CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

Similar documents
EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

Introduction to Electronic circuits.

EE 221 Practice Problems for the Final Exam

Feedback Principle :-

Module B3. VLoad = = V S V LN

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

Faculty of Engineering

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

ECE 2100 Circuit Analysis

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

ECE 2100 Circuit Analysis

Dr. Kasra Etemadi February 27, 2007

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET).

CHAPTER 5. Solutions for Exercises

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will:

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

ECE 2100 Circuit Analysis

55:041 Electronic Circuits

Chapter 10 Sinusoidal Steady-State Power Calculations

WYSE Academic Challenge 2004 Sectional Physics Solution Set

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Coupled Inductors and Transformers

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

Design of Analog Integrated Circuits

Electricity and Magnetism Lecture 13 - Physics 121 Electromagnetic Oscillations in LC & LCR Circuits,

Chapter - 7 ALTERNATING CURRENT

اهتحانات الشهادة الثانىية العاهة الفرع : علىم عاهة هسابقة في هادة الفيسياء الوذة ثالث ساعات

Copyright Paul Tobin 63

Electrical Circuits 2.1 INTRODUCTION CHAPTER

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

ECE 2100 Circuit Analysis

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Wp/Lmin. Wn/Lmin 2.5V

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lesson 5. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER)

The three major operations done on biological signals using Op-Amp:

LECTURES 4 AND 5 THREE-PHASE CONNECTIONS (1)

Dr. Kasra Etemadi February 20, 2007

PT326 PROCESS TRAINER

FYSE400 ANALOG ELECTRONICS

Synchronous Motor V-Curves

WYSE Academic Challenge 2014 Sectional Physics Exam SOLUTION SET. [ F][ d] [ t] [ E]

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

DC Circuits. Crossing the emf in this direction +ΔV

Novel current mode AC/AC converters with high frequency ac link *

Honors Physics Final Review Summary

PHY2049 Exam 2 solutions Fall 2016 Solution:

III. Operational Amplifiers

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

Electrical Circuits II (ECE233b)

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Physics 1202: Lecture 11 Today s Agenda

Exploiting vector space properties for the global optimization of process networks

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit :

( ) = ( ) + ( 0) ) ( )

Lecture 2 Feedback Amplifier

Chapter 6 Electrical Systems and Electromechanical Systems

Introduction to Three-phase Circuits. Balanced 3-phase systems Unbalanced 3-phase systems

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

Sections begin this week. Cancelled Sections: Th Labs begin this week. Attend your only second lab slot this week.

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

CHAPTER 3 QUASI-RESONANT BUCK CONVERTER

Basic Electrical Engineering for Welding [ ] --- Introduction ---

Schedule. ECEN 301 Discussion #17 Operational Amplifiers 1. Date Day Class No. Lab Due date. Exam

ANALOG ELECTRONICS DR NORLAILI MOHD NOH

PHY2053 Summer 2012 Exam 2 Solutions N F o f k

Chapter 30. Inductance

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

Physics 107 HOMEWORK ASSIGNMENT #20

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables

Part III Lectures Field-Effect Transistors (FETs) and Circuits

R th is the Thevenin equivalent at the capacitor terminals.

> To construct a potential representation of E and B, you need a vector potential A r, t scalar potential ϕ ( F,t).

element k Using FEM to Solve Truss Problems

INDUCTANCE. RC Cicuits vs LR Circuits

EXPERIMENT NO : EM I/1

ELG4139: Op Amp-based Active Filters

4) What is the magnitude of the net electric field at the center of the square?

Series and Parallel Resonances

Chapter 32. Maxwell s Equations and Electromagnetic Waves

Simulation of Push-pull Multi-output Quasi-resonant Converter

Prof. Paolo Colantonio a.a

Linear Amplifiers and OpAmps

Power Flow in Electromagnetic Waves. The time-dependent power flow density of an electromagnetic wave is given by the instantaneous Poynting vector

2. Find i, v, and the power dissipated in the 6-Ω resistor in the following figure.

Cop yri ht 2006, Barr Mabillard.

