Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Similar documents
Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Lecture 3. Bose-Einstein condensation Ultracold molecules

Experiments with an Ultracold Three-Component Fermi Gas

ULTRACOLD METASTABLE HELIUM-4 AND HELIUM-3 GASES

Prospects for Bose-Einstein condensation of metastable neon atoms

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ultracold atoms and molecules

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Ultracold Fermi Gases with unbalanced spin populations

Ytterbium quantum gases in Florence

Laser induced manipulation of atom pair interaction

From laser cooling to BEC First experiments of superfluid hydrodynamics

Study on Bose-Einstein Condensation of Positronium

.O. Demokritov niversität Münster, Germany

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

1. Cold Collision Basics

Ultracold molecules - a new frontier for quantum & chemical physics

Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate

Laser MEOP of 3 He: Basic Concepts, Current Achievements, and Challenging Prospects

POSITRON ACCUMULATOR SCHEME for AEGIS

Confining ultracold atoms on a ring in reduced dimensions

A Chromium BEC in strong RF fields

Laser Cooling of Thulium Atoms

Les Houches 2009: Metastable Helium Atom Laser

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Standing Sound Waves in a Bose-Einstein Condensate

Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap

LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS

arxiv:quant-ph/ v2 5 Feb 2001

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

(Noise) correlations in optical lattices

COPYRIGHTED MATERIAL. Index

YbRb A Candidate for an Ultracold Paramagnetic Molecule

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Introduction to cold atoms and Bose-Einstein condensation (II)

Evidence for Efimov Quantum states

NanoKelvin Quantum Engineering

Cold fermions, Feshbach resonance, and molecular condensates (II)

Magnetic resonance in Dense Atomic Hydrogen Gas

Atomic Physics (Phys 551) Final Exam Solutions

Superfluidity in interacting Fermi gases

Quantum Computation with Neutral Atoms Lectures 14-15

Why ultracold molecules?

A study of the BEC-BCS crossover region with Lithium 6

A Mixture of Bose and Fermi Superfluids. C. Salomon

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF

The World s Smallest Extreme Laboratories:

Vortices and other topological defects in ultracold atomic gases

Ultra-Cold Plasma: Ion Motion

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons.

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Chapter 7: Quantum Statistics

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays

Laser cooling and trapping

Titelmasterformat durch Klicken bearbeiten

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Chapter 7: Quantum Statistics

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers

Observation of Feshbach resonances in ultracold

Lecture 4. Feshbach resonances Ultracold molecules

Supplementary Information

arxiv: v1 [physics.atom-ph] 2 Jun 2014

The amazing story of Laser Cooling and Trapping

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Bose-Einstein Condensate: A New state of matter

Compound and heavy-ion reactions

Atom Quantum Sensors on ground and in space

In Situ Imaging of Cold Atomic Gases

Photon-atom scattering

ATOMIC AND LASER SPECTROSCOPY

A new experimental apparatus for quantum atom optics

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 16. Statistical thermodynamics 1: the concepts

Contents Ultracold Fermi Gases: Properties and Techniques Index

Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Møller Polarimetry for PV Experiments at 12 GeV

Quantum Computing with neutral atoms and artificial ions

Production of BECs. JILA June 1995 (Rubidium)

Quantum correlations and atomic speckle

A novel 2-D + magneto-optical trap configuration for cold atoms

Week 13. PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal, Frontiers of Modern AMO physics. 5.

Hong-Ou-Mandel effect with matter waves

Single Atom wants to meet Single Photon Controlled Processes with Neutral Atoms

Achieving steady-state Bose-Einstein condensation

Approaching Bose-Einstein condensation of metastable neon: Over 10 9 trapped atoms

Forca-G: A trapped atom interferometer for the measurement of short range forces

Møller Polarimetry for PV Experiments at 12 GeV

Determining α from Helium Fine Structure

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

Transcription:

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner, Norbert Herschbach, Wouter van Drunen Gerhard Birkl and W.E. Institut für Quantenoptik

Outline Metastable neon 3 P 2 -Lifetime 3 D 3 3 P 2 2p 6 τ 2 Elastic collisions and scattering length Inelastic collisions and their suppression Evaporative cooling Outlook Population RF-knife (η=e/kt) Energy

