Determining the Enthalpy of a Chemical Reaction

Similar documents
HESS S LAW: ADDITIVITY OF HEATS OF REACTION

Determining the K sp of Calcium Hydroxide

Additivity of Heats of Reaction: Hess s Law

HESS S LAW: ADDITIVITY OF HEATS OF REACTION

Acid-Base Titration. Computer OBJECTIVES

8 Enthalpy of Reaction

Additivity of Heats of Reaction: Hess s Law

Thermodynamics Enthalpy of Reaction and Hess s Law

Heat of Combustion: Magnesium. This equation can be obtained by combining equations (1), (2), and (3): (1) MgO(s) + 2 HCl(aq) MgCl 2 (aq) + H 2 O(l)

Acid-Base Titration. Evaluation copy

DETERMINING AND USING H

Chemistry 3202 Lab 6 Hess s Law 1

Experiment 2 Heat of Combustion: Magnesium

Lab 5 Enthalpy of Solution Formation

Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law)

The Synthesis and Analysis of Aspirin

Experiment #12. Enthalpy of Neutralization

Acid-Base Titration. Sample

Evaluation copy. The Molar Mass of a Volatile Liquid. computer OBJECTIVES MATERIALS

The Enthalpies of Reactions

The CCLI Initiative Computers in Chemistry Laboratory Instruction

Name: Section: Score: /10 PRE LABORATORY ASSIGNMENT EXPERIMENT 7

Standardizing a Solution of Sodium Hydroxide. Evaluation copy

EXPERIMENT 9 ENTHALPY OF REACTION HESS S LAW

CHEMISTRY 130 General Chemistry I. Thermochemistry

Experiment 12 Determination of an Enthalpy of Reaction, Using Hess s Law

Evaluation copy. Acids and Bases. computer OBJECTIVES MATERIALS

The Hand Warmer Design Challenge: Where Does the Heat Come From?

Calorimetric Determination of Reaction Enthalpies

Chemistry with Mr. Faucher. Acid-Base Titration

Energy and Energy Conversion Minneapolis Community and Tech. College Principles of Chemistry 1 v q water = m water C water T water (Equation 1)

Just a reminder that everything you do related to lab should be entered directly into your lab notebook. Calorimetry

CALORIMETRY. m = mass (in grams) of the solution C p = heat capacity (in J/g- C) at constant pressure T = change in temperature in degrees Celsius

Solution Calorimetry

Rate Law Determination of the Crystal Violet Reaction. Evaluation copy

COPYRIGHT FOUNTAINHEAD PRESS

Name Date Period. 1. If drops of ACID are added to a ph buffer, then the ph of the buffer will [increase / decrease / stay the same].

Lab #9- Calorimetry/Thermochemistry to the Rescue

Acid-Base Titration. Volume NaOH (ml) Figure 1

HEATS OF REACTION EXPERIMENT

Hess' Law: Calorimetry

ENTHALPY OF FORMATION OF MgO

Thermochemistry. Introduction. Pre-lab. Safety

Microscale Acid-Base Titration

EXPERIMENT A8: CALORIMETRY. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

Name: Chemistry 103 Laboratory University of Massachusetts Boston HEATS OF REACTION PRELAB ASSIGNMENT

Conductometric Titration & Gravimetric Determination of a Precipitate

AP Chemistry Lab #10- Hand Warmer Design Challenge (Big Idea 5) Figure 1

Acids and Bases. Figure 1

If you need to reverse a reaction, the enthalpy is negated:

Acid Rain. Computer OBJECTIVES

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise.

Chemical Equilibrium: Finding a Constant, Kc

Heat of Combustion: Magnesium

Acids and Bases. Figure 1. Logger Pro or graph paper

Exp 09: Heat of Reaction

The Determination of an Equilibrium Constant

Dr. White Chem 1B Saddleback College 1. Experiment 15 Thermodynamics of the Solution Process

1-50 ml beaker stirring rod 1-10 ml beaker 0.10 M NaOH (1 ml) calibrated plastic dropper (1 ml) 50 ml dispensing burette (for Crystal Violet)

C q T q C T. Heat is absorbed by the system H > 0 endothermic Heat is released by the system H < 0 exothermic

To use calorimetry results to calculate the specific heat of an unknown metal. To determine heat of reaction ( H) from calorimetry measurements.