Transcription:

U ANAYSS hapter Snusdal Alternatng Wavefrs and Phasr ncept Snusdal Alternatng Wavefrs and Phasr ncept ONNS. Snusdal Alternatng Wavefrs.. General Frat fr the Snusdal ltage & urrent.. Average alue..3 ffectve alues. Basc leents and Phasrs.. leents.. Average Pwer and Pwer Factr..3 ectangular and Plar epresentatn..4 pedance and Phasr Dagra..5 Krchhff s aws.3 Seres and Parallel rcuts.3. Seres rcuts.3. Parallel rcuts Snusdal Alternatng Wavefrs and Phasr ncept

. Snusdal Alternatng Wavefrs.. General Frat fr the Snusdal ltage & urrent A sn α A snωt Bascatheatcalfratfrthesnusdalwavefr A A α (rad) e snωt snωt snα snα Phasr elatns A sn θ θ A ( θ ) ( θ ) α A A sn θ θ A ( θ ) ( θ ) α A A sn( ω t θ ) A sn( ωt θ ) Snusdal Alternatng Wavefrs and Phasr ncept 3.. Average alue: algebrac su f the areas G (average value) length f the curve A A α (rad) G ÿ A snα he average value f a pure snusdal wavefr ver ne full cycle s zer. f the wavefr equatn s: then the average value s: a A snα A G A Snusdal Alternatng Wavefrs and Phasr ncept 4

..3 ffectve alues: e ~ Swtch Swtch ac ac surce dc dc surce he effectve value f an ac current s the equvalent dc current that delvers the sae pwer as the ac current. P ac ( sn ωt) ( sn ωt) sn ωt ( cs ωt ) ac he average pwer delvered s: P ac cs ωt P av ( ac) Snusdal Alternatng Wavefrs and Phasr ncept 5 quatng the average pwer delvered by the ac generatr t that delvered by thedcsurce, Pav( ac) Pdc dc dc. 77 Sae thng fr the vltage: dc eff. 77 eff. 77 n general, the effectve value f any quantty pltted as a functn f te can be fund by usng the fllwng equatn: eff ÿ dt area ( ) hs prcedure gves us anther desgnatn fr the effectve value, the rt-ean-square (rs) value. Snusdal Alternatng Wavefrs and Phasr ncept 6 3

. Basc leents and Phasrs.. leents espnse f the basc, and eleents t a snusdal vltage and current. esstr: v snωt snωt snωt v v ωt Fr a purely resstve eleent, the vltage acrss and the current thrugh the eleent are n phase Snusdal Alternatng Wavefrs and Phasr ncept 7 nductr: d d ω dt dt ( sn ωt) ω cs( ωt) sn( t ) v 9 ω X ω : reactance f the nductr (Ohs). nductve reactance s the ppstn t the flw f current, whch results n the cntnual nterchange f energy between the surce and the agnetc feld f the nductr. Unlke resstance, reactance des nt dsspate electrc energy. v v ωt Fr an nductr v leads by 9,r lags v by 9. Snusdal Alternatng Wavefrs and Phasr ncept 8 4

apactr: ω dv dt d dt ( sn ωt) ω cs( ωt) sn( t ) ω 9 ω X : reactance f the capactr (Ohs). ω apactve reactance s the ppstn t the flw f charge, whch results n the cntnual nterchange f energy between the surce and the electrc feld f the capactr. ke the nductr, the capactr des nt dsspate electrc energy. v v ωt Fr a capactr leads v by 9,rv lags by 9. Snusdal Alternatng Wavefrs and Phasr ncept 9 As a general rule fr crcut wth cbned eleents: f the current leads the vltage, the crcut s prednantly capactve, and f the vltage leads the current, t s prednantly nductve. f Hz(dc) ery hgh frequences ω f X ω X ω nstead f dfferentatn, t s pssble t use ntegratn dependng n the unknwn quanttes: ÿ vdt v ÿdt Snusdal Alternatng Wavefrs and Phasr ncept 5