2p 6 J =0 J =1 J =2 J =3 Neon Naturally occurring Neon-Isotopes 3 D 3 Mass Abundance [%] Nuclear Spin 3p[5/2] 3 20 90.48 0 21 0.27 3/2 22 9.25 0 3 P 0 3s [1/2] 0 1 P 1 3s [1/2] 1 3 P 1 3 P 2 E1 640 nm 3s[3/2] 1 3s[3/2] 2 1 S 0 τ =? 2 M2 16.6 ev Laser-cooling parameters: Wavelength 640 nm Doppler limit 200 µk Recoil limit 2.3 µk Penning-Ionization: Ne*+Ne* Ne + + Ne + e -

From atomic physics to BEC Atomic physics Lifetime of the metastable state:? M. Zinner et al., PRA 67, 010501(R) (2003) 640 nm 16,6 ev Collision physics Rates of elastic and inelastic collisions Suppression of Penning-Ionization by spinpolarization: 10 4? Electronic Detection Direct, highly efficient detection of Ne* and Ne + Real-time detection of ions Spatially resolved detection of atoms Bose-Einstein-Condensation Investigation of collective excitations Measurement of higher order correlation functions BEC thermal

From atomic physics to BEC Atomic physics Lifetime of the metastable state:? M. Zinner et al., PRA 67, 010501(R) (2003) 640 nm 16,6 ev Collision physics Rates of elastic and inelastic collisions Suppression of Penning-Ionization by spinpolarization: 10 4? Electronic Detection Direct, highly efficient detection of Ne* and Ne + Real-time detection of ions Spatially resolved detection of atoms Bose-Einstein-Condensation Investigation of collective excitations Measurement of higher order correlation functions BEC thermal

Experimental Setup

Lifetime of the metastable state 3 D 3 3p[5/2] 3 After Loading the MOT 3 P 0 3s [1/2] 0 1 P 1 3s [1/2] 1 3 P 1 3 P 2 E1 640 nm observation of decay by fluorescence 3s[3/2] 1 τ 2 3s[3/2] 2 M2 16.6 ev 1 S 0 2p 6 J =0 J =1 J =2 J =3

Fluorescence of 20 Ne in a MOT MOT decay N& = α N β N 2 1000000 excitation 47% α -1 = 21.7 s 3 D 3 3 P 2 π 3 π 2 V eff τ 2 Origins of one-body losses α = π 2 τ τ 2 + + γ p π 3 τ 3 radiative decay Fluorescence [au] 100000 10000 2p 6 + α background collisions FT finite trap depth 1000 excitation 0.5% α -1 = 14.4 s population of 3 P 2 -state: π 2 population of 3 D 3 -state: π 3 100 0 20 40 60 80 100 120 time of MOT decay [s]

Background gas collisions: γ p Pressure dependency of MOT decay Offset of pressure gauge: 4(7) 10-12 mbar 0,14 background gas collisions γ = 5.2(1)*10 7 mbar -1 s -1 Ionization processes: Ne* + X = Ne + X + + e - 0,12 Ion signal on MCP: R ion (t) = c 1 (p) N(t) + c 2 N²(t) α [s -1 ] 0,10 1,0 0,9 0,8 0,08 0,06 background gas collision rate 1/640s @ p=3 10-11 mbar 0 25 50 75 100 125 p display [10-11 mbar] c 1 [arb. units] 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 0 1 2 3 4 5 6 7 8 9 10 11 12 p display [10-11 mbar]

Influence of finite trap depth For an infinitely large MOT: trap depth and escape velocity become infinite α [s -1 ] 0,35 0,30 0,08 0,07 π 3 = 0.016 therefore: let the gradient B approach zero! In practice: Trap depth remains finite due to finite size of laser beams 0,06 0,05 0 20 40 60 80 100 Gradient [G/cm] No significant dependency of α on B No correction needed for low excitation measurements

Lifetime τ 2 of the metastable 3 P 2 -state 0,07 14.3 α p=0 [s -1 ] 0,06 0,05 16.7 20.0 α p=0-1 [s] 0,04 25.0 0,0 0,1 0,2 0,3 0,4 0,5 Population in 3 D 3 -state (π 3 ) Error budget: measured α 0.06918(51) s -1 p=0 extrapolation - 0.00156(37) s -1 π=0 extrapolation + 0.00028(13) s -1 thus: α(p=0, π=0) 0.06790(64) s -1 τ 2 14.73(14) s

From atomic physics to BEC Atomic physics Lifetime of the metastable state: 14.73(14)s M. Zinner et al., PRA 67, 010501(R) (2003) 640 nm 16,6 ev Collision physics Rates of elastic and inelastic collisions Suppression of Penning-Ionization by spinpolarization: 10 4? Electronic Detection Direct, highly efficient detection of Ne* and Ne + Real-time detection of ions Spatially resolved detection of atoms Bose-Einstein-Condensation Investigation of collective excitations Measurement of higher order correlation functions BEC thermal

