Mathematics 308 Geometry. Chapter 2. Elementary coordinate geometry

Similar documents
and spell things the way you like. If you want to put the current shade on the stack you write currentgray

Chapter 8. Rigid transformations

Elementary coordinate geometry

Linear Algebra. 1.1 Introduction to vectors 1.2 Lengths and dot products. January 28th, 2013 Math 301. Monday, January 28, 13

1 Notes for lectures during the week of the strike Part 2 (10/25)

Solutions to Selected Questions from Denis Sevee s Vector Geometry. (Updated )

Math 32A Discussion Session Week 2 Notes October 10 and 12, 2017

7.1 Projections and Components

Vectors a vector is a quantity that has both a magnitude (size) and a direction

Course Notes Math 275 Boise State University. Shari Ultman

VECTORS. Given two vectors! and! we can express the law of vector addition geometrically. + = Fig. 1 Geometrical definition of vector addition

Culminating Review for Vectors

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2012/2013, 4th quarter. Lecture 2: vectors, curves, and surfaces

different formulas, depending on whether or not the vector is in two dimensions or three dimensions.

a b 0 a cos u, 0 u 180 :

Vector equations of lines in the plane and 3-space (uses vector addition & scalar multiplication).

Vector Operations Quick Look (*Draft )

Correlation of 2012 Texas Essential Knowledge and Skills (TEKS) for Algebra I and Geometry to Moving with Math SUMS Moving with Math SUMS Algebra 1

mathematical objects can be described via equations, functions, graphs, parameterization in R, R, and R.

Sums of Squares (FNS 195-S) Fall 2014

Midterm 1 Review. Distance = (x 1 x 0 ) 2 + (y 1 y 0 ) 2.

94 CHAPTER 3. VECTORS AND THE GEOMETRY OF SPACE

Mathematics for Graphics and Vision

Linear Algebra I. Ronald van Luijk, 2015

Classification of Isometries

x 1. x n i + x 2 j (x 1, x 2, x 3 ) = x 1 j + x 3

MA 460 Supplement: Analytic geometry

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces

MAT 1339-S14 Class 10 & 11

9th and 10th Grade Math Proficiency Objectives Strand One: Number Sense and Operations

Grade 8 Curriculum Map

Vectors and Plane Geometry

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

Vector Geometry. Chapter 5

8 Right Triangle Trigonometry

4.1 Distance and Length

Worksheet 1.4: Geometry of the Dot and Cross Products

Vectors. A vector is usually denoted in bold, like vector a, or sometimes it is denoted a, or many other deviations exist in various text books.

Vectors. The standard geometric definition of vector is as something which has direction and magnitude but not position.

Exercise Solutions for Introduction to 3D Game Programming with DirectX 10

In these notes we will outline a proof of Lobachevskiĭ s main equation for the angle of parallelism, namely

Euclidean Spaces. Euclidean Spaces. Chapter 10 -S&B

General Physics I, Spring Vectors

COMP 175 COMPUTER GRAPHICS. Lecture 04: Transform 1. COMP 175: Computer Graphics February 9, Erik Anderson 04 Transform 1

(, ) : R n R n R. 1. It is bilinear, meaning it s linear in each argument: that is

Lecture 4: Affine Transformations. for Satan himself is transformed into an angel of light. 2 Corinthians 11:14

The Geometry of R n. Supplemental Lecture Notes for Linear Algebra Courses at Georgia Tech

NOTES ON VECTORS, PLANES, AND LINES

(arrows denote positive direction)

REVIEW - Vectors. Vectors. Vector Algebra. Multiplication by a scalar

4.3 - Linear Combinations and Independence of Vectors

Detailed objectives are given in each of the sections listed below. 1. Cartesian Space Coordinates. 2. Displacements, Forces, Velocities and Vectors

Lecture 2: Vector-Vector Operations

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124

Review of Coordinate Systems

Chapter 3 Representations of a Linear Relation

MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem.

Unit 8. ANALYTIC GEOMETRY.

This pre-publication material is for review purposes only. Any typographical or technical errors will be corrected prior to publication.

Chapter 3 Representations of a Linear Relation

MAC Module 5 Vectors in 2-Space and 3-Space II

Weekly Activities Ma 110

MATH 12 CLASS 2 NOTES, SEP Contents. 2. Dot product: determining the angle between two vectors 2

Modern Geometry Homework.

Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems

Vectors and their uses

Analytic Geometry MAT 1035

Integrated Math 3 Math 3 Course Description:

Notes: Vectors and Scalars

1 Sets of real numbers

III. THIRD YEAR SYLLABUS :

Math 241, Exam 1 Information.

