La mesure de Mahler supérieure et la question de Lehmer

Similar documents
Mahler measure as special values of L-functions

Mahler measure and special values of L-functions

Higher Mahler measures and zeta functions

APPLICATIONS OF MULTIZETA VALUES TO MAHLER MEASURE

Higher Mahler measures and zeta functions

On Mahler measures of several-variable polynomials and polylogarithms

Some aspects of the multivariable Mahler measure

The Mahler measure of elliptic curves

Minimal polynomials of some beta-numbers and Chebyshev polynomials

O.B. Berrevoets. On Lehmer s problem. Bachelor thesis. Supervisor: Dr J.H. Evertse. Date bachelor exam: 24 juni 2016

Auxiliary polynomials for some problems regarding Mahler s measure

There s something about Mahler measure

The Mahler measure of trinomials of height 1

For k a positive integer, the k-higher Mahler measure of a non-zero, n-variable, rational function P (x 1,..., x n ) C(x 1,..., x n ) is given by

Examples of Mahler Measures as Multiple Polylogarithms

The values of Mahler measures

On links with cyclotomic Jones polynomials

THE MAHLER MEASURE OF POLYNOMIALS WITH ODD COEFFICIENTS

Zsigmondy s Theorem. Lola Thompson. August 11, Dartmouth College. Lola Thompson (Dartmouth College) Zsigmondy s Theorem August 11, / 1

A combinatorial problem related to Mahler s measure

On a secant Dirichlet series and Eichler integrals of Eisenstein series

Cyclotomic Matrices and Graphs. Graeme Taylor

THE DISTRIBUTION OF ROOTS OF A POLYNOMIAL. Andrew Granville Université de Montréal. 1. Introduction

Mahler measure of K3 surfaces

Quasi-reducible Polynomials

On the friendship between Mahler measure and polylogarithms

On K2 T (E) for tempered elliptic curves

An Asymptotic Formula for Goldbach s Conjecture with Monic Polynomials in Z[x]

ζ (s) = s 1 s {u} [u] ζ (s) = s 0 u 1+sdu, {u} Note how the integral runs from 0 and not 1.

DIOPHANTINE PROBLEMS, POLYNOMIAL PROBLEMS, & PRIME PROBLEMS. positive ) integer Q how close are you guaranteed to get to the circle with rationals

MTH310 EXAM 2 REVIEW

CLOSED SETS OF MAHLER MEASURES

P -adic root separation for quadratic and cubic polynomials

erm Michael Mossinghoff Davidson College Introduction to Topics 2014 Brown University

THE LIND-LEHMER CONSTANT FOR 3-GROUPS. Stian Clem 1 Cornell University, Ithaca, New York

Mahler measure of K3 surfaces (Lecture 4)

FIELD THEORY. Contents

A Gel fond type criterion in degree two

Elementary Properties of Cyclotomic Polynomials

Copyright. Matilde Noemi Lalin

Root statistics of random polynomials with bounded Mahler measure

Artūras Dubickas and Jonas Jankauskas. On Newman polynomials, which divide no Littlewood polynomial. Mathematics of Computation, 78 (2009).

Zero Determination of Algebraic Numbers using Approximate Computation and its Application to Algorithms in Computer Algebra

Math 680 Fall A Quantitative Prime Number Theorem I: Zero-Free Regions

Section X.55. Cyclotomic Extensions

Roots of Polynomials in Subgroups of F p and Applications to Congruences

Classification of Finite Fields

Proof by Contradiction

Continuing the pre/review of the simple (!?) case...

ON THE IRREDUCIBILITY OF SUM OF TWO RECIPROCAL POLYNOMIALS

CYCLOTOMIC POLYNOMIALS

METRIC HEIGHTS ON AN ABELIAN GROUP

THE t-metric MAHLER MEASURES OF SURDS AND RATIONAL NUMBERS

Explicit Methods in Algebraic Number Theory

CYCLOTOMIC POLYNOMIALS

Polynomial Rings. i=0. i=0. n+m. i=0. k=0

Proposed by Jean-Marie De Koninck, Université Laval, Québec, Canada. (a) Let φ denote the Euler φ function, and let γ(n) = p n

Newman s Conjecture for function field L-functions

ON VALUES OF CYCLOTOMIC POLYNOMIALS. V

Mathematical Olympiad Training Polynomials

Absolute zeta functions and the absolute automorphic forms

Rational Points on Curves

THE HEIGHT OF ALGEBRAIC UNITS IN LOCAL FIELDS*

3. Heights of Algebraic Numbers

Polynomials. Chapter 4

1, for s = σ + it where σ, t R and σ > 1

Math Circles: Number Theory III

Copyright by Matilde Noem ı Lal ın 2005

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION

Algebra. Pang-Cheng, Wu. January 22, 2016

A connection between number theory and linear algebra

On intervals containing full sets of conjugates of algebraic integers

arxiv: v1 [math.nt] 26 Nov 2008

Section IV.23. Factorizations of Polynomials over a Field

Roots of Unity, Cyclotomic Polynomials and Applications

Geometry of points over Q of small height Part II

Complexity of Knots and Integers FAU Math Day

Linear Mahler Measures and Double L-values of Modular Forms

Solutions Manual for Homework Sets Math 401. Dr Vignon S. Oussa

CLOSED SETS OF MAHLER MEASURES

The lowest degree 0, 1-polynomial divisible by cyclotomic polynomial arxiv: v2 [math.nt] 15 Nov 2011

