and the union is open in X. If12U j for some j, then12 [ i U i and bx \ [ i (X \ U i ) U i = \ i ( b X \ U i )= \ i

Similar documents
Then A n W n, A n is compact and W n is open. (We take W 0 =(

4 Countability axioms

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 k x k. d(x, y) =sup k. y k = max

MAS3706 Topology. Revision Lectures, May I do not answer enquiries as to what material will be in the exam.

Math General Topology Fall 2012 Homework 8 Solutions

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

Problem Set 2: Solutions Math 201A: Fall 2016

If X is a compact space and K X is a closed subset, then K is

Part III. 10 Topological Space Basics. Topological Spaces

MA651 Topology. Lecture 9. Compactness 2.

Axioms of separation

3 Hausdorff and Connected Spaces

AN EXPLORATION OF THE METRIZABILITY OF TOPOLOGICAL SPACES

Topological properties

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

7 Complete metric spaces and function spaces

TOPOLOGY TAKE-HOME CLAY SHONKWILER

Math General Topology Fall 2012 Homework 13 Solutions

MTG 6316 HOMEWORK Spring 2017

Measures and Measure Spaces

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

Finite dimensional topological vector spaces

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

This chapter contains a very bare summary of some basic facts from topology.

3 COUNTABILITY AND CONNECTEDNESS AXIOMS

CW complexes. Soren Hansen. This note is meant to give a short introduction to CW complexes.

Maths 212: Homework Solutions

Finite dimensional topological vector spaces

2. Topology for Tukey

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

CHAPTER 7. Connectedness

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

Chapter 2 Metric Spaces

Introduction to Dynamical Systems

Metric Spaces and Topology

Section 31. The Separation Axioms

The discrete and indiscrete topologies on any set are zero-dimensional. The Sorgenfrey line

Homework 5. Solutions

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

Spring -07 TOPOLOGY III. Conventions

TOPOLOGY HW 2. x x ± y

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

MTG 5316/4302 FALL 2018 REVIEW FINAL

Sanjay Mishra. Topology. Dr. Sanjay Mishra. A Profound Subtitle

Topology Part of the Qualify Exams of Department of Mathematics, Texas A&M University Prepared by Zhang, Zecheng

Introductory Analysis I Fall 2014 Homework #5 Solutions

U e = E (U\E) e E e + U\E e. (1.6)

Introduction to Topology

Math 117: Topology of the Real Numbers

2 Metric Spaces Definitions Exotic Examples... 3

3. Prove or disprove: If a space X is second countable, then every open covering of X contains a countable subcollection covering X.

Assignment #10 Morgan Schreffler 1 of 7

Extensions Of S-spaces

Austin Mohr Math 730 Homework. f(x) = y for some x λ Λ

ne varieties (continued)

Math General Topology Fall 2012 Homework 6 Solutions

Filters in Analysis and Topology

Course 212: Academic Year Section 1: Metric Spaces

CHAPTER 5. The Topology of R. 1. Open and Closed Sets

Analysis III Theorems, Propositions & Lemmas... Oh My!

Chapter 3: Baire category and open mapping theorems

2 Topology of a Metric Space

Spaces of continuous functions

1. Simplify the following. Solution: = {0} Hint: glossary: there is for all : such that & and

Lecture 5 - Hausdorff and Gromov-Hausdorff Distance

Measurable Choice Functions

MAT327 Big List. Ivan Khatchatourian Department of Mathematics University of Toronto. August 20, 2018

After taking the square and expanding, we get x + y 2 = (x + y) (x + y) = x 2 + 2x y + y 2, inequality in analysis, we obtain.

STRONGLY CONNECTED SPACES

Some Background Material

Math 426 Homework 4 Due 3 November 2017

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a

S. Mrówka introduced a topological space ψ whose underlying set is the. natural numbers together with an infinite maximal almost disjoint family(madf)

MAT3500/ Mandatory assignment 2013 Solutions

1. Continuous Functions between Euclidean spaces

CARDINALITY OF THE SET OF REAL FUNCTIONS WITH A GIVEN CONTINUITY SET

COUNTABLY S-CLOSED SPACES

int cl int cl A = int cl A.

