Magnetism in transition metal oxides by post-dft methods

Similar documents
Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany

Mott insulators. Mott-Hubbard type vs charge-transfer type

Introduction to Density Functional Theory

Band calculations: Theory and Applications

Density functional theory study of MnO by a hybrid functional approach

Modified Becke-Johnson (mbj) exchange potential

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

DFT: Exchange-Correlation

All electron optimized effective potential method for solids

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

Crystalline and Magnetic Anisotropy of the 3d Transition-Metal Monoxides

The LDA+U method: a primer and implementation within SIESTA

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

arxiv: v2 [cond-mat.str-el] 5 May 2014

DFT: Exchange-Correlation

Role of van der Waals Interactions in Physics, Chemistry, and Biology

Basics of DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Pseudopotentials for hybrid density functionals and SCAN

Exchange-Correlation Functional

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

ABC of ground-state DFT

1 Density functional theory (DFT)

Density Functional Theory for Electrons in Materials

Electronic correlation and Hubbard approaches

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based

Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign

First principle calculations of plutonium and plutonium compounds: part 1

New Perspectives in ab initio Calculations. Semiconducting Oxides

A polymorphous band structure model of gapping in the antiferromagnetic and paramagnetic phases of the Mott insulators MnO, FeO, CoO, and NiO

Teoría del Funcional de la Densidad (Density Functional Theory)

?What are the physics questions?

Electronic structure calculations results from LDA+U method

Defects in TiO 2 Crystals

Supporting Information

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2.

Orbital Density Dependent Functionals

Module 6 1. Density functional theory

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics

Electronic correlations in models and materials. Jan Kuneš

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor

Introduction to density-functional theory. Emmanuel Fromager

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122

SnO 2 Physical and Chemical Properties due to the Impurity Doping

ABC of ground-state DFT

15 Electronic Structure of Perovskites: Lessons from Hybrid Functionals

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p.1/26

Correlation Effects in Real Material

Mott transition of MnO under pressure: A comparison of correlated band theories

Facet engineered Ag 3 PO 4 for efficient water photooxidation

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Key concepts in Density Functional Theory (I) Silvana Botti

Density Functional Theory - II part

Explaining the apparent arbitrariness of the LDA-1/2 self-energy. correction method applied to purely covalent systems

An introduction to the dynamical mean-field theory. L. V. Pourovskii

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln

Basic Concepts and First Principles Computations for Surface Science: Applications in Chemical Energy Conversion and Storage.

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations

Comparison of exchange-correlation functionals: from LDA to GGA and beyond

CO Adsorption Site Preference on Platinum: Charge Is the Essence

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament

Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type

Towards ab initio device Design via Quasiparticle self-consistent GW theory

Electronic Structure: Density Functional Theory

Density matrix functional theory vis-á-vis density functional theory

Structure of CoO(001) surface from DFT+U calculations

X-ray absorption spectroscopy.

Some surprising results of the Kohn-Sham Density Functional

Metal-insulator transitions

Intermediate DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Kohn Sham density functional theory [1 3] is. Role of the Exchange Correlation Energy: Nature s Glue STEFAN KURTH, JOHN P. PERDEW.

XYZ of ground-state DFT

Methods available in WIEN2k for the treatment of exchange and correlation effects. F. Tran

OVERVIEW OF QUANTUM CHEMISTRY METHODS

Ab-initio Electronic Structure Calculations β and γ KNO 3 Energetic Materials

Magnetism. Eric Bousquet. University of Liège. Abinit School, Lyon, France 16/05/2014

First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes

A FRESH LOOK AT THE BAND-GAP PROBLEM IN DENSITY FUNCTIONAL THEORY

Interaction between a single-molecule

Finite-Temperature Hartree-Fock Exchange and Exchange- Correlation Free Energy Functionals. Travis Sjostrom. IPAM 2012 Workshop IV

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique

HIGH-PRESSURE CHARACTERISTICS OF α Fe 2 O 3 USING DFT+U

Introduction to Density Functional Theory

arxiv:cond-mat/ v1 9 Aug 2006

DFT+U practical session

Projector augmented wave Implementation

Ab initio Electronic Structure

The electronic structure of materials 2 - DFT

Basics of DFT. Kieron Burke and Lucas Wagner. Departments of Physics and of Chemistry, University of California, Irvine, CA 92697, USA

