Quantum Kagome Spin Liquids

Similar documents
Quantum kagome spin liquids

Exotic Antiferromagnets on the kagomé lattice: a quest for a Quantum Spin Liquid

Quantum kagome antiferromagnet : ZnCu 3 (OH) 6. Cl 2. Home Search Collections Journals About Contact us My IOPscience

Quantum Magnetism. P. Mendels Lab. Physique des solides, UPSud From basics to recent developments: a flavor

Experiments on Kagome Quantum Spin Liquids

Specific heat of the S= 1 2 expansion analysis

Spin-charge separation in doped 2D frustrated quantum magnets p.

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

Geometrical frustration, phase transitions and dynamical order

Spinon magnetic resonance. Oleg Starykh, University of Utah

Quantum Spin-Metals in Weak Mott Insulators

Spin liquids on ladders and in 2d

Valence Bond Crystal Order in Kagome Lattice Antiferromagnets

Two studies in two-dimensional quantum magnets: spin liquids and intertwined order Young Lee (Stanford and SLAC)

Solving the sign problem for a class of frustrated antiferromagnets

Quantum spin systems - models and computational methods

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1

Impurity effects in high T C superconductors

Multiple spin exchange model on the triangular lattice

Weak antiferromagnetism and dimer order in quantum systems of coupled tetrahedra

Spin Ice and Quantum Spin Liquid in Geometrically Frustrated Magnets

Gapless Spin Liquids in Two Dimensions

Simulations of Quantum Dimer Models

Impurity-doped Kagome Antiferromagnet : A Quantum Dimer Model Approach

The Ground-State of the Quantum Spin- 1 Heisenberg Antiferromagnet on Square-Kagomé Lattice: Resonating Valence Bond Description

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

arxiv: v1 [cond-mat.str-el] 3 Mar 2008

Nuclear Magnetic Resonance to measure spin susceptibilities. NMR page 1 - M2 CFP Electronic properties of solids (F. Bert)

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

arxiv: v1 [cond-mat.str-el] 18 Jul 2013

Perturbing the U(1) Dirac Spin Liquid State in Spin-1/2 kagome

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo)

Degeneracy Breaking in Some Frustrated Magnets

Novel Order and Dynamics in Frustrated and Random Magnets

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

A New look at the Pseudogap Phase in the Cuprates.

Schwinger-boson approach to the kagome antiferromagnet with Dzyaloshinskii-Moriya interactions: Phase diagram and dynamical structure factors

Dimerized & frustrated spin chains. Application to copper-germanate

Jung Hoon Kim & Jung Hoon Han

Valence Bonds in Random Quantum Magnets

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2

Spin liquids on the triangular lattice

Topological excitations and the dynamic structure factor of spin liquids on the kagome lattice

Heisenberg-Kitaev physics in magnetic fields

Yusuke Tomita (Shibaura Inst. of Tech.) Yukitoshi Motome (Univ. Tokyo) PRL 107, (2011) arxiv: (proceedings of LT26)

Frustrated diamond lattice antiferromagnets

The incarnation of the Nersesyan-Tsvelik model in (NO)[Cu(NO 3 ) 3 ] Pierre-et-Marie-Curie, Paris 6, Paris cedex 05, France , Russia.

Dzyaloshinsky-Moriya-induced order in the spin-liquid phase of the S =1/2 pyrochlore antiferromagnet

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

Spinons and triplons in spatially anisotropic triangular antiferromagnet

13 NMR in Correlated Electron Systems: Illustration on the Cuprates

b-cu 3 V 2 O 8 : Magnetic ordering in a spin-½ kagomé-staircase lattice

(Gapless chiral) spin liquids in frustrated magnets

Artificial spin ice: Frustration by design

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3

Frustrated Magnetic Materials from an ab initio prespective Roser Valentí Institute of Theoretical Physics University of Frankfurt Germany

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

Spinon magnetic resonance. Oleg Starykh, University of Utah

Quantum spin liquid: a tale of emergence from frustration.

