Try out the choices with the proper units for each quantity. Choice A FVT = (N) (m/s) (s) = Nm which is work in joules same as energy.

Similar documents
(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

AP Physics C - Mechanics

Energy Problem Solving Techniques.

PSI AP Physics C Work and Energy. (With Calculus) Multiple Choice Questions

PSI AP Physics I Work and Energy

Chapter 6 Energy and Oscillations

W = F x W = Fx cosθ W = Fx. Work

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

Slide 1 / 76. Slide 2 / 76. Slide 3 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000. A Fdcos θ - μ mgd B Fdcos θ.

Potential Energy & Conservation of Energy

Slide 2 / 76. Slide 1 / 76. Slide 3 / 76. Slide 4 / 76. Slide 6 / 76. Slide 5 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

AP Physics C. Momentum. Free Response Problems

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

PHYS Summer Professor Caillault Homework Solutions. Chapter 8

Recall: Gravitational Potential Energy

Regents Physics. Physics Midterm Review - Multiple Choice Problems

*Be able to use any previous concepts with work & energy, including kinematics & circular motion.

4Mv o. AP Physics Free Response Practice Momentum and Impulse ANSWERS

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans:

Work and Energy. chapter 7

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1

Prof. Rupak Mahapatra. Physics 218, Chapter 7 & 8 1

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

Chapters 10 & 11: Energy

PSI AP Physics B Dynamics

Slide 1 / 76. Work & Energy Multiple Choice Problems

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Ch 8 Conservation of Energy

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion.

Chapter 6: Work and Kinetic Energy

EXAM 3 SOLUTIONS. NAME: SECTION: AU Username: Read each question CAREFULLY and answer all parts. Work MUST be shown to receive credit.

Essentially, the amount of work accomplished can be determined two ways:

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Chapter 07: Kinetic Energy and Work

Power: Sources of Energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy

PHYS 101 Previous Exam Problems. Kinetic Energy and

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

Potential energy functions used in Chapter 7

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

AP Physics C - Mechanics

The negative root tells how high the mass will rebound if it is instantly glued to the spring. We want

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

2. Which of the following best describes the relationship between force and potential energy?

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular,

CHAPTER 6 WORK AND ENERGY

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7.

QUESTION TWO: BUNGY JUMPING. Acceleration due to gravity = 9.81 m s 2

Power: Sources of Energy

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

Work changes Energy. Do Work Son!

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest.

KINETIC ENERGY AND WORK

Potential and Kinetic Energy: Roller Coasters Student Advanced Version

Slide 1 / A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? 10 km 22.5 km 25 km 45 km 50 km

Physics 2211 A & B Quiz #4 Solutions Fall 2016

Practice Exam 2. Multiple Choice Identify the choice that best completes the statement or answers the question.

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero

Old Exam. Question Chapter 7 072

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power

CHAPTER 6 TEST REVIEW -- MARKSCHEME

ΣE before ± W = ΣE after

0J2 - Mechanics Lecture Notes 2

MECHANICAL (TOTAL) ENERGY

Work Done by a Constant Force

POTENTIAL ENERGY AND ENERGY CONSERVATION

Unit 4 Work, Power & Conservation of Energy Workbook

Lecture 12 Friction &Circular. Dynamics

l1, l2, l3, ln l1 + l2 + l3 + ln

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Physics 231. Topic 7: Oscillations. Alex Brown October MSU Physics 231 Fall

Kinematics and Dynamics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Work and Kinetic Energy I

Physics Unit 4:Work & Energy Name:

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13

Q1. Which of the following is the correct combination of dimensions for energy?

Lectures 11-13: From Work to Energy Energy Conservation

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves).