Preparation of spin-polarized atoms Preparation of Magnetically Trapped Atoms Sequence Beam collimation and slowing MOT loading 400 ms N=6x10 8 Compressed MOT σ r =1.3mm spin polarization 78% in m J =+2 +2 +1 0-1 -2 0 µs 2 µs Doppler Cooling PSD = 4.5x10-7 axial: ~200 µk radial: ~450 µk Transfer to MT and adiabatic compression B 0 = 25 G N = 3x10 8 4 µs 8 µs Stern-Gerlach Experiment

Doppler-cooling in the magnetic trap σ + -σ + - irradiation in axial direction of magnetic trap 2000 T axial T radial 1500 T [µk] 1000 Axial: Doppler cooling Radial: cooling by reabsorption Optimized parameters: = -0.5 Γ 500 0 T Doppler = 196 µk 0 500 1000 1500 2000 t [ms] I = 5x10-3 I sat 50-fold gain in phase space density

Elastic collisions

Cross-dimensional Relaxation Kinetic energy is not in equilibrium after Doppler-cooling 700 22 Ne Aspect ratio of the cloud changes σ A= ax σ rad T [µk] 600 500 T axial T radial 400 0 1 2 3 4 5 t* [s] 1,4 T 1,2 Determination of the relaxation rate A& = γ ( A(t) ) rel A eq A 1,0 0,8 6.4 10 9 cm -3 1.3 10 10 cm -3 0 1 2 3 4 5 t* [s] Mean density: 2.9 10 9 cm -3

Cross-dimensional Relaxation γ rel [s -1 ] 2.5 2.0 1.5 1.0 0.5 22 Ne 0.0 0.0 5.0x10 15 1.0x10 16 1.5x10 16 2.0x10 16 2.5x10 16 n v [m -2 s -1 ] Relaxation rate is proportional to density: Description of the relaxation rate γ rel = σ rel n v Connection to elastic collisions σ = σ el v 5 rel rel 4 4. 24 vrel G. M. Kavoulakis, C. J. Pethick, and H. Smith Phys. Rev. A 61, 053603 (2000) T T v Kinetic energy is redistributed by elastic collisions!

Cross Section of elastic collisions 10 5 V [mev] 0-5 -10-15 -20 0 100 200 300 400 500 600 700 800 900 1000 r [a 0 ] ( kr + δ ( )) u ( r ) sin k 0 Centrifugal barrier for d-waves: 5,8 mk Regime of s-wave-scattering Interaction potential: Short range: S. Kotochigova et al., PRA 61, 042712 (2000) Long range: A. Derevianko und A. Dalgarno, PRA 62, 062501(2000) Cross section: 8π 2 σ el ( k) = 2 0 k sin δ ( ( )) k Effective-range approximation: 2 σ ER = k 2 a 2 + 8π a ( ) 1 2 k r a 1 2 2 e

Relaxation cross section 2,0x10-16 Unitarity limit 22 Ne: a= 100 a 0 1,5x10-16 a=-6500 a 0 20 Ne:, a= +20 a 0 a= -130 a 0 σ rel [m 2 ] 1,0x10-16 5,0x10-17 0,0 200 400 600 800 1000 T [µk] Effective range approximation Numerical calculation (shown) 20 Ne: -105(18) a 0 (or +14.4 a 0 ) -120(10) a 0 or +20(10) a 0 22 Ne: +150 a 0 < a < +1050 a 0 +70 a 0 < a < +300 a 0 (100 a 0 )

Inelastic collisions

Simple model of Penning-Ionization Ionization with unit probability below a minimal distance Model (Xe*, NIST) σ = π k ( 2l 1) P ( k, ) ion, l + l 2 T P T.. transmission probability V [mev] 0.0015 0.0010 0.0005 0.0000-0.0005-0.0010 Ionization P T (l=3) 50 100 150 200 r [a 0 ] l=0 l=1 l=2 l=3 Result: 10-9 β ~ 2-3 10-10 cm 3 s -1 β [cm 3 /s] 10-10 10-11 l=0: s-waves l=1: p-waves l=2: d-waves l=3: f-waves β unpol 0,1 1 10 T [mk]