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France

Magnetoelastics in the frustrated spinel ZnCr 2 O 4. Roderich Moessner CNRS and ENS Paris

Small and large Fermi surfaces in metals with local moments

Intermediate valence in Yb Intermetallic compounds

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Luigi Paolasini

NMR: Formalism & Techniques

arxiv: v1 [cond-mat.str-el] 6 Nov 2008

Spin Systems. Frustrated. \fa. 2nd Edition. H T Diep. World Scientific. University of Cergy-Pontoise, France. Editor HONG SINGAPORE KONG TAIPEI

EXCHANGE IN QUANTUM CRYSTALS: MAGNETISM AND MELTING OF THE LOW DENSITY 2D WIGNER CRYSTAL. David M. CEPERLEY

Effects of disorder and charge doping in quantum and molecular magnets

Selective doping Barlowite for quantum spin liquid: a first-principles study

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations

Spin fluctuations in MnGe chiral Magnet

Tutorial on frustrated magnetism

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quantum magnetism and the theory of strongly correlated electrons

Spin liquids in frustrated magnets

Quasi-1d Antiferromagnets

Nematicity and quantum paramagnetism in FeSe

arxiv: v1 [cond-mat.str-el] 11 Feb 2014

Geometry, topology and frustration: the physics of spin ice

μsr Studies on Magnetism and Superconductivity

Electronic Higher Multipoles in Solids

arxiv:cond-mat/ v1 [cond-mat.str-el] 29 Mar 2005

Which Spin Liquid Is It?

Spinons in Spatially Anisotropic Frustrated Antiferromagnets

Deconfined Quantum Critical Points

Frustration without competition: the SU(N) model of quantum permutations on a lattice

Statistical Transmutations in Doped Quantum Dimers

arxiv:cond-mat/ v1 [cond-mat.str-el] 5 Nov 2001

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren

SUPPLEMENTARY INFORMATION

Article. Reference. Spin dynamics in a weakly itinerant magnet from 29Si NMR in MnSi. CORTI, M., et al.

Transcription:

Quantum Kagome Spin Liquids Philippe Mendels Laboratoire de Physique des Solides, Université Paris-Sud, Orsay, France Herbertsmithite ZnCu 3 (OH) 6 Cl 2 Antiferromagnet

Quantum Kagome Spin Liquids: The case of Herbertsmithite Philippe Mendels, Fabrice Bert, Areta Olariu, Andrej Zorko, Laboratoire de Physique des Solides, Université Paris-Sud, Orsay, France F. Bert A. Olariu A. Zorko - J. C. Trombe, F. Duc, CEMES, Toulouse, P. Strobel, Grenoble, France - M. de Vries, G. Nilsen, A. Harrison, Edinburgh, UK - S. Nakamae, F. Ladieu, D. L Hote, P. Bonville, CEA Saclay, France - A. Mahajan s group (IIT Mumbaï)

Quantum Kagome Spin Liquids Part I Novel states induced by frustration Towards spin liquids

Querelles Néel versus Anderson C

Néel State: Antiferromagn. H r r = JijSi. S j, Jij < 0 Introduction χ Τ Ν θ 0 200 400 600 800 T 1/χ θ -200 0 200 400 600 800 T + Quantum fluctuations for S=1/2

Antiferromagnetism, any alternative? Geometrical Frustration of magnetic interactions? Class. A C S r S r + S r = A + B C B 0 r

Antiferromagnetism, any alternative? RVB =

Edge sharing: triangular lattice Introduction C S r S r + S r = A + B C 0 r A B C A g = 2 (XY spins) A B B C A A B

Corner sharing: classical kagomé lattice S r S r + S r = 0 r A + B C C A B C A B C A A A C C B B C A B C C A C B...... C C A B A C A A C B B A C B A A C A B...... Macroscopic degeneracy Soft modes

Antiferromagnetism, any alternative? Triangular Edge sharing geometry Exact diagonalizations Lecheminant, PRB 56, 2521 (1997) Waldtmann, EPJB 2, 501 (1998). Kagome Corner sharing geometry Energie <J/20 Fundamental Néel S=0 1 2 S=0 1 2 Fundamental spin liquid Néel RVB? Mila, PRL 81, 2356 (2000)

Introduction IDEAL Highly Frustrated Magnet - Heisenberg spins - S=1/2 (quantum spins) - Corner sharing geometry: Kagomé (2D) or pyrochlore (3D) lattice - No «perturbation» (anisotropy, dipolar interaction, n.n. interactions, dilution) - For kagomé: stacking should keep the 2D kagomé planes uncoupled

Kagomé bilayers (Cr 3+, S =3/2) Materials ~6.4 Å Exotic spin glass at only low T High frustration ratio θ/t g Fluctuations at low T Short correlation length Field independant C v >3% spinlessdefects? 2.0 SrCr 9p Ga 12-9p O 19 (SCGO) Θ 500 K T g ~ 4 K T=70 mk ~1/a λ (μs -1 ) 1.5 1.0 0.5 Spin glass 0.0 0 1 2 3 4 5 6 7 8 9 T (K)