Progress & challenges with Luttinger-Ward approaches for going beyond DFT

Principles of Quantum Mechanics

Introduction and Overview of the Reduced Density Matrix Functional Theory

Quantum Chemical Study of Defective Chromium Oxide

SUPPLEMENTARY INFORMATION

Key concepts in Density Functional Theory

Oxide Interfaces: Perspectives & New Physics

Transcription:

Magnetism in transition metal oxides by post-dft methods Cesare Franchini Faculty of Physics & Center for Computational Materials Science University of Vienna, Austria Workshop on Magnetism in Complex Systems, 29

Outline 1 Methodology DFT, HF, DFTh, DFT+U VASP 2 Bulk (1): Transition metal monoxide CuO MnO 3 Bulk (2): Multivalent oxides Multivalent manganese oxides Mn x O y 4 Surfaces MnO(1) & MnO(11) surfaces 5 Thinlayers Mn x O y on Pd(1)

DFT, HF, DFTh, DFT+U DFT (1) Ĥ of N interacting electrons in an external potential Ĥ = ˆT + ˆV + Ŵ ˆT = N 2 i i=1 2 (kinetic operator) ˆV = N i=1 v(r i) (potential operator) Ŵ = 1 2 N i=1 N j=1,i j Hohemberg-Kohn theorem 1 (Coulomb interaction operator) r i r j 1 Many particle ground state unique functional of n(r) 2 Variational Principle: E = E v [n ] < E v [n] 3 Universal functional F[n]: E v [n] = F[n] + d 3 rv (r)n(r) F[n] = Ψ[n] ˆT + Ŵ Ψ[n], density dependence unknown

DFT, HF, DFTh, DFT+U DFT (2) The Kohn-Sham method: single particle scheme [ 2 2 + v s(r)] = ǫ i ϕ i (r), n(r) = occ i ϕ i (r) 2 Central idea: to construct the single-particle potential v s (r) in such a way that the density of the auxiliary non-interacting system equals the density of the interacting system of interest F[n] = T s [n] + W H [n] + E xc [n], W H [n] = 1 2 d 3 r d 3 r n(r)n(r ) r r

DFT, HF, DFTh, DFT+U DFT (3) Exchange-correlation energy E xc [n] = T[n] + W[n] W H [n] T s [n] = E x [n] + E c [n] v s [n](r) = v(r) + d 3 r n(r ) r r + v xc[n](r) v xc [n](r) = δexc[n] δn(r) Self consistent loop [ 2 Z v s[n](r) = v(r) + 2 + vs(r)] = ǫ iϕ i (r) (1) Xocc n(r) = ϕ i (r) 2 (2) i d 3 r n(r ) + vxc[n](r) (3) r r

DFT, HF, DFTh, DFT+U DFT (4) E c = E exact E KS Correlation energy Short range screening term to account for the approx. we make in assuming that an electron moves in the average field for all the others. g(x,y) = f 1 (x)f 2 (y) only if when x and y independent E x = KS Ŵ KS W H Exchange energy It is a correction to the Hartree term: self interaction (the Coulomb interaction of an electron with itself)

DFT, HF, DFTh, DFT+U DFT (5) F[n] = T s [n] + W H [n] + E xc [n], xc functionals?: DFT does not give any hint on how to construct E xc, it only holds the promise that E xc is a universal functional of the density LDA Exc LDA [n] = d 3 rn(r)exc unif (n(r)) Good for spatially slowly varying density GGA Exc GGA [n] = d 3 rf(n(r), n(r)) Non unique, many different forms. meta-gga Exc MGGA [n] = d 3 rf(n(r), n(r), τ(r)) Additional flexibility

DFT, HF, DFTh, DFT+U Hartree-Fock Theory (1) Single-particle problem Single-electron operators: Ĥ = N i=1 (ĥ(i) + ˆv (i) HF ) ĥ (i) = Kinetic + Potential ˆv (i) HF = e-e interaction ( j<i 1 r ij ) Slater Determinants Ψ = ψ i (x 1 )ψ j (x 2 )...ψ k (x N ) ψ(x) = φ(r)α(σ) or φ(r)β(σ) Self-Interaction Free (exact exchange) 1 N N 2 i=1 j=1 (ii ˆv jj) - (ij ˆv ji) If ψ i = ψ j the self interaction term (ii ˆv ii) is canceled by the exchange part