Table 1. Data for Heat Capacity Trial 1 Trial 2

Calorimetry: Heat of Solution

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

ACID-BASE TITRATION (MICROSCALE)

Experiment 15 - Heat of Fusion and Heat of Solution

Partner: Alisa 1 March Preparation and Properties of Buffer Solutions

Experiment 14 - Heats of Reactions

Experiment 6 Heat of Neutralization

AP Chemistry: Designing an Effective Hand Warmer Student Guide INTRODUCTION

Chemistry 212 THE ENTHALPY OF FORMATION OF MAGNESIUM OXIDE LEARNING OBJECTIVES

Chemistry 1B Experiment 11 49

Experiment #13. Enthalpy of Hydration of Sodium Acetate.

Thermodynamics. Equations to use for the calculations:

In fact, we are going to be sneaky and use Hess s Law to determine the heat of magnesium combustion indirectly. Go to the website:

Thermodynamics. Equations to use for the calculations:

Chemical Equilibrium: Finding a Constant, Kc

Microscale Acid-Base Titration

Standardization of a Primary Standard & Determination of Concentration by Acid-Base Titration

Quiz I: Thermodynamics

How bad is that snack anyway?

c H2 O = J (g H 2 O)( C change)

The Decomposition of Hydrogen Peroxide. Evaluation copy

Solution Calorimetry

Endothermic and Exothermic Reactions

Thermodynamics of Salt Dissolution

Chemical Equilibrium: Finding a Constant, Kc

THE ENERGY OF PHASE CHANGES

Enthalpy of Formation of Ammonium Chloride Version 6.2.5

1iI1E. The Determination of 0 an Equilibrium Constant [LU. Computer

Calorimetry Measurements of Fusion, Hydration and Neutralization - Hess Law

Experiment 8 - Double Displacement Reactions

EXPERIMENT 6. Properties of Buffers INTRODUCTION

not to be republished NCERT MOST of the reactions are carried out at atmospheric pressure, hence THERMOCHEMICAL MEASUREMENT UNIT-3

Determination of the K a of a Weak Acid and the K b of a Weak Base from ph Measurements

Calorimetry and Hess s Law Prelab

CHM201 General Chemistry and Laboratory I Laboratory 7 Thermochemistry and Hess s Law May 2, 2018

Experiment 6: Using Calorimetry to Determine the Enthalpy of Formation of Magnesium Oxide

Transcription:

Determining the Enthalpy of a Chemical Reaction Computer 13 All chemical reactions involve an exchange of heat energy; therefore, it is tempting to plan to follow a reaction by measuring the enthalpy change ( H). However, it is often not possible to directly measure the heat energy change of the reactants and products (the system). We can measure the heat change that occurs in the surroundings by monitoring temperature changes. If we conduct a reaction between two substances in aqueous solution, then the enthalpy of the reaction can be indirectly calculated with the following equations. ΔH = q reaction q reaction = - q solution q solution = [C water m solution T solution ] + [C cal T solution ] The term q represents the heat energy that is gained or lost. C water is the specific heat of water, C cal is the calculated heat capacity of the cup, m is the mass of water, and T is the temperature change of the reaction mixture. The specific heat and mass of water are used because water will either gain or lose heat energy in a reaction that occurs in aqueous solution. Furthermore, according to a principle known as Hess s law, the enthalpy changes of a series of reactions can be combined to calculate the enthalpy change of a reaction that is the sum of the components of the series. In this experiment, you will measure the temperature change of two reactions, and use Hess s law to determine the enthalpy change, ΔH of a third reaction. You will use a Styrofoam cup nested in a beaker as a calorimeter, as shown in Figure 1. For purposes of this experiment, you may assume that the heat loss to the calorimeter and the surrounding air is negligible. OBJECTIVES In this experiment, you will Use Hess s law to determine the enthalpy change of the reaction between aqueous ammonia and aqueous hydrochloric acid. Compare your calculated enthalpy change with the experimental results. Figure 1 Advanced Chemistry with Vernier 13-1