Main topics for the First Midterm Exam

Triangles and Vectors

POINTS, LINES, DISTANCES

Ch. 7.3, 7.4: Vectors and Complex Numbers

Math II. Number and Quantity The Real Number System

1.2 LECTURE 2. Scalar Product

COURSE STRUCTURE CLASS -X

NOTES ON LINEAR ALGEBRA CLASS HANDOUT

MATH Linear Algebra

2014 Summer Review for Students Entering Algebra 2. TI-84 Plus Graphing Calculator is required for this course.

Lecture 4: Affine Transformations. for Satan himself is transformed into an angel of light. 2 Corinthians 11:14

EUCLIDEAN SPACES AND VECTORS

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is

CLASS X FORMULAE MATHS

Unit Speed Curves. Recall that a curve Α is said to be a unit speed curve if

Distance in the Plane

Matrix-Vector Products and the Matrix Equation Ax = b

Chapter 2: Vector Geometry

Vectors for Beginners

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations

11.1 Vectors in the plane

Analytic Geometry MAT 1035

Dr. Allen Back. Sep. 8, 2014

3 Scalar Product. 3.0 The Dot Product. ~v ~w := v 1 w 1 + v 2 w v n w n.

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space

Recognise the Equation of a Circle. Solve Problems about Circles Centred at O. Co-Ordinate Geometry of the Circle - Outcomes

Transcription:

Mathematics 308 Geometry Chapter 2. Elementary coordinate geometry Using a computer to produce pictures requires translating geometry to numbers, which is carried out through a coordinate system. Through nearly all of this course, the coordinate systems we use will have the property that the x and y axes are perpendicular to each other and measured in the same units. The first topic will recall how to calculate lengths in such a coordinate system, which relies simply on Pythagoras Theorem. I shall recall in the text a single proof of this, and suggest others in exercises. Of course many proofs are known the one I present is a variant of Euclid s. It requires a preliminary discussion of shears. 1. Shears A shear is a transformation of a 2D figure that has this effect: It is a bit hard to describe in plain language. Its effect can perhaps be best realized by thinking of the rectangle as a side view of a deck of thick cards: In other words it slides the components of a figure past each other, and it slides things further if they are higher. From this picture it should be at least intuitively clear that Shears preserve area. Roughly speaking this is because sliding a very thin piece of a figure doesn t change its shape. The actual proof that a shear doesn t change area is also very simple, at least if the shear has small enough effect: The idea is that we lop off a triangle from one end and shift it around to the other in order to make a parallelogram into a rectangle. The reason this works is because we can shift that triangle without distorting it. If the shear is a large one, then it can be expressed as a sequence of small ones applied one after the other, and hence still preserves area. This reasoning also shows that area = base height.

Elementary coordinate geometry 2 Of course we have to appeal to some more fundamental result to justify this argument. A rigourous proof can be put together by discussing angles cut off by parallel lines. Ultimately it derives from Euclid s parallel postulate, but I won t discuss this further. Exercise 1.1. Read Euclid s proof of his proposition I.35. Reproduce diagrams illustrating his proof in PostScript. 2. Lengths We begin with the statement of Pythagoras Theorem: For a right triangle with short sides a and b and long side c we have c 2 = a 2 + b 2. For the coordinate systems we are working with, those in in which x and y are measured uniformly and the x and y axes are perpendicular to each other, this has as consequence that The distance from the origin to (x; y) is p x 2 + y 2. The point of our proof (and Euclid s) is that one can explicitly decompose the large square into two rectangles, each of which matches one of the smaller squares in area. We do this by dropping a perpendicular from the right angle vertex across to the hypotenuse and through to the base of the large square. The proof now proceeds by performing a series of shears and translations, which are area-preserving, to transform the rectangles into the corresponding squares.

Elementary coordinate geometry 3 3. Rotations Suppose we rotate the point in the plane with coordinates (x; y) through an angle of. What are the coordinates of the point we then get? The answer is If we rotate the point (x; y) around the origin through angle, the point we get is (x cos, y sin ; x sin + y cos ) : This is a formula used repeatedly, in various guises and in many different circumstances throughout these notes. The proof given here is very direct. (x; y) r The first step is to drop a perpendicular from the rotated point onto the radius vector of (x; y).

Elementary coordinate geometry 4 r sin r r cos What are the coordinates of the bottom of the perpendicular? Because we have rotated through an angle of and rotation preserves distances p from the origin, the distance from the origin to the bottom of the perpendicular is r cos, where r = x 2 + y 2 is the length of the original vector (x; y). The length of the perpendicular itself is r sin. (x cos ; y cos ) Since the triangle on the left is obtained from the one on the right by a simple scaling operation they are similar. The ratio of the long sides is r cos : r, so the coordinates of the bottom of the perpendicular are (x cos ; y cos ). We now add a triangle to the picture: x sin y sin (x cos ; y cos ) It also is similar to the one of the triangles in the previous figure (the angle at its lower right is obtained by a simple rotation from one of the angles in the smaller of those two), and since its long side is r sin its bottom has length x sin and the left side length y sin. But this tells us immediately that the x-coordinate of the rotated point is x cos, y sin, and its y-coordinate is y cos + x sin.