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Name: Lab Partner: Section:

Chapter 8. Potential Energy

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

Practice Test for Midterm Exam

You may wish to closely review the following figures, examples, and the text sections that discuss them:

This chapter covers all kinds of problems having to do with work in physics terms. Work

Name: AP Physics C: Kinematics Exam Date:

PRACTICE TEST for Midterm Exam

Conservation of Energy and Momentum

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus)

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Physics 201, Midterm Exam 2, Fall Answer Key

An Introduction. Work

AP Physics C 2015 Summer Assignment

Physics 53 Summer Exam I. Solutions

AP Physics. Harmonic Motion. Multiple Choice. Test E

Transcription:

NSWRS - P Physics Multiple hoice Practice Work-nergy 1.. 3. 4. 5. Solution onservation of nergy, U sp = K, ½ k = ½ mv solve for v onstant velocity F net =0, f k = Fx = Fcos θ W fk = f k d = Fcos θ d Try out the choices with the proper units for each quantity. hoice FVT = (N) (m/s) (s) = Nm which is work in joules same as energy. Two step problem. o F = k x, solve for x then sub in the U sp = ½ k x In a circle moving at a constant speed, the work done is zero since the Force is always perpendicular to the distance moved as you move incrementally around the circle nswer 6. L Lcos θ h = L Lcos θ The potential energy at the first position will be the amount lost as the ball falls and this will be the change in potential. U=mgh = mg(l Lcos θ) 7. 8. 9. 10. 11. 1. 13. 14. 15. 16. 17. force directed above the horizontal looks like this θ To find the work done by this force we use the parallel component of the force (Fx) x distance. = (Fcos θ) d The maximum speed would occur if all of the potential energy was converted to kinetic U = K 16 = ½ mv 16 = ½ () v The work done by the stopping force equals the loss of kinetic energy. W= K Fd = ½ mv f ½ mv i v f = 0 F = mv /d The work done by friction equals the loss of kinetic energy f k d = ½ mv f ½ mv i v f = 0, plug in values to get answer P = Fd / t. Since there is no distance moved, the power is zero This is a conservative situation so the total energy should stay same the whole time. It should also start with max potential and min kinetic, which only occurs in choice Stopping distance is a work-energy relationship. Work done by friction to stop = loss of kinetic f k d = ½ mv i µ k mg = ½ mv i The mass cancels in the relationship above so changing mass doesn t change the distance Same relationship as above double the v gives 4x the distance Half way up you have gained half of the height so you gained ½ of potential energy. Therefore you must have lost ½ of the initial kinetic energy so = ( k /). Subbing into this relationship = ( k /) ½ mv = ½ m v / v = v /. Sqrt both sides gives answer t the top, the ball is still moving (v x ) so would still possess some kinetic energy Same as question #1 with different variables used

18. 19. 0. 1.. 3. 4. 5. 6. 7. 8. 9. 30. 31. 3. 33. 34. P = F d / t = (ma)d / t = (kg)(m/s )(m) / (s) = kg m / s 3 P = Fv, plug in to get the pushing force F and since its constant speed, F push = f k Total energy is always conserved so as the air molecules slow and lose their kinetic energy, there is a heat flow which increases internal (or thermal) energy The work done must equal the increase in the potential energy mgh = (10)(10)(1.3) ased on F = k x. The mass attached to the spring does not change the spring constant so the same resistive spring force will exist, so the same stretching force would be required The work done must equal the total gain in potential energy 10 boxes * mgh (5)(10)(1.5) of each liminating obviously wrong choices only leaves as an option. The answer is because since the first ball has a head start on the second ball it is moving at a faster rate of speed at all times. When both are moving in the air together for equal time periods the first faster rock will gain more distance than the slower one which will widen the gap between them. ll of the K = ½ m v is converted to U. Simply plug in the values For a mass on a spring, the max U occurs when the mass stops and has no K while the max K occurs when the mass is moving fast and has no U. Since energy is conserved it is transferred from one to the other so both maximums are equal Since the ball is thrown with initial velocity it must start with some initial K. s the mass falls it gains velocity directly proportional to the time (V=Vi+at) but the K at any time is equal to 1/ mv which gives a parabolic relationship to how the K changes over time. Since the speed is constant, the pushing force F must equal the friction force f k =µf n =µmg. The power is then given by the formula P = Fv = µmgv Since the speed is constant, the pushing force F must equal the friction force (10 N). The distance traveled is found by using d = vt = (3)(60 sec), and then the work is simply found using W=Fd Only conservative forces are acting which means mechanical energy must be conserved so it stays constant as the mass oscillates The box momentarily stops at x(min) and x(max) so must have zero K at these points. The box accelerates the most at the ends of the oscillation since the force is the greatest there. This changing acceleration means that the box gains speed quickly at first but not as quickly as it approaches equilibrium. This means that the K gain starts of rapidly from the endpoints and gets less rapid as you approach equilibrium where there would be a maximum speed and maximum K, but zero force so less gain in speed. This results in the curved graph. Point IV is the endpoint where the ball would stop and have all U and no K. Point II is the minimum height where the ball has all K and no U. Since point III is halfway to the max U point half the energy would be U and half would be K pply energy conservation using points IV and II. U 4 = K mgh = ½ mv Force is provided by the weight of the mass (mg). Simply plug into F=k x, mg=k x and solve