Computer 13 MATERIALS Vernier computer interface 2.0 M hydrochloric acid, HCl, solution computer 2.0 M sodium hydroxide, NaOH, solution Temperature Probe 2.0 M ammonium chloride, NH 4 Cl, solution Styrofoam cup 2.0 M ammonium hydroxide, NH 4 OH, solution 250 ml beaker ring stand 50 ml or 100 ml graduated cylinders utility clamp glass stirring rod fume hood PROCEDURE 1. Obtain and wear goggles. It is best to conduct this experiment in a fume hood, or in a well-ventilated room. 2. Connect a Temperature Probe to Channel 1 of the Vernier computer interface. Connect the interface to the computer with the proper cable. Use a utility clamp to suspend the Temperature Probe from a ring stand, as shown in Figure 1. 3. Start the Logger Pro program on your computer. Open the file 13 Enthalpy from the Advanced Chemistry with Vernier folder. Part I Determine the Heat Capacity of the Calorimeter 4. Nest a Styrofoam cup in a beaker (see Figure 1). Measure 50.0 ml of distilled water that is between 15 and 25 C and pour it into the Styrofoam cup. Lower the tip of the Temperature Probe into the water and measure and record its temperature. 5. Heat approximately 75 ml of distilled water to a temperature that is between 70 and 80 C in a 250 ml beaker. Measure 50.0 ml of this hot water in a graduated cylinder. Just prior to pouring this hot water into the Styrofoam cup with the cold water, measure and record its temperature. Then QUICKLY return the Temperature Probe to the Styrofoam cup, click to begin the data collection, and pour the hot water into the Styrofoam cup. 13-2 Advanced Chemistry with Vernier

Stir the mixture throughout the equalizing of temperature. Determining the Enthalpy of a Chemical Reaction Data collection will end after three minutes. If the temperature readings are no longer changing, you may terminate the trial early by clicking. Click the Statistics button,. The minimum and maximum temperatures are listed in the statistics box on the graph. Record the maximum temperature in your data table. 7. Empty the water, dry the Temperature Probe, Styrofoam cup, and the stirring rod. Part II Conduct the Reaction Between Solutions of NaOH and HCl 1. Measure 50.0 ml of 2.0 M HCl solution into the cup. Lower the tip of the Temperature Probe into the HCl solution. CAUTION: Handle the hydrochloric acid with care. It can cause painful burns if it comes in contact with the skin. 2. Measure out 50.0 ml of NaOH solution, but do not add it to the HCl solution yet. CAUTION: Handle the sodium hydroxide solution with care.6. Conduct the reaction. a. Click to begin the data collection and obtain the initial temperature of the HCl solution. b. After three or four readings have been recorded at the same temperature, add the 50.0 ml of NaOH solution to the Styrofoam cup all at once. Stir the mixture throughout the reaction. c. Data collection will end after three minutes. If the temperature readings are no longer changing, you may terminate the trial early by clicking. d. Click the Statistics button,. The minimum and maximum temperatures are listed in the statistics box on the graph. If the lowest temperature is not a suitable initial temperature, examine the graph and determine the initial temperature. e. Record the initial and maximum temperatures in your data table. 7. Rinse and dry the Temperature Probe, Styrofoam cup, and the stirring rod. Dispose of the solution as directed. Advanced Chemistry with Vernier 13-3

