+1 j, ν ij, xn+1 ij t x n ij ν ij = 0.5 (ν ij (x(t 1 + α 1 (t 2 t 1 ))) + ν ij (x(t 1 + α 2 (t 2 t 1 )))) Ω n+1 i Ω n i = ẋ i n i dγ Ω h (t) - Sufficient condition for 1st-order accuracy (Guillard-Farhat). - Practical stability and accuracy improvements. ) IMFT, Toulouse, 9 mars 2005 20

21 Energy budget of a deforming fluid (1) Work transfers : pressure work in moment equation: M t 2. (x n+1 ij x n ij) = t 1 t ( ) Ω h,i Φ M Ω W n+1 i, ν ij, xn+1 ij x n ij. (x n+1 ij t i Ω h W ork t 2 = t Ω h,i p i ν i. (x n+1 ij x n ij) t 1 i Ω h x n ij) IMFT, Toulouse, 9 mars 2005 21

22 Energy budget of a deforming fluid (2) The energy equation must satisfy the Geometric Conservation Law and this is obtained by an adhoc time integration: Ω n i E n i t Ω n+1 i E n+1 i = j V (i) Ω ij and ν ij specified by GCL. ( Ω ij Φ E U n+1 i,u n+1 j, ν ij, xn+1 ij t x n ij ) IMFT, Toulouse, 9 mars 2005 22

23 Energy budget of a deforming fluid (3) Total energy variation: E 2 t 1 = t Ω h,i Φ E Ω i Ω h Slip condition: E 2 t 1 = t Ω h,i i Ω h ( ( W n+1 i, ν ij, xn+1 ij t x n ij Ω h,i (pu) i. ν i dγ ) ) IMFT, Toulouse, 9 mars 2005 23

24 Energy budget of a deforming fluid (4) A way of integrating the above is: E t 2 = t Ω h,i p i ν i. (x n+1 ij t 1 i Ω h x n ij) Lemma: By replacing the energy flux by a product of boundary pressure times the GCL-preserving integration of mesh motion, we can derive a scheme that is conservative, satisfies GCL and have an exact energy budget: Work of pressure = Loss of total energy. Vàzquez-Koobus-Dervieux-Farhat, Spatial discretization issues for the energy conservation in compressible flow problems on moving grids, INRIA-RR4742 IMFT, Toulouse, 9 mars 2005 24

25 4. POSITIVITY t (V (x,t)u(t)) + F c (w(t),x,ẋ) = 0 a n+1 i U n+1 i a n i U i n t + j N (i) φ(u n ij,u n ji,ν ij,κ ij ) = 0. Φ(u,u,ν,κ) = F (u) ν x + G(u) ν y + H(u) ν z κu. with φ(u,v,ν,κ) monotone: φ u 0 and φ v 0. IMFT, Toulouse, 9 mars 2005 25

26 Limiters U ij = W F EM (T ij ). ij ; 0 U ij = W F EM (T ijk ). ij ( U) ij. ij = L( U ij, 0 U ij, higher U ij ) From usual conditions on limiteurs, and from the position of upwind-elements : U ij = Σp k (U i U k ) ; U ij = p j (U j U i ) where all p s are positive. IMFT, Toulouse, 9 mars 2005 26

27 POSITIVITY, cont d a n+1 i U n+1 i a n i U i n t + j N (i) φ ij (U n ij,u n ji, ν ij, κ ij ) = 0. a n+1 i U n+1 i a n i U i n t = e i + j N (i) g ij (U n ji U n i ) + h ij (U n ij U n i ) IMFT, Toulouse, 9 mars 2005 27

28 POSITIVITY, cont d g ij = t a i φ ij (U n ij,u n ji,ν ij, κ ij ) φ ij (U n ij,u n i,ν ij, κ ij ) U n ji U n i h ij = t a i φ ij (U n ij,u n i,ν ij, κ ij ) φ ij (U n i,u n i,ν ij, κ ij ) U n ij U n i e i = an i an+1 i a n i + a n+1 i j N (i) Ω ij κ ij IMFT, Toulouse, 9 mars 2005 28

29 POSITIVITY, cont d Lemma: Assuming the discrete GCL condition and usual limiter properties, under a CFL condition, the above scheme satisfies the maximum/minimum principle. Cournde-Koobus-Dervieux, soumis Revue EEF, 2005 Farhat-Geuzaine-Grandmont, JCP 2001 IMFT, Toulouse, 9 mars 2005 29

30 POSITIVITY, cont d F (U) = U = (ρ,ρu,ρv,ρw,e,ρy ), ρu ρu 2 + P ρuv ρuw (e + P )u ρuy G(U) = P = (γ 1) U F (U) + + G(U) + H(U) t x y z ρv ρuv ρv 2 + P ρvw H(U) = (e + P )v ρvy ( e 1 2 (u2 + v 2 + w 2 ) ) = 0 ρw ρuw ρvw ρw 2 + P (e + P )w ρwy Lemma: Assume that the Riemann solver is ρ-positive, then under a CFL condition, the limited ALE-MEV scheme preserves ρ-positivity and satisfies the maximum/minimum principle for Y = ρy/ρ. IMFT, Toulouse, 9 mars 2005 30

31 Cournde-Koobus-Dervieux, soumis Revue EEF, 2005 IMFT, Toulouse, 9 mars 2005 31

32 Application to a two-phase flow Five-equation quasi conservative reduced model t α kρ k + div(α k ρ k u) = 0 ρu + div(ρu u) + p = 0 t ρe + div(ρe + p)u = 0 t t α 2 + u. α 2 = α 1 α 2 ρ 1 a 2 1 ρ 2 a 2 2 2 k=1 α k ρ ka 2 kdivu with e = ε + u 2 /2 and ρε = 2 k=1 α kρ k ε k (p,ρ k ). IMFT, Toulouse, 9 mars 2005 32

33 NUMERICS FOR TWO-PHASE FLOW - Acoustic Riemann solver (Murrone-Guillard, Comp.Fluids 2003, JCP 2004)) - Second order limited MEV. - Source term: upwind integration of divu. - 3D parallel extension with MEV (Wornom et al.) IMFT, Toulouse, 9 mars 2005 33

34 Falling drop (2D) IMFT, Toulouse, 9 mars 2005 34

35 Shock on a drop (3D) IMFT, Toulouse, 9 mars 2005 35

36 Conclusions The choice of a very simple scheme permits the proof of a very large set of properties: - many conservation statements can be made exactly satisfied, - Maximum principle and positivity, including the moving mesh case. Today s challenge are: - showing positivity statements for the new techniques of thick interfaces. - showing the above properties for new schemes. IMFT, Toulouse, 9 mars 2005 36