Jarosite Family AB 3 (SO 4 ) 2 (OH) 6 A= Na +, K +, Ag +, Rb +, H 3 O +, NH 4+, ½ Pb 2+, ½ Ba 2+ B = Fe 3+ (S=5/2), Cr 3+ (S=3/2), V 3+ (S=1) Most of Jarosites order! (D.M. anisotropy)

Volborthite, Cu 3 V 2 O 7 (OH) 2 2H 2 O Z. Hiroi et al, J. Phys. Soc. Jpn 70 (2001) 3377 Another class of imperfections: J 1 and J 2 Tg (K) 1,5 1,2 0,9 0,6 0,3 0,0 4 3 2 SCGO Volborthite 1 0 0 5 10 15 20 25 30 spin vacancy (%at) S = 1/2 High purity But a transition F. Bert et al, PRL, 95 (2005) 087203, Z. Hiroi, JPSJ

Quantum Kagome Spin Liquids Part II Novel states induced by frustration Herbertsmithite: a true spin liquid?

Herbertsmithite: ZnCu 3 (OH) 6 Cl 2 Cu 2+, S=1/2 Cu Zn OH Cl

Herbertsmithite is the first example of a quantum kagome antiferromagnet perfect kagomé lattice no freezing at least down to J/4000 -> renewal ofthe search for scenarios for the kagome ground state VBC : R.R.P. Singh and D.A. Huse, PRB (2007, 2008) Dirac spin liquid : Y. Ran et al, PRL (2007), PRB (2008)... Sciences, perspectives sept 2008

1- Zn x Cu 4-x (OH) 6 Cl 2 : paratacamite family x< 1 2- ZnCu 3 (OH) 6 Cl 2 : Herbertsmithite: ideal kagome? Gap? Measurements of χ local Dynamical mesurements Non-magnetic defects Cu/Zn «Perturb to reveal»

Zn x Cu 4-x (OH) 6 Cl 2 atacamite family Cu Zn x Cu 1-x Zn/Cu substitution rate x=0 x=0.33 x=1 P21/n R-3m Cu III Zn/Cu II Zn Cu I Clinoatacamite Cu 2 (OH) 3 Cl Cu II Cu I Cu I Cu I Cu I Zn-paratacamite Zn x Cu 4-x (OH) 6 Cl 2 Cu I Cu I Cu I Herbertsmithite Braithwaite et al, 2004

Zn x Cu 4-x (OH) 6 Cl 2 Curie Weiss behavior for all x -> antiferromagnetic correlations J (AF,F?) J (AF) J : in-plane coupling AF ~ 175 K J : inter-plane coupling small, maybe Ferro 97 no transition for T<<J -> highly frustrated antiferromagnets 119 P. Shores et al, JACS (2005)

Zn x Cu 4-x (OH) 6 Cl 2 Ferromagnetic-like transition at T N ~6K Vanishes for x->1 0.016 0.014 0.012 χ (cm 3 /mol Cu) 0.010 0.008 0.006 0.004 0.002 x=1 Herbersmithite x=1 -No sign of transition for T>2K -Low T Curie like upturn for T<50K 0 50 100 150 200 250 300 temperature (K)

µsr Muon spin resonance, relaxation S=1/2 μ + Échantillon

μsr : ZnCu 3 (OH) 6 Cl 2, x=1 Polarisation 1.0 0.8 0.6 0.4 0.2 50 mk H Herbertsmithite Zero Field μsr Deuterated 0.0 0 5 10 time (μs) At 50mK, no sign of ordering relaxation arises from small static nuclear fields. upper limit of a frozen moment for Cu 2+, if any : 6x10-4 μ B P. Mendels et al, PRL 98, 077204 (2007) Also: ac-χ Helton et al, PRL 98 107204 (2007) μsr O. Ofer et al, cond-mat/0610540 No order or frozen disorder down to 50 mk despite J=175 K!