.. Average Pwer and Pwer Factr n general the nstantaneus pwer s deterned by: p v n general, fr a snusdal vltage and current, P csθ eff eff csθ the average pwer s deterned by: Where θ s the phase angle between the vltage and the current. eff rs eff rs PF csθ ffectve vltage ffectve current Pwer Factr esstr nductr apactr P cs eff eff P cs 9 P cs9 Snusdal Alternatng Wavefrs and Phasr ncept..3 ectangular and Plar epresentatn ÿ A jb ectangular fr ÿ θ Plar fr Plar t rectangular ectangular t plar j A csθ B ÿ A B, θ tan B snθ θ xaple: v v sn sn v v v ( ωt θ) ( ωt θ ) θ θ θ θ A B A Use the calculatr drectly wth plar fr r cnvert v and v t rectangular fr, d the suatn and cnvert the result t plar fr. Snusdal Alternatng Wavefrs and Phasr ncept 6

..4 pedance and Phasr Dagra esstr: ÿ ÿÿ ÿ j r n phasr fr ÿ ÿ nductr: ÿ ÿÿ ÿ X 9 ω 9 jx r X ω n phasr fr ÿ ÿ 9 9 X apactr: ÿ ÿÿ ÿ X c 9 9 jx ω ω r X n phasr fr ÿ ÿ 9 9 X Snusdal Alternatng Wavefrs and Phasr ncept 3..5 Krchhff s aws ltage aw: the cplex (vectr) su f the ptental rses and drps arund a clsed lp (r path) s zer. Ο Ο rse Ο drps urrent aw: the cplex (vectr) su f the currents enterng and leavng a junctn s zer. Or the su f currents enterng a junctn ust equal the su f currents leavng the junctn. enterng leavng Snusdal Alternatng Wavefrs and Phasr ncept 4 7

.3 Seres and Parallel rcuts.3. Seres rcuts w eleents are n seres f they have nly ne pnt f ntersectn that s nt cnnected t ther current-carryng eleents f the netwrk. N ~ ~ θ Fr N pedances n seres the equvalent pedance s: N pedance apltude θ pedance angle Snusdal Alternatng Wavefrs and Phasr ncept 5 urrent n the crcut: θ θ (A) ltage acrss each eleent:,,, N N () Pwer delvered by each pedance : P (W) (,, N) Pwer delvered by the surce: P csθ P P P N (W) Snusdal Alternatng Wavefrs and Phasr ncept 6 8

xaple f Seres - rcut: 3Ω ~ X 4Ω 3 4 9 3 j 5 53. 3 4 ectangular fr Plar fr Seres - rcut pedance dagra: j X 4Ω 5Ω θ 53.3 3Ω Snusdal Alternatng Wavefrs and Phasr ncept 7 urrent: ltages: Plar fr: 53.3 5 53.3 53.3 3 6 53.3 () (A) 53.3 4 9 8 36.87 () ectangular fr: 36 j48 () 64 j48 () Apply Krchhff s vltage law: Ο ( 36 j48) ( 64 j48) j Phasr dagra: j 8 6 36.87 53.3 Snusdal Alternatng Wavefrs and Phasr ncept 8 9

Pwer: Methd : P cs θ cs( 53.3 ) W Methd : Methd 3: P 3 W P csθ P P csθ csθ 6 cs 8 cs 9 W Pwer Factr: PF P cs θ cs53.3.6 laggng pedance angle angle between nput vltage and current When current s laggng the vltage, the pwer factr s sad t be a: laggng pwer factr. Snusdal Alternatng Wavefrs and Phasr ncept 9 xaple f Seres -- rcut: 3Ω ~ 5 X 7Ω X 3Ω X 3 j7 j3 3 j4 ectangular fr 3 5 53. 3 9 X Plar fr 9 Seres -- rcut pedance dagra: j X 7Ω X -X 4Ω 5Ω θ 53.3 3Ω X 3Ω Snusdal Alternatng Wavefrs and Phasr ncept