Computer 13 Part III Conduct the Reaction Between Solutions of NaOH and NH 4 Cl 8. Measure out 50.0 ml of 2.0 M NaOH solution into a nested Styrofoam cup (see Figure 1). Lower the tip of the Temperature Probe into the cup of NaOH solution. 9. Measure out 50.0 ml of 2.0 M NH 4 Cl solution, but do not add it to the NaOH solution yet. 10. Conduct the reaction. a. Click to begin the data collection. b. After three or four readings have been recorded at the same temperature, add the 50.0 ml of NH 4 Cl solution to the Styrofoam cup all at once. Stir the mixture throughout the reaction. c. Data collection will end after three minutes. If the temperature readings are no longer changing, you may terminate the trial early by clicking. d. Examine the graph as before to determine and record the initial and maximum temperatures of the reaction. 11. Rinse and dry the Temperature Probe, Styrofoam cup, and the stirring rod. Dispose of the solution as directed. Part IV Conduct the Reaction Between Solutions of HCl and NH 3 12. Measure out 50.0 ml of 2.0 M HCl solution into a nested Styrofoam cup (see Figure 1). Lower the tip of the Temperature Probe into the cup of HCl solution. 13. Measure out 50.0 ml of 2.0 M NH 3 solution, but do not add it to the HCl solution yet. 14. Conduct this reaction in a fume hood or in a well-ventilated area. Repeat Step 10 to conduct the reaction and collect temperature data. 13-4 Advanced Chemistry with Vernier

REPORT SHEET DATA TABLE Determining the Enthalpy of a Chemical Reaction Name Date Mixing of Hot and Cold Cold water temperature ( C) Hot water temperature ( C) Mixed water temperature ( C) Reaction 1 Reaction 2 Reaction 3 Maximum temperature ( C) Initial temperature ( C) Temperature change ( T) DATA ANALYSIS 1. Calculate the heat capacity of the Styrofoam cup (C cal ). Use 1.00 g/ml for the density of the distilled water. Use the specific heat of water, 4.184 J/(g C). First, calculate the q water using the following equation: q water = m water C water (T mix T avg ) Where T mix is the actual measured final temperature of the mixed hot and cold water and T avg = (T cold + T hot ) / 2 Second, calculate the C cal using the following equation: C cal T qwater T mix cold Where T cold is the temperature of the cold water in the Styrofoam cup before adding the hot water to it. Advanced Chemistry with Vernier 13-5

Computer 13 2. Calculate the amount of heat energy, q, produced in each reaction. Use 1.03 g/ml for the density of all solutions. Use the specific heat of water, 4.184 J/(g C), for all solutions. 3. Calculate the enthalpy change, H, for each reaction in terms of kj/mol of each reactant. 4. Use your answers from 2 above and Hess s law to determine the experimental molar enthalpy for Reaction 3. 5. Use Hess s law, and the accepted values of H in the Pre-Lab Exercise to calculate the H for Reaction 3. 6. Show how the accepted value compares to your experimental value determined above. 13-6 Advanced Chemistry with Vernier

Determining the Enthalpy of a Chemical Reaction 7. Explain how this experimental process supports Hess s law. 8. Suggest two ways of improving your results when doing a lab like this one. Advanced Chemistry with Vernier 13-7

Computer 13 PRELAB In the space provided below, write the balanced net ionic reaction equations from the descriptions. Use the table of thermodynamic data in your text (or another approved resource) to calculate the molar enthalpy of the reactions. Reaction 1: An aqueous solution of sodium hydroxide reacts with an aqueous solution of hydrochloric acid, yielding water. Reaction 2: An aqueous solution of sodium hydroxide reacts with an aqueous solution of ammonium chloride, yielding aqueous ammonia, NH 3, and water. Reaction 3: An aqueous solution of hydrochloric acid reacts with aqueous ammonia, NH 3, yielding aqueous ammonium chloride. Reaction Balanced reaction equation 1 2 3 Reaction Calculation of ΔH (kj/mol) ΔH (kj/mol) 1 2 3 13-8 Advanced Chemistry with Vernier