Analysis of mineral elements in wines using ICP-AES (inductively coupled plasma / atomic emission spectrometry) (Resolution Oeno 478/2013)

Similar documents
ICP-OES Application Note Number 35

Determination of Total Bromine and Iodine Emission Spectrometric Method (ICP-OES) EuSalt/AS

Elemental analysis of river sediment using the Agilent 4200 MP-AES

Fast Analysis of Water Samples Comparing Axially-and Radially- Viewed CCD Simultaneous ICP-OES

Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES

OES - Optical Emission Spectrometer 2000

Analysis of domestic sludge using the Agilent 4200 MP-AES

METHOD 3010A ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TOTAL METALS FOR ANALYSIS BY FLAA OR ICP SPECTROSCOPY

Determination of major, minor and trace elements in rice fl our using the 4200 Microwave Plasma- Atomic Emission Spectrometer (MP-AES) Authors

PROCEDURES. Pharmacopeial Forum 2 Vol. 36(1) [Jan. Feb. 2009]

The Investigation of Fertilizer Analyses Using Microwave Digestion and the Agilent 720-ES

U.S. EPA SW-846 Method 6010C using the Prodigy High Dispersion ICP

á233ñ ELEMENTAL IMPURITIES PROCEDURES

Quantitative analysis of Na, K and Ca in milk and yogurt using the MH-5000 Ultra Compact Elemental Analyzer

UNIVERSITI SAINS MALAYSIA. Second Semester Examination Academic Session 2004/2005. March KAA 502 Atomic Spectroscopy.

RESOLUTION OIV-OENO

Pharmacopeial Forum Vol. 36(1) [Jan. Feb. 2010] 1

Determinations by Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Atomic Emission

Protocol for the design, conducts and interpretation of collaborative studies (Resolution Oeno 6/2000)

Method of determination of phtalates in spirituous beverages by gaschromatography/mass

Using FIMS to Determine Mercury Content in Sewage Sludge, Sediment and Soil Samples

Direct Determination of Aluminium in Milk by Graphite Furnace Atomic Absorption Spectrometry

Hydride Generation for the Determination of As, Sb, Se and Bi Using the Teledyne Leeman Lab s Prodigy 7 ICP-OES

Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ

Sodium Chloride - Analytical Standard

BATTERY INDUSTRY STANDARD ANALYTICAL METHOD

Meeting the Challenges of Soil Analysis with the Avio 200 ICP-OES

ICP-3000 Inductively Coupled Plasma Optical Emission Spectrometer

Sodium Chloride - Analytical Standard

EXPERIMENT 7. Determination of Sodium by Flame Atomic-Emission Spectroscopy

ICP/MS Multi-Element Standards

Determination of Nutrients. Determination of total phosphorus. Extraktion with aqua regia, reflux method. Introduction

Enhancing the productivity of food sample analysis with the Agilent 7700x ICP-MS

Today s Agilent Solutions for Determining Heavy Metals in Food using Atomic Spectroscopy

Determination of Zinc, Cadmium, Lead and Copper in Effluent Sample

Analysis Repeatability of Trace and Major Elements in a Water Sample

The Agilent 7700x ICP-MS Advantage for Drinking Water Analysis

CHEMISTRY DEPARTMENT

NATIONAL ASSOCIATION OF TESTING AUTHORITIES (NATA) REQUIREMENTS FOR ACCREDITATION OF ICP-MS TECHNIQUES

ISO INTERNATIONAL STANDARD

Determination of Trace Cations in Power Plant Waters Containing Morpholine

High-Speed Environmental Analysis Using the Agilent 7500cx with Integrated Sample Introduction System Discrete Sampling (ISIS DS)

Samples compliant with the WATER

Colorimetric Method Method to 0.70 mg/l Ag Powder Pillows

Test Method: CPSC-CH-E

PAR Method Method to 2.0 mg/l Pb TNTplus 850

METHOD 6010A INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY

Analysis of high matrix samples using argon gas dilution with the Thermo Scientific icap RQ ICP-MS

Final Report. Characterisation of Sample Report. Job No 2016/11/12-34 AS No. 1234A. Client Example Contact Sample. Signed Date 2017.