The uniform metric on product spaces

Abstract Measure Theory

Introduction to generalized topological spaces

Real Analysis Notes. Thomas Goller

CHAPTER 9. Embedding theorems

Section 41. Paracompactness

Homework 3: Relative homology and excision

ALGEBRAIC GEOMETRY (NMAG401) Contents. 2. Polynomial and rational maps 9 3. Hilbert s Nullstellensatz and consequences 23 References 30

Boolean Algebras, Boolean Rings and Stone s Representation Theorem

Notes on nets and convergence in topology

Math Topology I: Topological Spaces and the Fundamental Group

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION

Section 21. The Metric Topology (Continued)

1 The Local-to-Global Lemma

E.7 Alaoglu s Theorem

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B =

Math 535: Topology Homework 1. Mueen Nawaz

An Algebraic View of the Relation between Largest Common Subtrees and Smallest Common Supertrees

Transcription:

29. Mon, Nov. 3 Locally compact Hausdor spaces are a very nice class of spaces (almost as good as compact Hausdor ). In fact, any such space is close to a compact Hausdor space. Definition 29.1. A compactification of a noncompact space X is an embedding i : X,! Y, where Y is compact and i(x) is dense. We will typically work with Hausdor spaces X, in which case we ask the compactification Y to also be Hausdor. Example 29.2. The open interval (0, 1) is not compact, but (0, 1),! [0, 1] is a compactification. Note that the exponential map exp : (0, 1)! S 1 also gives a (di erent) compactification. There is often a smallest compactification, given by the following construction. Definition 29.3. Let X be a space and define b X = X [ {1}, whereu b X is open if either U X and U is open in X or 12U and b X \ U X is compact. Proposition 29.4. Suppose that X is Hausdor and noncompact. Then b X is a compactification. If X is locally compact, then b X is Hausdor. Proof. We first show that X b is a space! It is clear that both ; and X b are open. Suppose that U 1 and U 2 are open. We wish to show that U 1 \ U 2 is open. If neither open set contains 1, this follows since X is a space. If 12U 1 but 1 /2 U 2,thenK 1 = X \ U 1 is compact. Since X is Hausdor, K 1 is closed in X. ThusX \ K 1 = U 1 \ {1} is open in X, and it follows that U 1 \ U 2 =(U 1 \ {1}) \ U 2 is open. If 12U 1 \ U 2,thenK 1 = X \ U 1 and K 2 = X \ U 2 are compact. It follows that K 1 [ K 2 is compact, so that U 1 \ U 2 = X \ (K 1 [ K 2 ) is open. Suppose we have a collection U i of open sets. If none contain 1, thenneitherdoes [ U i, i and the union is open in X. If12U j for some j, then12 [ i U i and bx \ [ i U i = \ i ( b X \ U i )= \ i (X \ U i ) is a closed subset of the compact set X \ U j, so it must be compact. Next, we show that : X! X b is an embedding. Continuity of again uses that compact subsets of X are closed. That is open follows immediately from the definition of X. b To see that (X) isdenseinx, b it su ces to see that {1} is not open. But this follows from the definition of X,sinceX b is not compact. Finally, we show that X b is compact. Let U be an open cover. Then some U 2U must contain 1. The remaining elements of U must cover X \ U, which is compact. It follows that we can cover X \ U using only finitely many elements, so U has a finite subcover. Now suppose that X is locally compact. Let x 1 and x 2 in b X.Ifneitheris1, then we have disjoint neighborhoods in X, and these are still disjoint neighborhoods in b X.Ifx 2 = 1, letx 1 2 U K, where U is open and K is compact. Then U and V = b X \ K are the desired disjoint neighborhoods. Example 29.5. We saw that S 1 is a one-point compactification of (0, 1) = R. You will show on your homework that similarly S n is a one-point compactification of R n. 48