μsr : Zn x Cu 4-x (OH) 6 Cl 2 0.9 x = 1.0 -x=0 : fully ordered below ~18K X.G. Zheng et al, PRL 95, 057201 (2005) Polarization 0.6 0.3 x =0.5 x = 0.33 T=1.5K, Zero Field x = 0.66 x = 0.15 x = 0 When x increases from 0 to 1 : -Oscillations are smeared out -A paramagnetic (x=1 type) component emerges at the expense of the frozen one 0.0 0.3 0.6 time (μs) Large domain of stability 0.66<x<1 of a dynamical ground state -> surprisingly small influence of interlayer coupling P. Mendels et al, PRL 98, 077204 (2007)

Herbertsmithite macroscopic susceptibility High temperature series expansion (G. Misguish, C. Lhuillier) M. Rigol and R. P. Singh, PRL 98, 207204 (2007) -> need for additional terms to the KAF Hamiltonian to account for Herbertsmithite macroscopic susceptibility

Magnetic defects : Zn/Cu intersite mixing Zn Cu defects Cu on the Zn site Nearly free ½ spins Zn in the kagome plane -> magnetic vacancy -> staggered magnetization -> effective paramagnetic defects (small moment?) P. Mendels et al., J. Phys.: Condens. Matter 19, 145224 (2007) Neutron: structure refinement + H S.H. Lee et al, Nature Materials (2007) M.A. de Vries et al, PRL 100, 157205 (2008) dilution -> ~10% -> 9(2)%

Magnetic defects : Zn/Cu intersite mixing Susceptibility fit -> ~5% dilution exact diagonalization+ 5% weakly interracting S=1/2 defects G. Misguich and P. Sindzingre, Eur. Phys. J. B 59, 305 (2007) Low T, High Field Magnetization -> ~7% dilution F. Bert et al, PRB 76, 132411 (2007) χ M tot =M defect + H M defect ~Brillouin(H/T) -~7% of interlayer Cu 2+ - χ i << χ macro at low T i M/M sat (%) 10 8 6 4 2 1.7 K χ (cm 3 /mol Cu) 0.0030 0.0025 0.0020 0.0015 0.0010 0.0005 0.0000 0 50 100 150 200 250 0 0 2 4 6 8 10 12 14 H (T)

Schottky like anomaly in heat capacity -> Kagome lattice dilution 6.5+/-1% M.A. de Vries et al, PRL 100, 157205 (2008)

Dzyaloshinskii-Moriya interactions Direct fit of susceptibility (no defect contribution): D z =0.15J, Dp =0.3J 0.25 0.75 1.25 1.75 T/J M. Rigol and R. P. Singh, PRL 98, 207204 (2007) D H DM =D.(S i S j ) S i S j Broad room T ESR line <- magnetic anisotropy from DM D z =0.08J, D p ~0.01J A. Zorko et al, PRL 101, 026405 (2008)

Dzyaloshinskii-Moriya interactions For classical spins, DM stabilizes ordered phases (cf jarosites) M. Elhajal et al, PRB 66, 014422 (2002) In the quantum case, a moment free phase survives up to D/J~0.1 O. Cepas et al, PRB 78, 140405 (R) (2008)

NMR: principles K χ H = H Z + r A I. r S Δχ Linewidth ΔH : spatially inhomogeneous susceptibility (dilution) -5-4 -3-2 -1 0 1 2 3 4 5 Line shift K : susceptibility χ frustr

17 O NMR, local susceptibility 17 O: coupled to two Cu of the kagome plane I = 5/2 quadrupolar effects NMR Intensity (normalized) 1.0 0.5 300 K H ~ local susceptibility ref 0.0 6.4 6.6 6.8 A. Olariu et al, PRL 100, 087202 (2008) Cu 6.60 6.65 6.70 H (Tesla) Cl 150 K 200 K 250 K 300 K Zn O

two magnetic site O next to a Zn defect in the kagome plane H Cu 17 O Cu Cu 17 O Zn Cu O Cu Zn Cu Cu 1.0 Intensité (normalisée) 0.5 0.0 6.4 6.5 6.6 6.7 6.8 6.9 H(Tesla) ~ 20% intensity -> ~ 5% Zn/Cu defects in kagome planes 175 K β = 55 6.5 6.6 6.7 6.8 6.9 7.0

Main line, susceptibility of the kagome planes référence 20 M D 1.3 K 0.47 K 5 K 10 K 15 K 20 K 30 K 40 K 50 K 60 K 17 O lineshift (%) 2 1 0 0 100 200 300 T (K) 10 -Susceptibility decreases below 50 K -> enhancement of short range correlations -> new energy scale 0 χ SQUID (10-4 cm 3 /mol Cu) 85 K 175 K 6.4 6.5 6.6 6.7 6.8 6.9 7.0 H (Tesla) -No gap and Finite T->0 susceptibility intrinsic or field effect, DM?