Optimizing Analytical Performance in ICP-OES Applications

Anion and Cation analysis with Professional IC - automatic dilution and sample preparation with SPM

Analytical Method Determination of airborne metal concentrations by ICP-MS Sampling using Solu-Sert filter capsules

METHOD 9035 SULFATE (COLORIMETRIC, AUTOMATED, CHLORANILATE)

DISCLAIMER: This method:

Simple, reliable analysis of high matrix samples according to US EPA Method 6020A using the Agilent 7700x/7800 ICP-MS

U.S. EPA SW-846 Method 6010C Using the Prodigy7 High- Dispersion ICP Introduction. Application Note - AN1305. Experimental

Procedures for the determination of stable elements in construction materials from the nuclear reactors at Risø National Laboratory

Instrument Sample cell orientation Sample cell DR 6000 DR 3800 DR 2800 DR 2700 DR 5000 DR The fill line is to the right.

Thermo Scientific icap RQ ICP-MS: Typical limits of detection

Hach Method Total Organic Carbon in Finished Drinking Water by Catalyzed Ozone Hydroxyl Radical Oxidation Infrared Analysis

Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS

Determination of Chromium in Gelatin Capsules using an Agilent 7700x ICP-MS

Cadion Method Method to 0.30 mg/l Cd TNTplus 852

DRAFT EAST AFRICAN STANDARD

Determination of the inorganic ion composition of standing surface water

Product Safety Reference Manual. Book 5 - Laboratory Policies and Procedures C

Nitrate plus Nitrite and Nitrite in Seawater by Segmented Flow Analysis (SFA)

INTERNATIONAL OLIVE COUNCIL

METHOD 7060A ARSENIC (ATOMIC ABSORPTION, FURNACE TECHNIQUE)

METALS IN WATER BATCH: MATERIAL. Description. Cu, Ni and. Quantity 5% (V/V). Use. the mark in. such a way. water. The are given in QC METAL HL2

Determination the elemental composition of soil samples

BATCH: MATERIAL. Description. water. Quantity QC METAL LL2. is prepared (V/V). Use. be used in the quality. nitric acid is. certificate. intended use.

Direct Determination of Cadmium and Lead in honey by Electrothermal Atomization Atomic Absorption Spectrometry with Zeeman Effect Correction

Direct Measurement of Metallic Impurities in 20% Ammonium Hydroxide by 7700s/7900 ICP-MS

Rapid Sample Assessment and Simplified Method Development with IntelliQuant

FLAME PHOTOMETRY AIM INTRODUCTION

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

RESOLUTION OENO 33/2004 DETERMINATION OF SHIKIMIC ACID IN WINE BY HPLC AND UV-DETECTION

Technical Procedure for Concentration Determination of Methamphetamine in Liquids via HPLC

Multi-Element Analysis of Petroleum Crude Oils using an Agilent 7900 ICP-MS

Multi Analyte Custom Grade Solution. Aluminum, Potassium, Magnesium, ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE

Multi Analyte Custom Grade Solution. Calcium, Iron, Potassium,

Following documents shall be used for reference on quantities, units, prefixes and other technical vocabulary in this document:

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS.

PAR Method Method to 2.0 mg/l Pb TNTplus 850

Sodium Chloride - Analytical Standard

Key Analytical Issues: Sample Preparation, Interferences and Variability. Tim Shelbourn, Eli Lilly and Company

Unité d Agronomie, Centre de recherches INRA de Bordeaux, B.P. 81, Villenave d Ornon Cedex, France

ANALYSIS CERTIFICATE OF

DETERMINATION OF TRACE ELEMENTS IN DRINKING WATER BY AXIALLY VIEWED INDUCTIVELY COUPLED PLASMA - ATOMIC EMISSION SPECTROMETRY. Revision 4.

Scope and application: For water, wastewater and seawater. Distillation is required for wastewater and seawater.

Mercury, total-in-sediment, atomic absorption spectrophotometry, nameless, direct

Trace Metal Dynamic Extraction from Five Pumps in Hydrochloric Acid. Submitted to: Reto Schoeb Levitronix GmbH. Submitted by:

Chlorine, Total. USEPA DPD Method 1 Method to mg/l as Cl 2 Chemkey Reagents. Test preparation. Before starting.

Title Revision No date DETERMINATION OF HEAVY METALS (ARSENIC, CADMIUM, LEAD AND MERCURY) IN COSMETIC PRODUCTS

Reference method for the determination of real alcoholic strength by volume of spirit drinks of viti-vinicultural origin: measurement by pycnometry

Instrument Sample cell orientation Sample cell DR 6000 DR 3800 DR 2800 DR 2700 DR 1900 DR 5000 DR The fill line is to the right.