_? Example 29.6. As we have seen, Q is not locally compact, so we do not expect b Q to be Hausdor. Indeed, the point 1 is dense in b Q. Because of the topology on b Q, this is equivalent to showing that for any open, nonempty subset U Q, U is not contained in any compact subset. Since Q is Hausdor, if U were contained in a compact subset, then U would also be compact. But as we have seen, for any interval (a, b) \ Q, the closure in Q, whichis[a, b] \ Q, is not compact. 30. Wed, Nov. 5 Next, we show that the situation we observed for compactifications of (0, 1) holds quite generally. Proposition 30.1. Let X be locally compact Hausdor and let f : X! Y be a compactification. Then there is a (unique) quotient map q : Y! b X such that q f =. We will need: Lemma 30.2. Let X be locally compact Hausdor and f : X open. Y f q X / b X! Y a compactification. Then f is Proof. Since f is an emebedding, we can pretend that X Y and that f is simply the inclusion. We wish to show that X is open in Y.Thusletx 2 X. Let U be a precompact neighborhood of x. Thus K =cl X (U) is compact 3 and so must be closed in Y (and X) sincey is Hausdor. By the definition of the subspace topology, we must have U = V \ X for some open V Y.ThenV is a neighborhood of x in Y, and Proof of Prop. 30.1. We define V = V \ Y = V \ cl Y (X) cl Y (V \ X) =K X. (x) if y = f(x) q(y) = 1 if y/2 f(x). To see that q is continuous, let U X b be open. If 1 /2 U, thenq 1 (U) =f( 1 (U)) is open by the lemma. If 12U, thenk = X b \ U is compact and thus closed. We have q 1 (K) =f( 1 (K)) is compact and closed in Y, so it follows that q 1 (U) =Y \ q 1 (K) is open. Note that q is automatically a quotient map since it is a closed continuous surjection (it is closed because Y is compact and X b is Hausdor ). Note also that q is unique because X b is Hausdor and q is already specified on the dense subset f(x) Y. Remark 30.3. Note that if we apply the one-point compactification to a (locally compact) metric space X, there is no natural metric to put on X, so one might ask for a good notion of compactification for metric spaces. Given the result above, this should be related to the idea of a completion of a metric space. See HW8. The following result is often useful, and it matches more closely what we might have expected the definition of locally compact to resemble. Proposition 30.4. Let X be locally compact and Hausdor. Let U be an open neighborhood of x. Then there is a precompact open set V with x 2 V V U. 3 We will need to distinguish between closures in X and closures in Y,soweusethenotationclX(A) for closure rather than our usual A. 49

Proof. We use Prop 29.4. Thus let X,! Y be the one-point compactification. By definition, U is still open in Y,soK = Y U is closed in Y and therefore compact. By HW 7.3, we can find disjoint open sets V and W in Y with x 2 V and K W. Since W is open, it follows that V is disjoint from W and therefore also from K. In other words, V is contained in U. Proposition 30.5. A space X is Hausdor and locally compact if and only if it is homeomorphic to an open subset of a compact Hausdor space Y. Proof. ()). We saw that X is open in the compact Hausdor space Y = X. b (() As a subspace of a Hausdor space, it is clear that X is Hausdor. It remains to show that every point has a compact neighborhood (in X). Write Y 1 = Y \ X. This is closed in Y and therefore compact. By Problem 3 from HW7, we can find disjoint open sets x 2 U and Y 1 V in Y.ThenK = Y \ V is the desired compact neighborhood of x in X. Corollary 30.6. If X and Y are locally compact Hausdor, then so is X Y. Corollary 30.7. Any open or closed subset of a locally compact Hausdor space is locally compact Hausdor. 31. Fri, Nov 7 We finally turn to the so-called separation axioms. Definition 31.1. A space X is said to be T 0 if given two distinct points x and y, there is a neighborhood of one not containing the other T 1 if given two distinct points x and y, there is a neighborhood of x not containing y and vice versa (points are closed) T 2 (Hausdor ) if any two distinct points x and y have disjoint neighborhoods T 3 (regular) ifpoints are closed and given a closed subset A and x/2 A, there are disjoint open sets U and V with A U and x 2 V T 4 (normal) ifpoints are closed and given closed disjoint subsets A and B, there are disjoint open sets U and V with A U and B V. Note that T 4 =) T 3 =) T 2 =) T 1 =) T 0. But beware that in some literature, the points are closed clause is not included in the definition of regular or normal. Without that, we would not be able to deduce T 2 from T 3 or T 4. We have talked a lot about Hausdor spaces. The other important separation property is T 4.We will not really discuss the intermediate notion of regular (or the other variants completely regular, completely normal, etc.) Proposition 31.2. Any compact Hausdor space is normal. Proof. This was homework problem 7.3. Later in the course, we will see that this generalizes to locally compact Hausdor, as long as we add in the assumption that the space is second-countable. Another important class of normal spaces is the collection of metric spaces. Proposition 31.3. If X is metric, then it is normal. 50