Elementary coordinate geometry 5 If we take (x; y) to be the point (cos '; sin ') we get by rotating (1; 0) through an angle of ', then on the one hand we get the vector (cos(' + ); sin(' + )) that we would get by rotating (1; 0) through an angle of ' +, and on the other the formula we have just proven gives a different expression. Therefore (cos(' + ); sin(' + )) = (cos ' cos, sin ' sin ; cos ' sin + sin ' cos ) In fact, the rotation formula is equivalent to the pair of trigonometrical formulas cos(' + ) = cos ' cos, sin ' sin sin(' + ) = sin ' cos + cos ' sin There is one simple case of the rotation formula which is used very often. If (x; y) are the coordinates of a vector then (,y; x) are the coordinates of the vector rotated through a right angle in the positive direction. This can be seen directly: 4. Angles The cosine sum formula has as an immediate consequence the cosine rule for triangles, which is a generalization of Pythagoras Theorem. c 2 c c 1 a a 2 b 1 b Let the side opposite the origin have length c. By dropping a perpendicular from the origin onto this side we decompose it into two pieces of length, say, c 1 and c 2. Thus c 2 =(c 1 +c 2 ) 2 =c 2 1 +c2 2 +2c 1c 2

Elementary coordinate geometry 6 On the other hand the original angle is decomposed into two parts 1, 2. We know that cos = cos 1 cos 2, sin 1 sin 2 Finally, let y be the length of the perpendicular. By Pythagoras Theorem applied to each of the small triangles and trigonometry c 2 1 = a2, y 2 c 2 2 = b2, y 2 c 1 = a sin 1 y = a cos 1 c 2 = a sin 2 y = a cos 2 so that c 2 =(a 2,y 2 )+(b 2,y 2 )+2ab sin 1 sin 2 = a 2 + b 2, 2ab cos 1 cos 2 +2ab sin 1 sin 2 = a 2 + b 2, 2ab cos The cosine rule in turn relates angles to dot products. The dot product of two vectors in n dimensions is the sum of the products of their coordinates: (x 1 ;x 2 ;:::;x n )(y 1 ;y 2 ;:::;y n )=x 1 y 1 +x 2 y 2 ++x n y n : There are a number of simple formal algebraic rules it satisfies: cx y = c(x y) x cy = c(x y) (x + y) z = x z + y z x x = kxk 2 where kxk is the length of the vector x, the distance of its head from its tail. For vectors u and v where is the angle between u and v. u v = kukkvk cos If u and v are vectors, then they form two sides of a triangle. On the one hand, the square of the length of the third side is ku, vk 2 = ku, vk ku, vk = kuk 2 + kvk 2, 2u v and on the other, by the cosine rule, it is kuk 2 + kvk 2, 2kukkvkcos so by comparison u v = kukkvkcos In particular: The dot product of two vectors is 0 precisely when they are perpendicular to each other. 5. Lines

Elementary coordinate geometry 7 There are several ways to determine lines in the plane. A line is determined by a pair of distinct points P and Q. A line is determined by its equation Ax + By = C: As a special case of this we have the slope-intercept form which describes lines which are not dead vertical. y = mx + b A line is determined by a point P and a direction away from that point. If v =(x; y) is a vector in that direction then the line is the set of points P + tv where t ranges over all real numbers. This is called the parametric representation of the line. In this section we shall answer two questions: (1) What is the geometrical significance of the equation Ax + By = C? and (2) If we are given two lines in parametric form, how do we calculate their intersection? The equation can be rewritten as Ax + By = C (A; B) (x; y) =C: which means that the corresponding line is that of all vectors (x; y) have a fixed dot product with (A; B). If (x 0 ;y 0 )and (x 1 ;y 1 )are two points on the same line then (A; B) (x 0 ;y 0 )=(A; B) (x 0 ;y 0 ); (A; B) (x 0, y 1 ;y 0,y 1 )=0 which means that their difference is is perpendicular to (A; B). There will be exactly one vector (x; y) on the line which is a multiple of (A; B), say t(a; B). We can solve: (A; B) (ta; tb) =C C t= A 2 +B 2 The sign of t will be the sign of C. The length of t(a; B) will be In summary: C p A 2 + B : 2 The vector (A; B) is perpendicular to the line Ax + By = C. The signed distance from the origin to this line is C p A 2 + B 2 :

Elementary coordinate geometry 8 The intersection of two lines in parametric form fp + tug; fq + tvg is a point R which satisfies R = P + tu = Q + sv for some numbers t, s. Thus if w is any vector perpendicular to v (P, Q)+tu = sv (P, Q + tu) w =0 t= (Q,P) w uw Exercise 5.1. Given a line Ax + By = C and a point P =(x 0 ;y 0 ), find a formula for the perpendicular projection of P onto the line.