Nitrogen, ammonia, colorimetry, salicylate-hypochlorite, automated-segmented flow

USGS Troy WSC Laboratory Inductively Coupled Plasma- NH4Cl Soil Extracts SOP 425 Jordan Road Rev. No. 2.0 Troy, NY Date: 03/16/2012 Page 1 of 7

High Throughput Water Analysis using Agilent 7900 ICP-MS coupled with ESI prepfast

Transcription:

Analysis of mineral elements in s using ICP-AES (inductively Method OIV-MA-AS3-3 Type III method Analysis of mineral elements in s using ICP-AES (inductively (Resolution Oeno 478/03). Warning SAFETY PRECAUTIONS - When handling acids, operators should protect their hands and eyes. Acids must be handled under a suitable hood.. Scope This method specifies an inductively coupled plasma atomic emission spectroscopy (ICP-AES) method to determine the concentration of the following elements in s: - Major mineral elements: - Potassium (up to 500 mg/l) - Calcium (up to 50 mg/l) - Magnesium (up to 50 mg/l) - Sodium (up to 00 mg/l) - Minor mineral elements: - Iron ( to 0 mg/l) - Copper (0. to 5 mg/l) - Zinc (0.5 to 5 mg/l) - Manganese (0.5 to 5 mg/l) - Strontium (0. to 3 mg/l) - Aluminium (0.75 to 7.5 mg/l) - Barium (0. to 5 mg/l) OIV-MA-AS3-3 : R03

Analysis of mineral elements in s using ICP-AES (inductively 3. Principle 3. Simultaneous analysis of major and minor elements A :5 dilution is used to prepare the samples in this method in order to be able to analyse both the major and minor elements. The calibration range contains ethanol (.5%) to take into account the matrix effects related to its presence during nebulisation and at the plasma temperature, along with nitric acid (HNO 3 - %) which is used to stabilise the solutions. The lines Sc 335.37 (scandium at 5 mg/l) and Cs 697.37 (caesium as % in CsNO 3) proposed in this method can be used as an internal standard in order to minimise the impact of other non-spectral interferences. Other internal standards, chosen wisely, may also be used in order to optimise the method, such as Y 37.09. Caesium, in the form of CsNO 3. also serves as an ionic buffer when used as an internal standard. The presence of this buffer therefore sets the ionisation balances of the other components. Caesium chloride, CsCl, can also be used as an ionic buffer. The internal standards and ionic buffer are prepared in the same flask and then introduced into the sample through the addition of a third channel in the peristaltic pump before entering the nebuliser as a homogenous mixture. 3. Analysis of the major elements only The analysis of the major elements only can also be performed by carrying out a :50 dilution of the sample. Nitric acid (HNO 3 - %) is added into the standards and the samples in order to stabilise the solutions. Given the dilution performed, the matrix effects are considered negligible. The use of internal standards will not be necessary. Likewise, there will be no need to add ethanol to the calibration range. 4. Reagents and solutions Unless otherwise specified, all the reagents used must be of a recognised analytical quality. 4. Ultra-pure, demineralised water with a resistivity (greater than 8 MΩ), in accordance with the ISO 3696 standard. OIV-MA-AS3-3 : R03

Analysis of mineral elements in s using ICP-AES (inductively 4. Certified mono-element solution(s) (to 000 or 0,000 mg/l) for the mineral elements analysed and the internal standard (scandium for example). 4.3 Internal control: certified reference material () or sample from an intercomparison programme between laboratories, comprising the elements analysed. 4.4 Nitric acid of a concentration greater than 60% (for trace analysis) (CAS No. 7697-37-). 4.5 Ethanol of a concentration greater than 95% (for trace analysis) (CAS No. 64-7-5). 4.6 A solution of % nitric acid Prepare a % nitric acid solution by adding 0 ml of nitric acid (4.4) into a 000 ml flask. 5. Apparatus and equipment 5. Optical emission spectrometer with excitation by induced argon plasma and dispersive system (for wavelength analysis, see table in section 7) with axial, radial or dual configuration and preferably sequential PM, CCD, CID or SCCD type detector. Note : Multi-element analysis using a simultaneous type spectrometer is strongly advised if an internal standard is used in the method. Note : Other systems for introducing the sample may be used in order to increase the sensitivity and robustness of the method (continuous flow injection system, microwave desolvation system (MWDS, etc.). 5. Calibrated micropipettes making it possible to take volumes from 00 µl to 5 ml and/or class A.5 and 0 ml graduated pipettes. 5.3 Class A volumetric flasks Note 3: The equipment in contact with the sample must remain in the nitric acid solution (4.4) at a concentration of 0% for hours and then be rinsed several times with the demineralised water (4.). In order to assess the robustness of the method on the instrument used, it is recommended that the Mg 79.800/Mg 85.3 intensity ratio is calculated; Mg 85.3 being an atomic line and Mg 79.800 being an ionic line. OIV-MA-AS3-3 : R03 3