Unpolarized atoms Measurement in MOT N& = α N Consideration of excited atoms S+S collisions: K ss S+P collisions: K sp for small excitation π p : β = K ss + 2 (K SP -K SS ) π p 20 Ne 22 Ne K ss [cm³ s -1 ] 2.5(8) 10-10 8(5) 10-11 β N 2 V eff Fluorescence [arb. units] β [cm³/s] 10 7 10 6 10 5 10 4 1,0x10 K = 2.5(8) -9 ss 10-10 cm 3 /s K sp = 1.0(4) 10-8 cm 3 /s 7,5x10-10 5,0x10-10 2,5x10-10 0 5 10 15 t [s] K sp [cm³ s -1 ] 1.0(4) 10-8 5.9(25) 10-9 0,0 0,000 0,005 0,010 0,015 0,020 0,025 π p

Suppression of Penning-Ionization Dominant loss process in MOT Exchange process τ < 1s @ n=10 9 cm -3 (MOT) - 3s Suppression for spin polarized ensembles + core 2p5 3s - + core 2p5 Limitation of suppression by anisotropic contributions to the interaction during collisions He*: 10 5 BEC Xe*: 1 BEC Ne*? Ne* + Ne* Ne + Ne + + e - S=1 S=1 S=0 S=1/2 S=1/2 S tot = 2 S tot 1

Spin polarized atoms 750 10 8 700 N 10 7 T mean [µk] 650 600 10 6 0 10 20 30 t [s] 550 0 2 4 6 t' [s] N& = α N β N 2 V eff Heating!

Trap loss Analysis: N& = α N β N 2 V eff N(t)-N( 0 ) t 0 N(t')dt' 2 N (t') dt' Veff (t') 0 = α β t N(t')dt' t 0 20 Ne β = 5.3(15) 10-12 cm 3 s -1 Suppression: 50(20) 22 Ne β = 9.4(24) 10-12 cm 3 s -1 Suppression: 9(6) 0 N( t') dt' (N(t)-N 0 ) / N(t)dt [s -1 ] 1 [ s ] N( t) N(0) t -0,1-0,2-0,3 1x10 10 t 2 2x10 10 N V ( t') dt' ( t') n(t)n(t)dt / N(t)dt [cm -3 0 ] t 0 eff N( t') dt' 3 [ cm ] 20 Ne

Heating Inherent heating due to 2-body-losses 750 & N inelast ( r, t) β n 2 ( r, t) 22 Ne: β = 10,2(27) 10-12 cm 3 s -1 T& T = 1 4 β n 700 other mechanisms collisions with background gas secondary collisions T mean [µk] 650 600 20 Ne: β heat = 5.6(15) 10-12 cm 3 s -1 β loss = 5.3(15) 10-12 cm 3 s -1 22 Ne: β heat = 10.2(27) 10-12 cm 3 s -1 0 1 2 3 4 5 6 7 β loss = 9.4 (24) 10-12 cm 3 s -1 550 t' [s]

Evaporative cooling Population RF-knife (η=e/kt) Inelastic collisions Elastic collisions Energy

Conditions for evaporative cooling Good-to-bad ratio γ R = el γ loss Efficiency parameter ( ln ρ ) ( lnn) = d Φ χ d 20 Ne: R~5-15 22 Ne: R~30-50 22 Ne is better suited for evaporative cooling than 20 Ne! χ 1,0 0,5 0,0 R=10 R=30 R=50-0,5-1,0 4 6 8 10 η Cut-off parameter η=e Trap /k B T

Experimental realization 1500 Ramp: from 80 MHz to 44 MHz Trap depth: from 5.5 mk to 1.2 mk Initial cut-off parameter: η=4,5 T [µk] 1250 1000 T ax T rad T variable duration of RF-irradiation 750 Observation: T 500 0 500 1000 1500 2000 1.50x10 10 t Rampe [ms] n 0 1.25x10 10 Phase space density? n 0 [cm -3 ] 1.00x10 10 7.50x10 9 5.00x10 9 0 500 1000 1500 2000 t Rampe [ms]

Increase in phase space density Phase space density Evaporation protocol RF [MHz] E Trap [mk] η 80 5.5 4.5 Ramp #1 44 1.2 2.7 Ramp #2 34 1.0 3.9 Ramp #3 29 0.6 4.5 10-6 10-7 10-8 10 5 10 6 10 7 10 8 N Start Ramp #1 Ramp #2 Ramp #3 Initial conditions Final conditions N = 5 x 10 7 n 0 = 1,3 x 10 10 cm -3 T = 1.2 mk ρ = 1.6 x 10-8 N = 5 x 10 5 n 0 = 5 x 10 9 cm -3 T = 130 µk ρ = 1.9 x 10-7 Efficiency of evaporative cooling χ 0.6