The Riemann Hypothesis

Some Interesting Properties of the Riemann Zeta Function

Each aix i is called a term of the polynomial. The number ai is called the coefficient of x i, for i = 0, 1, 2,..., n.

arxiv:math/ v2 [math.nt] 28 Jan 2008

Mahler measures and computations with regulators

arxiv: v3 [math.nt] 15 Dec 2016

P -ADIC ROOT SEPARATION FOR QUADRATIC AND CUBIC POLYNOMIALS. Tomislav Pejković

Problem 1A. Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1. (Hint: 1. Solution: The volume is 1. Problem 2A.

Arithmetic properties of periodic points of quadratic maps, II

Counting Perfect Polynomials

MASTERS EXAMINATION IN MATHEMATICS

Factorization in Integral Domains II

Reciprocal Polynomials Having Small Measure

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d

A talk given at University of Wisconsin at Madison (April 6, 2006). Zhi-Wei Sun

Mahler s Measure and Möbius Transformations

Part II. Number Theory. Year

Coding Theory and Applications. Solved Exercises and Problems of Cyclic Codes. Enes Pasalic University of Primorska Koper, 2013

Galois Theory, summary

Transcription:

La mesure de Mahler supérieure et la question de Lehmer Matilde Lalín (joint with Kaneenika Sinha (IISER, Kolkata)) Université de Montréal mlalin@dms.umontreal.ca http://www.dms.umontreal.ca/ mlalin Conférence Québec-Maine Université Laval 2 octobre, 2010 (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 1 / 23

Mahler measure for one-variable polynomials Pierce (1918): P Z[x] monic, P(x) = i (x r i ) n = i (r n i 1) P(x) = x 2 n = 2 n 1 (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 2 / 23

Lehmer (1933): { r n+1 1 r if r > 1 lim = n r n 1 1 if r < 1 For M(P) = a P(x) = a (x r i ) i r i, m (P) = log a + log r i. By Jensen's formula, r i >1 r i >1 m(p) := 1 0 ( log P 2πiθ) e dθ. (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 3 / 23

Kronecker's Lemma P Z[x], P 0, m(p) = 0 P(x) = x k Φ ni (x) where Φ ni are cyclotomic polynomials. (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 4 / 23

Lehmer's question Lehmer (1933): Given ɛ > 0, can we nd a polynomial P(x) Z[x] such that 0 < m(p) < ɛ? m(x 10 + x 9 x 7 x 6 x 5 x 4 x 3 + x + 1) = 0.162357612... Is the above polynomial the best possible?. 379 = 1, 794, 327, 140, 357 (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 5 / 23

Lehmer's question Lehmer (1933): Given ɛ > 0, can we nd a polynomial P(x) Z[x] such that 0 < m(p) < ɛ? m(x 10 + x 9 x 7 x 6 x 5 x 4 x 3 + x + 1) = 0.162357612... Is the above polynomial the best possible?. 379 = 1, 794, 327, 140, 357 (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 5 / 23

P C[x] reciprocal i P(x) = ±x deg P P ( x 1). Theorem (Smyth, 1971) P Z[x] nonreciprocal, m(p) m(x 3 x 1) = 0.2811995743.... (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 6 / 23

Higher Mahler measure For k Z 0, the k-higher Mahler measure of P is m k (P) := 1 0 log k P (e 2πiθ) dθ. k = 1 : m 1 (P) = m(p), and m 0 (P) = 1. (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 7 / 23

The simplest examples (Kurokawa, L., Ochiai) m 2 (x 1) = ζ(2) 2 = π2 12. m 3 (x 1) = 3ζ(3). 2 m 4 (x 1) = 3ζ(2)2 + 21ζ(4) 4 = 19π4 240. m 5 (x 1) = 15ζ(2)ζ(3) + 45ζ(5). 2 m 6 (x 1) = 45 2 ζ(3)2 + 275 1344 π6. (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 8 / 23

k=0 m k (x 1) s k = k! = 1 0 2πiθ e 1 s dθ ( ) Γ(s + 1) Γ ( s + 1) = exp ( 1) k (1 2 1 k )ζ(k) s k. 2 k 2 k=2 Transform the integral into a Beta function, then use the Weierstrass product of the Γ-function. (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 9 / 23