Analysis of mineral elements in s using ICP-AES (inductively 6. Sample preparation 6. Preparing the calibration range The number of calibration solutions depends on the reliability required. At least five calibration solutions are needed. The reliability and accuracy of the results can be verified by analysing a reference material. The range will be chosen according to the dilution performed. It should cover the scope of the various elements. It is important that the nitric acid concentration is the same in the standards and samples. 6.. Preparing a standard solution for simultaneous analysis of major and minor elements (:5 dilution): Using a micropipette (5.), introduce the desired volume of standard,.5 ml of ethanol (4.5) and ml of nitric acid (4.4) into a 00 ml flask (5.3). Make up to 00 ml with demineralised water (4.) and mix. 6.. Preparing a standard solution for analysing major elements only (:50 dilution): Using a micropipette (5.), introduce the desired volume of standard into a 00 ml flask (5.3), make up to 00 ml with nitric acid solution (4.6) and mix. 6. Preparing the test samples 6.. Preparing test samples for simultaneous analysis of major and minor elements (:5 dilution): Using a graduated pipette or micropipette (5.), introduce 0 ml of sample and ml of nitric acid (4.4) into a 50 ml flask (5.3). Make up to 50 ml with demineralised water (4.) and mix. Sparkling samples must be subjected to degassing using an ultrasound bath for example, for at least 0 minutes. Particularly for samples rich in sugar, mineralisation by microwave digestion in nitric acid is used to destroy organic compounds. Finally, a higher dilution may need to be considered due to a concentration which is too high for certain elements. In this case, the ethanol content may be adjusted accordingly in the solutions and standards. Note 4: Depending on the robustness of the instrument used and given the use of the ionic buffer and internal standards, it is possible to work with a : dilution factor in order to improve the sensitivity of the method for trace elements. As a OIV-MA-AS3-3 : R03 4

Analysis of mineral elements in s using ICP-AES (inductively result, the calibration ranges, ethanol content and possibly the experimental parameters (power) must be modified. 6.. Preparing test samples for analysing major elements only (:50 dilution) Using a graduated pipette or micropipette (5.), introduce ml of sample and 0.5 ml of nitric acid (4.4) into a 50 ml flask (5.3). Make up to 00 ml with demineralised water (4.) and mix. 7. Procedure Experimental parameters The optimal instrument parameters that have enabled us to achieve the specificity for this method in terms of repeatability and reproducibility are described below. They are presented here as an example and may be modified depending on the instrument used. Power:.3 kw Plasma gas flow: 5 L/min Auxiliary gas flow:.5 L/min Nebuliser pressure: 00 kpa Stabilisation period: 0 s Measurement time per replicate: 5 s Pump speed: 5 rpm Rinsing time: 30 s Internal standard inlet internal diameter: 0.5 mm Sample inlet internal diameter: 0.8 mm Turn the unit on (pump operational and plasma switched on) and clean the system for at least 0 minutes with % nitric acid (4.6). Analyse a blank following the series of standards in increasing order of concentration. A reference sample (4.3) can be used as internal quality control to verify that the calibration is satisfactory. Next, analyse the blank again to ensure the absence of memory effect. Next, conduct the analysis of the samples by inserting a quality control every 0 samples and at the end of the analysis series. A control chart can be drawn up from the results obtained in relation to the control sample in order to define the acceptance criteria and actions to be performed in the event of drift. OIV-MA-AS3-3 : R03 5