35. 36. Since the track is rough there is friction and some mechanical energy will be lost as the block slides which means it cannot reach the same height on the other side. The extent of energy lost depends on the surface factors and cannot be determined without more information The force needed to lift something at a constant speed is equal to the object weight F=mg. The power is then found by P = Fd / t = mgh / t 37. Simple energy conservation K=U sp ½ mv o = ½ k x solve for x 38. Simple application of F g =mg 39. 40. 41. 4. 43. 44. 45. 46. 47. 48. 49. 50. 51. F n = F gy = mg cos θ. Since you are given the incline with sides listed, cos θ can be found by using the dimensions of the incline cos θ = adj / hyp = 4/5 to make math simple. This is a good trick to learn for physics problems s the box slides down the incline, the gravity force is parallel to the height of the incline the whole time so when finding the work or gravity you use the gravity force for F and the height of the incline as the parallel distance. Work = (F g )(d) = (0)(3) The student must exert an average force equal to their weight (F g ) in order to lift themselves so the lifting force F=mg. The power is then found with P = Fd / t = (F g )d / t s the object oscillates its total mechanical energy is conserved and transfers from U to K back and forth. The only graph that makes sense to have an equal switch throughout is To push the box at a constant speed, the child would need to use a force equal to friction so F=f k =µmg. The rate of work (W/t) is the power. Power is given by P=Fv µmgv Two steps. I) use hookes law in the first situation with the 3 kg mass to find the spring constant (k). F sp =k x, mg=k x, k = 30/.1 = 50. II) Now do energy conservation with the second scenario (note that the initial height of drop will be the same as the stretch x). U top = U sp bottom, mgh = ½ k x, (4)(10)( x) = ½ (50) ( x ) In a circular orbit, the velocity of a satellite is given by v Gme r with m e = M. Kinetic energy of the satellite is given by K = ½ m v. Plug in v from above to get answer Projectile. V x doesn t matter V iy = 0. Using d = v iy t + ½ at we get the answer nergy conservation top = bot, K t +U t = K b. Plug in for K top and U top to get answer is true; both will be moving the fastest when they move through equilibrium. X and Y directions are independent and both start with the same velocity of zero in each direction. The same force is applied in each direction for the same amount of time so each should gain the same velocity in each respective direction. Kinetic energy is not a vector and the total resultant velocity should be used to determine the K. For the 1 st second the object gains speed at a uniform rate in the x direction and since K is proportional to v we should get a parabola. However, when the nd second starts the new gains in velocity occur only in the y direction and are at smaller values so the gains essentially start over their parabolic trend as shown in graph Simple P = Fv