DFT, HF, DFTh, DFT+U Hartree-Fock Theory (2) No correlation Correlated movement of the electrons in HF only for like-spin electrons. Whenever two electrons occupy the same orbital the determinant will vanish (two rows are identical). HF considered correlation free. Notorious failure: metal state A pseudo-gap at the Fermi level due to the unscreened exchange interaction: δǫhf (k) δk, k = k F

DFT, HF, DFTh, DFT+U Summing up... DFT Approx. EXCHANGE HF Exact EXCHANGE Approx. CORRELATION No Correlation DFT+HF: Hybrid Functionals (DFTh) 1 MIX a fraction of exact HF exchange with GGA exchange: E HYB x a = mixing empirical parameter [n] = aex HF [n] + (1 a)ex GGA [1] Becke, A. D., J. Chem. Phys. 98, 1372 (1993).

DFT, HF, DFTh, DFT+U DFTh PBE 1,2 E PBE xc = 1 4 E HF x + 3 4 E PBE x + E PBE c HSE3 3 (PBE - long-ranged Fock exchange) E HSE3 xc = 1 4 E HF,sr,µ x + 3 4 E PBE,sr,µ x 1 r r = S µ( r r ) + L µ ( r r ) + E PBE,lr,µ x + E PBE c [1] M. Ernzerhof, and G.E. Scuseria, J. Chem. Phys., 11, 529 (1999). [2] J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 15, 9982 (1996). [3] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 22416 (26).

DFT, HF, DFTh, DFT+U DFT+U 1 DFT (LDA or GGA) De-localized electrons (s,p) + Hubbard Hamiltonian Localized electrons (d,f) LDA+U E = E LDA UN(N 1)/2 + 1 2 U i j n in j N = n i, (n i are d/f-orbital occupancies) ǫ i = δe/δn i = ǫ LDA + U( 1 2 n i) LDA+U shifts the LDA orbital energy by -U/2 for occupied orbitals (n i = 1) and by +U/2 for unoccupied orbitals (n i = ) [1] V. I. Anisimov, J. Zaanen and O. K. ANdersen, Phys. Rev. B 44, 943 (1991).

DFT, HF, DFTh, DFT+U Applicability: Single Slater Determinant LDA HSE LDA+U HF DOS Energy Energy Energy weak exchange Jellium (UEG) intermediate strong exchange Mott insulator Multi Slater determinant systems (highly correlated) DMFT

VASP Vienna ab initio Simulation Package (VASP) Plane Wave basis set: Pseudopotentials φ n,k (r) = G C n,k+ge i(k+g)r Projector augmented wave method (PAW)

CuO Rocksalt CuO? T N (K) 1 9 8 7 6 5 4 3 2 Rock salt structure Rock salt CuO? Monoclinic 1 MnO FeO CoO NiO CuO Transition metal compound

CuO Monoclinic CuO Cu 2+ (d 9 ): Jahn-Teller distortion Unlike other members of the TM oxide series CuO is unstable upon a Jahn-Teller distortion, which splits apart d x 2 y 2 and d2 z and the monoclinic crystal field polarizes the d 2 z states. LDA/GGA Metal - No splitting HSE Insulating, gap = 2.1 ev

CuO Rocksalt-Tetragonal CuO [1] Siemons et al., cond-mat FM q=(.5,.5, ) AFM1 q=(.5,.5, ) AFM2 q=(.5,.5,.5) AFM3 q=(,,.5) AFM4 TET1 TET2 HSE HSE Expt.[1] a=b (Å) 4.4 3.98 3.95 c (Å) 3.87 5.381 5.3 c/a.82 1.377 1.357 E g (ev) 1.57 2.7 - m Cu (µ B).71.69 - AFM5 q=(.5,, -.5)

CuO TET1: (d x 2 y 2)2 (d yz, d xz ) 4 (d xy ) 2 (d z 2) 1 TET2: (d z 2) 2 (d yz, d xz ) 4 (d xy ) 2 (d x 2 y 2)1 Intensity (arb.) Total Expt. Cu d O p -8-6 -4-2 Relative Binding Energy (ev)

CuO Magnetic interactions & Neél Temperature (T N ) Heisenberg H H = i j J ijs i S j Mol. Field theory T N = 2S(S+1) 3k B i j J ij Results (mev, K) J xy J xz J x J z T N TET1-7. 4. -51.6-197.7 17 TET2 63. 32.3-159.4 6.5 865 C2/c[1] -14 2.4-38.4 17 [1] Filippetti et al. PRL95, 8645 (25) T N (K) 1 9 8 7 6 5 4 3 2 elongated-rocksalt CuO Rock salt structure Monoclinic 1 MnO FeO CoO NiO CuO Transition metal compound