Analysis of mineral elements in s using ICP-AES (inductively The analyses will be performed for each element with a minimum of 3 replicates. Lines that can be used for the various elements (other lines may be used depending on the equipment). Elements Main line (E sum = E exc + Ca Mg Na Fe Cu Zn Mn Sr Al Rb K E ion) 769.897 (I) (.6 37.933 (II) (0 85.3 (I) (4.3 589.59 (I) (. 59.940 (II) (.7 37.395 (I) (3.8 3.857 (I) (5.8 57.6 (II) (.3 4.55 (II) (8.6 396.5 (I) (3. 780.06 (I) (.6 Associated internal standard Cs 697.37 Sc 335.37 Cs 697.37 Cs 697.37 Sc 335.37 Cs 697.37 Cs 697.37 Sc 335.37 Sc 335.37 Cs 697.37 Cs 697.37 Secondary line (E sum = E exc + E ion) 766.49 (I) (.6 35.887 (II) (0. 79.800 (II) (0.6 39.563 (II) (.4 34.754 (I) (3.8 06.00 (II) (. 60.568 (II) ( 407.77 (II) (8.7 67.09 (I) (7.4 Associated internal standard Cs 697.37 Sc 335.37 Sc 335.37 Sc 335.37 Cs 697.37 Sc 335.37 Sc 335.37 Sc 335.37 Cs 697.37 OIV-MA-AS3-3 : R03 6

Analysis of mineral elements in s using ICP-AES (inductively Li Ba Sc Cs 670.783 (I) (.9 455.403 (II) (7.9 335.37 (II) (0.3 697.37 (I) (.8 Cs 697.37 Sc 335.37 8. Calculation Calculate the concentration of the elements in the sample using the following equation: Where: C: concentration of the element in the sample Cm: concentration of the element in the diluted solution Vt: volume of the dilution flask (ml) (here V=50 ml) Vm: volume of the sample taken for dilution (ml) (here V= or 0 ml) OIV-MA-AS3-3 : R03 7

Analysis of mineral elements in s using ICP-AES (inductively 9. Precision Elements Repeatability Reproducibility LD LQ (RSD %) (RSD %) K.3 5.5 major major Ca 3.5.3 major major Mg.4 8.9 major major Na.6 9. major major Fe. 6.9 0.08 0.5 Cu 3.4 5.8 0.03 0.0 Zn 3.6 6.5 0.03 0.0 Mn 4.7 7.0 0.03 0.0 Al 5.6 7.0 0.03 0.0 Sr. 9.9 0.03 0.0 Ba 8. 0.8 0.03 0.0 Recovery rate Between 80% and 0% APPENDIX: OIV-MA-AS3-3 : R03 8

Analysis of mineral elements in s using ICP-AES (inductively VALIDATION STUDY Results of the collaborative trials A validation study was performed in November 0 (pre-study) and in February 0 (validation study) in accordance with ISO 575 and resolution OENO 6/000. Pre-study: 3 samples (dry white, red and sweet white ), spiked with Al, Fe, Cu, Sr, Ba, Mn and Zn. Samples Element Dry white K 58 75 84 Ca 50 75 8 Na 0 8 4 Mg 78 70 66 Al.9.33.97 Fe 8. 6.9 9.9 Cu 0.86 0.86 0.94 Sr.07.08.07 Ba 0.77 0.7 0.63 Mn.6.0.77 Zn.5.53.69 SAMPLES OIV-MA-AS3-3 : R03 9

Analysis of mineral elements in s using ICP-AES (inductively Element Ref value Spike Recovery % Ref value Spike Recovery % K 754 0 98 080 35 96 Ca 83 98 76 0 0 Na 50 8 05 4 0 00 Mg 65 0 98 7 7 0 Al 0.50 0 00.9 04 Fe.86 94.7 0 97 Cu 0.04 0 no add. 0.7 03 Sr.7 05 0. 0 08 Ba 0.08 0 0 0.64 96 Mn.84 98. 0 0 Zn.40 0 00. 0 Element Ref value Spike Recovery % Ref value Spike Recovery % K 60 70 00 37 36 95 Ca 6 03 67 7 0 Na 7 56 00 9 0 00 Mg 8 7 0 80 0 99 Al 0.8 0 05.8 03 Fe 4.90 0 0 4.55 0 0 Cu 0.46 0 0 0. 0 65 Sr 0.8 0 0.3 05 Ba 0. 0 0 0.6 97 Mn.8 00.0 0 0 Zn 0.95 0 07.68 0 OIV-MA-AS3-3 : R03 0