Low T Dynamics (NMR: T 1 ) 17 (1/T1 ) (ms -1 ) 1 0.1 0 15 30 45 60 Temperature (K) 17 O 63 Cu 35 Cl 10 1 0.1 63 (1/T1 ) (ms -1 ), 35 (1/T 1 ) (s -1 ) (ms -1 ) T 1-1 1 T 1-1 ~ T 0.7+/-0.1 0.1 0 1 2 T -1 (K -1 ) 63 Cu and 35 Cl NMR from T. Imai et al, PRL 100, 077203 (2008) - No spin gap behavior -> in agreement with absence of a gap>0.1mev in INS : Helton et al, PRL 98 107204 (2007) - original sub-linear T dependence

Low T Dynamics (neutrons: χ ) χ (ω) ω 0.7(3) Helton et al, PRL 98 107204 (2007)

Exact Diagonalization Lecheminant, PRB 56, 2521 (1997) Waldtmann et al., EPJB 2, 501 (1998). <J/20 gap between singlet ground state and 1st triplet state if any... no gap in the singlet sector.

No gap for Herbertsmithite! - No gap (?) in exact diagonalizations (ED) - χ(t->0) well reproduced in ED Could be an intrinsic property - DM interaction mixes singlet and gapped triplet and could restore a susceptibility Could be an extrinsic property but one should also explain dynamical properties

Two classes of models -Valence Bond Crystals with fluctuations of quantum dimers but forming an ordered pattern: a small singlet triplet gap - RVB-type spin liquids: fractional excitations (spinons), e.g. algebraic spin liquids. Algebraic decrease of correlations. no gap. Spinons are bound (singlet spinon interact)

Defect line référence 1.5 Cu O H M D 1.3 K 0.47 K 5 K 10 K 15 K 20 K 30 K 40 K 50 K 60 K 85 K 175 K Line Shift (%) 1.0 0.5 Cu O Zn Zn Cu 0.0 0 100 200 300 T (K) ~30% oxygen sites dimer localization around a spin vacancy S. Dommange et al, PRB 68 (2003) 224416 O ~20% oxygen sites half shifted I. Rousochatzakis et al, Phys.Rev.B 79, 214415 (2009) 6.4 6.5 6.6 6.7 6.8 6.9 7.0 H (Tesla) -> ~5% spin vacancies in the kagome planes

ED: one impurity Dommange et al., PRB 68, 224416 (2003); Lauchli et al. Phys. Rev. B 76, 144413 (2007)

-Dimers next to the impurity survive up to D~J -DM interaction removes the singlet nature of the ground state I. Rousochatzakis et al, Phys.Rev.B 79, 214415 (2009)

Conclusions on Herbertsmithite - first S=1/2 antiferromagnet with perfect kagome lattice (3 fold symmetry) - no order or frozen disorder down to 50mK despite J=175K and perturbations Quantum spins on a perfect kagome lattice -> allows close comparison with theory -> renewed interest in understanding the GS VBC : R.R.P. Singh and D.A. Huse, PRB (2007, 2008) Dirac spin liquid : Y. Ran et al, PRL (2007), PRB (2008)... - magnetic defects (rather complex, in plane and out of plane) which impact the low T thermodynamic measurements -> local probe techniques -> second sample generation : controlled (or no) defects - sizeable DM interaction : D/J~0.1: probe criticality: on-going - Local susceptiblity determined from 17 O NMR: ground state appears to be gap-less with a finite susceptibility intrinsic to Heisenberg kagome model or DM interaction closes the gap? (no field effect)

PHFM 2010 Perspectives in Highly Frustrated Magnetism Dresden, 19 23 April

Frustration and original ground states - Collaborations Herbertsmithite F. Ladieux, S. Nakamae, P. Bonville SPEC, CEA Saclay MA de Vries, A. Harrisson, Edinburgh F. Duc, JC Trombe CEMES, Toulouse P. Strobel, Institut Néel, Grenoble Kagome Volborthite, CEMES, Toulouse Bert et al, PRL 2005 Cr, Triangular NaCrO 2 R. Cava, Princeton Olariu et al, PRL 2006 Pyrochlore Tb 2 Sn 2 O 7 LLB, Saclay Bert et al, PRL 2006 Kagome+ Spin anisotropy Langasites Institut Néel, Grenoble Zorko et al, PRL (2008)

Thank you! Herbertsmithite: ZnCu 3 (OH) 6 Cl 2 Cu 2+, S=1/2