Prospects for BEC Ne* as compared to Bose-condensed species: very high loss rates high rates of elastic collisions Numerical simulation of optimized evaporative cooling phase space density 1 10-1 10-2 10-3 10-4 10-5 10-6 10-7 β = 10-11 cm 3 s -1 β = 10-12 cm 3 s -1 β = 10-13 cm 3 s -1 10 4 10 5 10 6 10 7 10 8 N phase space density 1 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10 2 10 3 10 4 10 5 10 6 10 7 10 8 N a = 100 a0 a = 310 a0 a = 1000 a0

Summary Results Penning ionization (unpolarized, 20 Ne) K ss = 2.5(8) 10-10 cm³ s -1 K sp = 1.0(4) 10-8 cm³ s -1 Penning ionization (unpolarized, 22 Ne) K ss = 8(5) 10-11 cm³ s -1 K sp = 5.9(25) 10-9 cm³ s -1 Two-body losses (spin-polarized) 20 Ne: β = 5.3(15) 10-12 cm 3 s -1 22 Ne: β = 9.4(24) 10-12 cm 3 s -1 Suppression of Penning ionization 20 Ne: ~ 50 22 Ne: ~ 9 Elastic collisions 20 Ne: a = +20(10) a 0 or -110(20) a 0 22 Ne: +70 a 0 < a < +1050 a 0 Evaporative cooling Phase space density x 10 Efficiency χ~0,6 Lifetime of the 3 P 2 -state ( 20 Ne): 14.73(14) s M. Zinner et al., PRA 67, 010501(R) (2003)

Outlook Continue experiments on evaporative cooling of 22 Ne to highest possible phase space density Ion rate measurements with the MCP Investigation of collision properties, especially influence of external (magnetic) fields Manipulation of Interactions? Transfer into an optical dipole trap Photo-association spectroscopy

Collisions in cold gases 0.0015 0.0010 Interaction potential Elastic Collisions Scattering length a: σ = 2 el, T 0 8π a V [mev] 0.0005 0.0000-2 -4-6 -8-10 -12 l=0-14 l=1-16 l=2-18 l=3-20 5 10 15 20 50 100 150 200 r [a 0 ] Potential depth: ~20 mev Long-range potential: C + V LR ( r) = r 2m r 2 6 h l( l 1) + 6 2 motor of evaporative cooling Stability of a BEC Scattering resonances Inelastic Collisions Loss parameter β: N& N inel = 2 σ inel σ inel, T 0 n brake of evaporative cooling Heating Penning-Ionization Influence of spin-polarization v rel T = 1 k β n

Numerical calculation of scattering phases Interaction potential S. Kotochigova et al., PRA 61, 042712 (2000) A. Derevianko und A. Dalgarno, PRA 62, 062501(2000) Numerical determination of the s-wave radial wavefunction gives δ 0 δ 0 0,5 π 0,0 π -0,5 π -1,0 π -1,5 π -340 a 0-144 a 0-58 a 0 + 59 a 0 +151 a 0 +301 a 0 u l ( kr + δ ( )) ( r ) sin k 0-2,0 π 0,00 0,02 0,04 0,06 0,08 0,10 0.5 π k [a 0-1 ] Cross section 8π 2 σ el ( k) = 2 0 k sin δ ( ( k) ) δ 0 0.0 π -0.5 π a= -342,1 a 0 a= -104,3 a 0 a= - 58,0 a 0 a= + 44,3 a 0-1.0 π a= +101,1 a 0 a= +301,1 a 0 10-4 10-3 10-2 10-1 k [a 0-1 ]

Relaxation cross sections 10-15 10-16 σ [m²] 10-17 10-18 10-19 a= -100 a 0 : σ el σ rel a= +100 a 0 : σ el σ rel 10-20 10 100 1000 10000 T [µk]

Inelastic collisions of metastable neon MT MOT discharge (310K) Sheverev et al. J. Appl. Ph. 92, 3454 (2002) Suppression 20 Ne: 50(20) 22 Ne: 9(6)

Decay rate vs. Gradient II 5 4 3 Parameters: = -0.17Γ, s=5 π 3 = 0.41 0,07 α [s -1 ] 0,06 0,05 0,04 0,03 0,02 0 < L M < 0.005 0 5 10 15 20 25 30 35 Gradient [G/cm] Problems: Theories hold for small saturation Models discussed fail to explain the data quantitatively Ionizing background collisions