Analysis of mineral elements in s using ICP-AES (inductively Element Ref value Spike Recovery % Ref value Spike Recovery % K 05 46 96 83 0 0 Ca 85 4 99 9 0 0 Na 68 4 98 0 00 Mg 63 0 97 66 6 0 Al.65 0 0.80 0 96 Fe 3.03 0 97 4.63 0 0 Cu 0.73 0 0. 0 94 Sr.73 06 0. 0 96 Ba 0. 0 94 0.34 0 90 Mn.0 0 99.6 0 Zn.53 0.8 0 00 Participant laboratories had the choice to carry out the analysis of elements - either in two steps: high dilution for major elements and low dilution for minor elements, preferably with internal standards. - or in one step: the same dilution for all elements with internal standards. For each sample number and for each determination, the first individual value was used. The two individual portions of blind identical replicas per laboratory are considered as a single material. Outlier elimination was performed using a sequential application of the Cochran (applied to variances) and Grubbs (applied to mean values) tests (at a.5% probability (P) level, -tail for Cochran and -tail for Grubbs) until no further outliers were flagged or until a drop of.% in the original number of laboratories providing valid data occurred. With the exception of the element calcium in the "sweet " sample, which exhibits a Horrat R value of., all the elements were compliant. For this sample, 93% of the laboratories have a satisfactory Z-score (4 results) and 7% of the laboratories have a questionable Z-score ( result). Consequently, as the five other samples were compliant for the determination of calcium, including another sweet sample with the same calcium concentration, it was decided to validate this element and to include it in the analytical method. OIV-MA-AS3-3 : R03

Analysis of mineral elements in s using ICP-AES (inductively For the determination of major elements, 9 laboratories used a high dilution and 6 laboratories used a single dilution for all (major and minor) elements. There were no differences between the results of both groups. Tableau - Potassium Statistical parametres Total 5,00 5,00 5,00 5,00 5,00 5,00 Accepted 3,00 3,00 4,00,00 4,00 4,00 Repetitions,00,00,00,00,00,00 Vréf 754,38 079,8 60,33 370,96 05,46 83,6 Limit of,45 47,3 3,68 50,64 4,78 4,9 repeatability - r RSD r (%),0,50 4,00,30 4,00,80 RSD r Horwitz 3,90 3,69 3,65 3,56 3,68 3,84 r Horrat 0,30 0,40,0 0,40,0 0,50 Limite de 39,5 8,8 65,46 47,56 76,0 4,93 reproductibility - R RSD R (%) 6,50 6,00 5,00 3,80 5,60 6,0 RSD R Horwitz 5,90 5,59 5,53 5,39 5,57 5,8 R Horrat,0,0 0,90 0,70,00,00 OIV-MA-AS3-3 : R03

Analysis of mineral elements in s using ICP-AES (inductively Statistical parametres Tableau - Calcium Total 5,00 5,00 5,00 5,00 5,00 5,00 Accepted 0,00 0,00 3,00 0,00 3,00 5,00 Repetitions,00,00,00,00,00,00 Vréf 85,37 73,43 67,68 66,00 78,35 9,39 Limit of repeatability 3,30 4, 4,60,86 7,96 6,66 - r RSD r (%),0,00,40,50 3,60 0,0 RSD r Horwitz 5,85 5,53 5,60 5,6 5,48 5,34 r Horrat 0,30 0,40 0,40 0,30 0,70,90 Limite de 0,68 0,45 4,58 9,5 9,85 45,60 reproductibility - R RSD R (%) 4,40 5,00,0 5,0 3,50 7,40 RSD R Horwitz 8,9 8,38 8,48 8,5 8,30 8,0 R Horrat 0,50 0,60,60 0,60 0,60,0 OIV-MA-AS3-3 : R03 3

Analysis of mineral elements in s using ICP-AES (inductively Statistical parametres Tableau 3 - Sodium Total 5,00 5,00 5,00 5,00 5,00 5,00 Accepted 5,00 3,00,00,00 4,00 5,00 Repetitions,00,00,00,00,00,00 Vréf 50,50 4,09 7,43 8,76 67,9,4 Limit of repeatability 3,00,3,53,73 5,0,85 - r RSD r (%),0,90,0 3,30,70 3,00 RSD r Horwitz 5,85 6,54 5,55 6,79 5,60 6,6 r Horrat 0,30 0,30 0,0 0,50 0,50 0,50 Limite de 9,4 6,09 5,9 6,7 3,09 6,49 reproductibility - R RSD R (%) 6,60 9,90 7,50,70 6,80 0,70 RSD R Horwitz 8,87 9,9 8,4 0,9 8,48 0,09 R Horrat 0,70 0,90 0,90,0 0,80,0 OIV-MA-AS3-3 : R03 4