urrent: 5 53.3 5 53.3 (A) ltages: Plar fr: ectangular fr: 53.3 3 3 53.3 () 53.3 7 9 7 36.87 () 53.3 3 9 3 43.3 () 3 8 j4 () 56 j4 () 4 j8 () Apply Krchhff s vltage law: Ο ( 8 j4) ( 56 j4) ( 4 j8) 5 j 5 Snusdal Alternatng Wavefrs and Phasr ncept Phasr dagra: j 36.87 53.3 e dan: v v v sn 3sn 7sn 3sn ( ωt 53.3 ) ( ωt 53.3 ) ( ωt 36.87 ) ( ωt 43.3 ) Snusdal Alternatng Wavefrs and Phasr ncept

Pwer: Methd : ( 53.3 ) 3 W P cs θ 5 cs Methd : P 3 3 W Methd 3: P csθ P P P csθ csθ csθ 3 cs 7 cs 9 3 cs 9 3 3 W Pwer Factr: P PF cs θ.6 laggng pedance angle angle between nput vltage and current Snusdal Alternatng Wavefrs and Phasr ncept 3 ltage Dvder ule: N ~ xaple: 3Ω ~ 5 X 7Ω Seres -- rcut X 3Ω jx jx jx jx jx jx jx jx 3 5 5 3 53.3 3 j(7 3) 5 53.3 7 9 5 35 9 7 36.87 3 j(7 3) 5 53.3 3 9 5 5 9 3 43.3 3 j(7 3) 5 53.3 Snusdal Alternatng Wavefrs and Phasr ncept 4

.3. Parallel rcuts w eleents, branches, r netwrks are n parallel f they have tw pnts n cn. Parallel pedances: N Adttance Y Y Y YN N Y a b tal pedance f parallel pedances s always less than the value f the sallest pedance Snusdal Alternatng Wavefrs and Phasr ncept 5 Fr tw parallel pedances: Fr three parallel pedances: 3 3 3 nductance: G (seens, S) Susceptance: B (seens, S) X B X (seens, S) j B B G Adttance Dagra Snusdal Alternatng Wavefrs and Phasr ncept 6 3

xaple f Parallel -- rcut: ~ 5Ω X 8Ω 93.6.56 Parallel --rcut X Ω Y G G. Y B B 9 9.5 9 X Y B B 3 9 X 9.5 9 j B G Y Y Y Y (. J ) ( J.5) ( J.5) 3. -j. 75.36.56 B B θ.56 Y 4.68. 56 Y.36.56 B Adttance Dagra Snusdal Alternatng Wavefrs and Phasr ncept 7 urrent: G 93.6.56 B B 93.6.56 4.68.56. 8.7.56 93.6.56.5 9.7 69.44 93.6.56.5 9 4.68.56 Apply Krchhff s current law: ( j) ( 7.57 j6.574) ( 4.9.955) (.643 j4.38) j Snusdal Alternatng Wavefrs and Phasr ncept 8 4

urrent Dvder ule: ~ N N ~ xaple: 5Ω X 8Ω Parallel --rcut X Ω 4.68.56 4.68.56 5 4.68.56 8 9 4.68.56 9 8.7.56.7 69.44 4.68.56 Snusdal Alternatng Wavefrs and Phasr ncept 9 Suary: Krchhff s law apples t ac crcuts the sae way t apples t dc crcuts. Seres and parallel crcut rules apply t ac crcuts the sae way they apply t dc crcuts. nstead f resstance pedance s used. Seres Parallel N N pedance adttance Y Fr any netwrk cnfguratn(seres, parallel r seres-parallel), the angle θ by whch the appled vltage leads the surce current wll be pstve fr nductve netwrk and negatve fr capactve netwrks. Snusdal Alternatng Wavefrs and Phasr ncept 3 5