MnO Rhombohedrally distorted rocksalt structure (9 +α) PBE PBE+U PBE HF Expt. 1.44 2.3 4.2 12.6 3.6-4.2 m 4.31 4.69 4.52 4.7 4.58, 4.79 v 1.3 3. 1.7 3.9 1.8, 1.9 a 4.37 4.48 4.4 4.38 4.43, 4.4448 α 1.66.56.88.62 Energy(eV) PBE PBE+U PBE 8 6 4 2-2 -4-6 -8 X Γ Z X Γ Z X Γ

MnO DOS (States/eV - atom - spin) 4 2 2 Mn1, d 1-1 -2 2 1-1 -2 Total Mn2, d.8 O, p PBE PBE+U.4 PBE -1-8 -6-4 -2 2 4 6 8 1 Energy (ev) t 2g e g t 2g e g PBE PBE+U PBE HF Expt. 1.44 2.3 4.2 12.6 3.6-4.2 m 4.31 4.69 4.52 4.7 4.58, 4.79 v 1.3 3. 1.7 3.9 1.8, 1.9 a 4.37 4.48 4.4 4.38 4.43, 4.4448 α 1.66.56.88.62 Intensity (arb.) Expt Theory e g t 2g e g -1-8 -6-4 -2 2 4 6 8 1 Relative Binding Energy (ev) t 2g e g

MnO Origin of the Rhombohedral distortion: Magnetism Heisenberg Hamiltonian H = P NN J 1S i S j + P NNN J 2S i S j. H B1 = 3J 2 S 2 H dist = 3J 1 S2 + 3J 1 S2 3J 2 S 2 H dist H B1 = (J 1 J 1 )3S2 < which means J 1 < J 1 PBE PBE+U PBE HF Semiempirical 1,2 J 1 17.6 8.2 11.5 2.7 J 2 27.9 4.3 13.7 4.3 1.3 9.6 J 1 2.7 8.7 12.8 1. 9.9 J 1 14.3 7.7 1.6 7.9 7.5 J 2 / J 1 1.6.5 1.2 1.6 1.2 1.1 J 3.2.5 1.1 1.1 1.2 [1] M. Kohgi et al., SSC 11, 391 (1972). [2] G. Pepy et al., JPC 35, 433 (1974).

Multivalent manganese oxides Mn xo y Mn x O y : Crystal structures MnO, 2+, 5% Mn Mn 3 O 4, 2+ 3+, 43% Mn Mn 2 O 3, +3, 4% Mn MnO 2, 4+, 33% Mn

Multivalent manganese oxides Mn xo y Mn x O y : Results Calc. volume (Å 3 ) 11.6 11.2 1.8 1.4 +2,+3 Mn 1 3 O 4 9.6 9.2 +4 +3 MnO 2 Mn 2 O 3 MnO +2 PBE PBEU4 PBE HSE Intensity (a.u.) MnO a) Mn 3 O b) 4 Intensity (a.u.) 8.8 8.8 9.2 9.6 1 1.4 1.8 11.2 11.6 Expt. volume (Å 3 ) -15-1 -5 Relative Binding Energy (ev) -15-1 -5 Relative Binding Energy (ev) Calc. enthalpy of formation (ev) -2-4 -6-8 -1-12 -14-16 +2, +3 Mn 3 O 4 +3 Mn 2 O 3 +4 MnO 2 MnO +2 PBE PBEU4 PBE HSE -16-14 -12-1 -8-6 -4-2 Expt. enthalpy of formation (ev) Intensity (a.u.) Mn 2 O c) 3 MnO d) 2-15 -1-5 Relative Binding Energy (ev) Intensity (a.u.) -15-1 -5 Relative Binding Energy (ev) MARE PBEU6 PBEU4 PBEU3 PBE PBE HSE Volume 7.7 5.4 4.1 1. -.6 Enthalpy 14 7 8 22 9 9 Hybrid functionals provide the most balanced and consistent description

MnO(1) & MnO(11) surfaces Magnetism at surfaces Surface effects Surfaces effects (changes of the coordination, structural and electronic reconstructions, etc.) can strongly influence the magnetic structure: magnetic moments on O atoms modifications of the superexchange interactions reduced magnetic moment of the metal atom formation of incommensurable magnetic structures