Analysis of mineral elements in s using ICP-AES (inductively Tableau 4 - Magnésium Statistical parametres Total 5,00 5,00 5,00 5,00 5,00 5,00 Accepted 5,00 5,00 4,00 4,00 3,00 4,00 Repetitions,00,00,00,00,00,00 Vréf 65,30 7,03 8,5 80,0 6,63 65,53 Limit of repeatability 3,43 4,9 0,7 7,5 5,3,7 - r RSD r (%),90,0 4,40 3,0 3,00,0 RSD r Horwitz 5,63 5,55 5,44 5,46 5,67 5,63 r Horrat 0,30 0,40 0,80 0,60 0,50 0,0 Limite de 5,6 6,33 9,80 0,3 5,86 3,74 reproductibility - R RSD R (%) 8,30 8,00,80 8,90 8,90 7,40 RSD R Horwitz 8,53 8,40 8,4 8,7 8,58 8,53 R Horrat,00,00,60,0,00 0,90 OIV-MA-AS3-3 : R03 5

Analysis of mineral elements in s using ICP-AES (inductively Tableau 5 - Aluminium Statistical parametres Total 5,00 5,00 5,00 5,00 5,00 5,00 Accepted 0,00 9,00 8,00 8,00 9,00 8,00 Repetitions,00,00,00,00,00,00 Vréf 0,50,9 0,8,8,65 0,80 Limit of repeatability 0,9 0, 0, 0,5 0,5 0,05 - r RSD r (%) 3,0 3,30 9,40,80 3,0,0 RSD r Horwitz,7 0,9 0,89 9,65 9,79 0,93 r Horrat,0 0,30 0,90 0,30 0,30 0,0 Limite de 0,4 0,33 0,33 0,46 0,97 0,4 reproductibility - R RSD R (%) 9,80 0,00 4,0 8,90 0,80 8,0 RSD R Horwitz 7,75 5,59 6,50 4,6 4,84 6,56 R Horrat,70 0,60 0,90 0,60,40,0 OIV-MA-AS3-3 : R03 6

Analysis of mineral elements in s using ICP-AES (inductively Tableau 6 - Fer Statistical parametres Total 0,00 0,00 0,00 0,00 0,00 0,00 Accepted 6,00 7,00 7,00 6,00 7,00 7,00 Repetitions,00,00,00,00,00,00 Vréf,86,7 4,90 4,55 3,03 4,63 Limit of repeatability 0,9 0,06 0,57 0,33 0, 0,70 - r RSD r (%),30,30 4,0,60,40 0,50 RSD r Horwitz 9,0 9,74 8,3 8,4 8,94 8,38 r Horrat 0,30 0,0 0,50 0,30 0,30 0,0 Limite de 0,0 0,9 0,99 0,34 0,34,5 reproductibility - R RSD R (%),50 6,0 7,0,60 3,90 9,0 RSD R Horwitz 3,66 4,76,59,74 3,54,70 R Horrat 0,0 0,40 0,60 0,0 0,30,50 OIV-MA-AS3-3 : R03 7

Analysis of mineral elements in s using ICP-AES (inductively Tableau 7 - Cuivre Statistical parametres Total 9,00 0,00 0,00 0,00 0,00 0,00 Accepted 7,00 0,00 8,00 0,00 8,00 0,00 Repetitions,00,00,00,00,00,00 Vréf 0,04 0,7 0,46 0, 0,73 0, Limit of repeatability 0,03 0,0 0,08 0,05 0,03 0,0 - r RSD r (%) 4,30 4,80 6,00 4,40,70 9,00 RSD r Horwitz 6,95,,87 4,6,07 4,55 r Horrat,40 0,40 0,50,00 0,0,00 Limite de 0,03 0, 0,09 0,05 0,4 0,0 reproductibility - R RSD R (%) 4,30 0,40 6,80 6,40 6,80 30,0 RSD R Horwitz 5,68 6,84 7,98,5 6,77,05 R Horrat 0,90 0,60 0,40 0,70 0,40,40 OIV-MA-AS3-3 : R03 8

Analysis of mineral elements in s using ICP-AES (inductively Statistical parametres Tableau 8 Strontium Total 8,00 8,00 8,00 8,00 8,00 8,00 Accepted 7,00 7,00 7,00 6,00 7,00 6,00 Repetitions,00,00,00,00,00,00 Vréf,7 0, 0,8,3,73 0, Limit of repeatability 0,03 0,0 0,04 0,06 0, 0,00 - r RSD r (%),00,70 5,50,70,60 0,50 RSD r Horwitz 0,9 3,5,76 0,3 9,7 3,30 r Horrat 0,0 0,0 0,40 0,0 0,30 0,00 Limite de 0,8 0,07 0, 0,09 0,4 0, reproductibility - R RSD R (%) 5,0,40 5,30,50 5,00 0,00 RSD R Horwitz 5,44 0,08 9,34 5,34 4,73,5 R Horrat 0,30 0,60 0,80 0,0 0,30,00 OIV-MA-AS3-3 : R03 9