5. 53. 54. 55. 56. 57. 58. 59. 60. 61. 6. 63 64. 65. The force needed to lift something at a constant speed is equal to the object weight F=mg. The power is then found by P = Fd / t = mgh / t s the system moves, m loses energy over distance h and m 1 gains energy over the same distance h but some of this energy is converted to K so there is a net loss of U. Simply subtract the U U 1 to find this loss In a force vs. displacement graph, the area under the line gives the work done by the force and the work done will be the change in the K so the largest area is the most K change ompare the U+K ( mgh + ½ mv ) at the top, to the K ( ½ mv ) at the bottom and subtract them to get the loss. Use energy conservation, U top = K bottom. s in problem #6 (in this document), the initial height is given by L Lcos θ, with cos 60 =.5 so the initial height is ½ L. Use application of the net work energy theorem which says W net = K. The net work is the work done by the net force which gives you the answer First use the given location (h=10m) and the U there (50J) to find the mass. U=mgh, 50=m(10)(10), so m = 0.5 kg. The total mechanical energy is given in the problem as U+K = 100 J. The max height is achieved when all of this energy is potential. So set 100J = mgh and solve for h There is no U sp at position x=0 since there is no x here so this is the minimum U location Simple P = Fv to solve Using energy conservation in the first situation presented K=U gives the initial velocity as v gh. The gun will fire at this velocity regardless of the angle. In the second scenario, the ball starts with the same initial energy but at the top will have both K and P so will be at a lower height. The velocity at the top will be equal to the v x at the beginning v x vcos gh gh cos45 gh conservation problem for situation and solve for h. K bottom = U top + K top 1 m gh mgh 1 m gh. Now sub into the full energy To find work we use the parallel component of the force to the distance, this gives Fcos θ d The centripetal force is the force allowing the circular motion which in this case is the spring force F sp =k x=(100)(.03) In a circle at constant speed, the work done is zero since the Force is always perpendicular to the distance moved as you move incrementally around the circle t the maximum displacement the K=0 so the 10J of potential energy at this spot is equal to the total amount of mechanical energy for the problem. Since energy is conserved in this situation, the situation listed must have U+K add up to 10J.

66. Using the work-energy theorem. W nc = M, W Ft = U+ K, Fd = (mgh f mgh i ) + ( ½mv f ½mv i ), (11000)(8) = (0 (1000)(10)(8)) + (0 ½ (1000)(v i ) solve for v i 67. Use energy conservation K=U sp ½ mv m = ½ k x, with x=, solve for k 68. 69. 70. To lift the mass at a constant velocity a lifting force equal to the objects weight would be needed, so F=(mg). Simply plug into P = Fd / t and solve for d. Using the vertical distance with the vertical force (Fd ) W = 10 cartons * (mg)(d y ) = 10 * (5)(10m/s )(1.5m) = 3750J The U will equal the amount of initial K based on energy conservation, U = K = 1/ m v 71. Using work-energy. W nc = K = K f K i Fd = 0 ½ m v f F(95) = ½ (500)8 7. 73. 74. 75. 76. ased on net work version of work energy theorem. W net = K, we see that since there is a constant speed, the K would be zero, so the net work would be zero requiring the net force to also be zero. s the block slides back to equilibrium, we want all of the initial spring energy to be dissipated by work of friction so there in no kinetic energy at equilibrium where all of the spring energy is now gone. So set work of friction = initial spring energy and solve for μ. The distance traveled while it comes to rest is the same as the initial spring stretch, d = x. ½ kx = μmg(x) V at any given time is given by v = v i + at, with v i = 0 gives v = at, V at any given distance is found by v = v i + ad, with v i = 0 gives v = ad This question asks for the relationship to distance. The kinetic energy is given by K = ½ m v and since v = ad we see a linear direct relationship of kinetic energy to distance (*d *K) nother way of thinking about this is in relation to energy conservation. The total of mgh+1/mv must remain constant so for a given change in (h) the ½ mv term would have to increase or decrease directly proportionally in order to maintain energy conservation. Similar to the discussion above. nergy is conserved so the term mgh + ½ mv must remain constant. s the object rises it loses K and gains U. Since the height is H/ it has gained half of the total potential energy it will end up with which means it must have lost half of its kinetic energy, so its K is half of what it was when it was first shot. Since the force is always perpendicular to the incremental distances traveled as the particle travels the loop, there is zero work done over each increment and zero total work as well.