(1) (11) (11) MR Ordering Spin Configuration E Spin Configuration E Spin Configuration E AFM II FM + + + + + + + 264 + + + + + + + + + 313 + + + + + + + + + + + 375 AFM 1 + + + + + + 178 + + + + + + + + 199 + + + + + + + + + + 262 AFM 2 + + + + + 13 + + + + + + + 166 + + + + + + + + + 15 AFM 3 + + + + + 94 + + + + + 41 + + + + + 68 AFM 4 + + + + + 157 + + + + + + + 162 + + + + + + + + + 29 AFM 5 + + + 157 + + + + + 163 + + + + + + + 25 AFM 6 + + + + 37 + + + + + 15 + + + + + + 31 AFM 7 + + + + 72 + + + + + + 44 + + + + + + + 38 AFM 8 ± + + + + + ± 191 + + + + + 215 AFM 9 + + + + + 171 + + + + + 132 MnO(1) & MnO(11) surfaces Magnetic interactions MnO(1) MnO(11)

MnO(1) & MnO(11) surfaces Missing row (MR) reconstruction γ PBE PBE+U ev/å 2 ev/å 2 (1).45.54 (11).82.18 (11) MR.58.78 DOS (bulk gap = 2.3 ev) DOS (states/ev atom spin) 2 1 2 1 2 1.8.4.8.4.8.4 Mn, d Mn, d Mn, d O, p MnO (11) O, p S O, p gap =.5 ev PBE+U PBE S-1-8 -6-4 -2 2 4 6 8 Energy (ev) S C S-1 C DOS (states/ev atom spin) 2 1 2 1 2 1.8.4.8.4.8.4 Mn, d Mn, d Mn, d O, p MnO (11) MR C gap = 1.66 ev PBE+U O, p PBE C S-1 O, p S-1-8 -6-4 -2 2 4 6 8 Energy (ev) S S J s (bulk: J 1 =.71, J 2 =.36) (1) (11) (11) MR J1 S.86.9 1.8 J S 1 1.7.62.67 J S 2 1.72.76.83 J S 3 1.7.72 J2 S.85.78 1.51 J S 1 2.57.22.73 J S 2 2.51.2 J S 3 2.48 J S 1.53 J S 2.4

Mn xo y on Pd(1) Two-dimensional Mn x O y layers on Pd(1) Phase diagram Structural model: Mn 3 O 4 -c(4 2)

Mn xo y on Pd(1) Two-dimensional c(4 2)-Mn 3 O 4 on Pd(1) Structural model: Mn 3 O 4 -c(4 2) Relative stability PBE vs. HSE FM AFM1 AFM2 PBE RH1 41 97 RH2 28 273 171 RH3 23 31 18 HSE RH1 45 22

Mn xo y on Pd(1) Two-dimensional c(4 2)-Mn 3 O 4 on Pd(1) FM AFM2 δ Mn1 Mn1 Mn2 δ O δ Mn2 δ O δ Mn2 b O o =.33 A

Mn xo y on Pd(1) Two-dimensional c(4 2)-Mn 3 O 4 on Pd(1) FM Mn1 AFM2 Mn2

Mn xo y on Pd(1) Two-dimensional c(4 2)-Mn 3 O 4 on Pd(1) Dipole active mode PBE HSE Expt. FM 36.4 43.3 43.5 AFM2 35.4 39.6

Summary Magnetic effects in bulk, surfaces and 2D thinfilms 1 CuO: Submitted (29) 2 MnO: PRB72, 45132 (25) 3 Mn x O y : PRB75, 195128 (27) 4 MnO surfaces: PRB73, 15542 (26) PRB75, 3544 (27) 5 Mn x O y on Pd(1): JCP13, 12477 (29) PRB79, 3542 (29) JPCM21, 1348 (29)

Acknowledgments Acknowledgments Methodology: J. Paier, M. Marsmann & G. Kresse, University of Vienna CuO: X.-Q. Chen & C. L. Fu, Oak Ridge National Laboratory Mn x O y : V. Bayer, G. Kresse & R. Podloucky, University of Vienna Surfaces and Thinfilms: V. Bayer & R. Podloucky, University of Vienna F. Allegretti, F.Li, G. Parteder, S. Surnev & F.P. Netzer, University Graz