Analysis of mineral elements in s using ICP-AES (inductively Tableau 9 - Barium Statistical parametres Total 8,00 8,00 8,00 8,00 8,00 8,00 Accepted 7,00 8,00 8,00 7,00 8,00 8,00 Repetitions,00,00,00,00,00,00 Vréf 0,08 0,64 0, 0,6 0, 0,34 Limit of repeatability 0,0 0,38 0,0 0,6 0,0 0,06 - r RSD r (%) 5,70,00 3,60 9,0 3,30 6,30 RSD r Horwitz 5,33,30 4,5,34 4,73,4 r Horrat 0,40,90 0,0 0,80 0,0 0,50 Limite de 0,04 0,38 0,05 0,54 0,05 0,4 reproductibility - R RSD R (%) 8,80,00 3,90 30,07 5,80 4,50 RSD R Horwitz 3,3 7,,00 7,8,3 8,80 R Horrat 0,80,0 0,60,80 0,70,30 OIV-MA-AS3-3 : R03 0

Analysis of mineral elements in s using ICP-AES (inductively Tableau 0 - Manganèse Statistical parametres Total 0,00 0,00 0,00 0,00 0,00 0,00 Accepted 9,00 0,00 9,00 0,00 8,00 8,00 Repetitions,00,00,00,00,00,00 Vréf,84,,8,0 0,,6 Limit of repeatability 0,09 0, 0,49 0,4 0,3 0,60 - r RSD r (%),60 6,50 9,60 4,50 4,60,30 RSD r Horwitz 9,64 0,38 9,66 0,4 0,55 9,8 r Horrat 0,0 0,60,00 0,40 0,40 0,0 Limite de 0,5 0, 0,49 0, 0, 0,38 reproductibility - R RSD R (%) 4,80 6,50 9,60 7,0 7,0 8,30 RSD R Horwitz 4,60 5,73 4,63 5,78 5,98 4,88 R Horrat 0,30 0,40 0,70 0,50 0,30 0,60 OIV-MA-AS3-3 : R03

Analysis of mineral elements in s using ICP-AES (inductively Tableau - Zinc Statistical parametres Total 0,00 0,00 0,00 0,00 0,00 0,00 Accepted 7,00 8,00 9,00 8,00 7,00 7,00 Repetitions,00,00,00,00,00,00 Vréf,40, 0,95,68,53,8 Limit of repeatability 0,09 0,6 0, 0,0 0,8 0,05 - r RSD r (%),40,60 8,40,0 4,0,60 RSD r Horwitz 0,03 9,43 0,65 9,77 9,9 0,30 r Horrat 0,0 0,30 0,80 0,0 0,40 0,0 Limite de 0,0 0,39 0,9 0,36 0, 0, reproductibility - R RSD R (%),40 6,50 0,70 7,60 5,0 6,70 RSD R Horwitz 5,0 4,8 6,3 4,80 5,0 5,6 R Horrat 0,0 0,50 0,70 0,50 0,30 0,40 OIV-MA-AS3-3 : R03

Analysis of mineral elements in s using ICP-AES (inductively / Laboratoires participants : Onze laboratoires ont participés à cette étude collaborative : - State General Laboratory, NMR Lab, Nicosia Chypre - ANALAB CHILE S.A., Santiago Chile - CISTA, National Reference Laboratoty Brno Czech Republic - Laboratório de Análises- REQUIMTE- FCT/UNL, Caparica Portugal - Laboratório Central de Análises - Universidade de Aveiro Portugal - Laboratory of National Center of Alcoholic Beverages Testing, Chisinau Republic of Moldova - National Research Institute of Brewing, Higashihiroshima Japon - Instituto Nacional de Vitivinicultura, Laboratorio General, Mendoza Argentine - LFZ Wein und Obstbau, Klosterneuburg Autriche - Laboratorio Arbitral Agroalimentario, Madrid Spain - Laboratoire SCL de Bordeaux-Pessac France OIV-MA-AS3-3 : R03 3