Proof. Let X be metric and let A, B X be closed and disjoint. For every a 2 A, let a > 0bea number such that B a (a) does not meet B (using that B is closed). Let Similarly, we let U A = [ a2a B a/2(a). U B = [ B b /2(b). b2b It only remains to show that U A and U B must be disjoint. Let x 2 B a/2(a) U A and pick any b 2 B. Wehave and thus It follows that U A \ U B = ;. d(a, x) < 1 2 a < 1 d(a, b) 2 d(x, b) d(a, b) d(a, x) >d(a, b) 1 2 d(a, b) =1 2 d(a, b) > 1 2 b. Unfortunately, the T 4 condition alone is not preserved by the constructions we have studied. Example 31.4. (Images) We will see that R is normal. But recall the quotient map q : R! { 1, 0, 1} which sends any number to its sign. This quotient is not Hausdor and therefore not (regular or) normal. Example 31.5. (Subspaces) If J is uncountable, then the product (0, 1) J is not normal (Munkres, example 32.2). This is a subspace of [0, 1] J, which is compact Hausdor by the Tychono theorem and therefore normal. So a subspace of a normal space need not be normal. We also saw in this example that (uncountable) products of normal spaces need not be normal. Example 31.6. (Products) The lower limit topology R`` is normal (Munkres, example 31.2), but R`` R`` is not normal (Munkres, example 31.3). Note that this also gives an example of a Hausdor space that is not normal. Ok, so we ve seen a few examples. So what, why should we care about normal spaces? Look back at the definition for T 2, T 3, T 4. In each case, we need to find certain open sets U and V. How would one do this in general? In a metric space, we would build these up by taking unions of balls. In an arbitrary space, we might use a basis. But another way of getting open sets is by pulling back open sets under a continuous map. That is, suppose we have a map f : X! [0, 1] such that f 0 on A and f 1 on B. ThenA U := f 1 ([0, 1 2 )) and B V := f 1 (( 1 2, 1]), and U \ V =. First, note that the definition of normal, by considering the complement of B, can be restated as Lemma 31.7. Let X be normal, and suppose given A U with A closed and U open. Then there exists an open set V with A V V U. Now we have another very important result. Theorem 31.8 (Urysohn s Lemma). Let X be normal and let A and B be disjoint closed subsets. Then there exists a continuous function f : X! [0, 1] such that A f 1 (0) and B f 1 (1). Sketch of proof. Define U 1 = X \ B, so that we have A U 1. Since X is normal, we can find an open U 0 with A U 0 U 0 U 1. By induction on the rational numbers r 2 Q \ (0, 1), we can find for each r an open set U r with U r U s if r<s. We also define U r = X for r>1. Then define f(x) =inf{r 2 Q \ [0, 1.001) x 2 U r }. 51

Now if x 2 A, thenx 2 U 0,sof(x) = 0 as desired. If x 2 B, thenx/2 U 1,butx2U r for any r>1, so f(x) = 1 as desired. It remains to show that f is continuous. It su ces to show that the preimage under f of the prebasis elements ( 1,a) and (a, 1) are open. We have f 1 ( 1,a)= [ U r, and f 1 (a, 1) = [ X \ U r r2q r2q r<a r>a To see the second equality, note that if f(x) >athenfor any a<r<f(x), we have x /2 U r. But we can then find r<s<f(x), so that x/2 U s U r U r. For more details, see either [Lee, Thm 4.82] or [Munkres, Thm 33.1]. Note that Urysohn s Lemma becomes an if and only if statement if we either drop the T 1 -condition from normal or if we explicitly include singletons as possible replacements for A and B. 52