Lehmer's question for even higher measure Theorem If P(x) Z[x], then for any h 1, ( ) π 2 h 12, if P(x) is reciprocal, m 2h(P) ( ) π 2 h 48, if P(x) is non-reciprocal. (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 10 / 23

m 2 (P) for P reciprocal is minimized when P is a product of monomials and cyclotomic polynomials. m 2 (P) π2 for P a product of monomials and cyclotomic 12 polynomials. For P nonreciprocal, take P(x)x deg P P ( x 1 ). For m 2h(P), use Hölder's inequality. (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 11 / 23

Multiple Mahler measure Let P 1,..., P k C[x ± ] be non-zero Laurent polynomials. Their multiple higher Mahler measure is dened by m(p 1,..., P k ) = m 2 ( i 1 0 (x r i ) ( log P 2πiθ) Pk 1 e log (e 2πiθ) dθ. ) = i,j m(x r i, x r j ). (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 12 / 23

Multiple Mahler measure for simple polynomials Lemma (Kurokawa, L., Ochiai) For 0 α 1 m(x 1, x e 2πiα ) = π2 2 ( α 2 α + 1 ). 6 (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 13 / 23

m 2 of cyclotomic polynomials Proposition For any two positive integers a and b, m(x a 1, x b 1) = π2 12 (a, b) 2 ab. For a positive integer n, let φ n (x) denote the n-th cyclotomic polynomial and ϕ Euler's function. Then m 2 (φ n (x)) = π2 12 ϕ(n)2 r(n), n where r(n) denotes the number of distinct prime divisors of n. (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 14 / 23

m 2 of noncyclotomic polynomials P(x) m(p) m2(p) x 8 + x 5 x 4 + x 3 + 1 0.2473585132 1.0980813745 x 10 + x 9 x 7 x 6 x 5 x 4 x 3 + x + 1 0.1623576120 1.7447964556 x 10 x 6 + x 5 x 4 + 1 0.1958888214 1.2863292447 x 10 + x 7 + x 5 + x 3 + 1 0.2073323581 1.2320444893 x 10 x 8 + x 5 x 2 + 1 0.2320881973 1.1704950485 x 10 + x 8 + x 7 + x 5 + x 3 + x 2 + 1 0.2368364616 1.1914083866 x 10 + x 9 x 5 + x + 1 0.2496548880 1.0309287773 x 12 + x 11 + x 10 x 8 x 7 x 6 x 5 x 4 + x 2 + x + 1 0.2052121880 1.4738375004 x 12 + x 11 + x 10 + x 9 x 6 + x 3 + x 2 + x + 1 0.2156970336 1.5143823478 x 12 + x 11 x 7 x 6 x 5 + x + 1 0.2239804947 1.2059443050 x 12 + x 10 + x 7 x 6 + x 5 + x 2 + 1 0.2345928411 1.2434560052 x 12 + x 10 + x 9 + x 8 + 2x 7 + x 6 + 2x 5 + x 4 + x 3 + x 2 + 1 0.2412336268 1.6324129051 x 14 + x 11 x 10 x 7 x 4 + x 3 + 1 0.1823436598 1.3885013172 x 14 x 12 + x 7 x 2 + 1 0.1844998024 1.3845721865 x 14 x 12 + x 11 x 9 + x 7 x 5 + x 3 x 2 + 1 0.2272100851 1.4763006621 x 14 + x 11 + x 10 + x 9 + x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + 1 0.2351686174 1.4352060397 x 14 + x 13 x 8 x 7 x 6 + x + 1 0.2368858459 1.2498299096 x 14 + x 13 + x 12 x 9 x 8 x 7 x 6 x 5 + x 2 + x + 1 0.2453300143 1.3362661982 x 14 + x 13 x 11 x 7 x 3 + x + 1 0.2469561884 1.3898540050 Known noncyclotomic P Z[x], deg P 14, m(p) < 0.25. (Mossingho: http://www.cecm.sfu.ca/ mjm/lehmer/search/) (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 15 / 23

m 3 Lemma (Kurokawa, L., Ochiai) m(x 1, x e 2πiα, x e 2πiβ ) = 1 4 1 4 1 4 1 k,l 1 k,m 1 l,m cos 2π((k + l)β lα) kl(k + l) cos 2π((k + m)α mβ) km(k + m) cos 2π(lα + mβ). lm(l + m) (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 16 / 23

m 3 ( x n 1 x 1 ) = 32 ζ(3) ( 2 + 3n n 3 n 2 ) + 3π 2 j=1 n j ( ) cot π j n. j 2 Examples m 3 ( x 2 m 3 ( x 3 + x + 1 ) = 10 3π 3 ζ(3) + 2 L(2, χ 3). + x 2 + x + 1 ) = 81 16 ζ(3) + 3π 2 L(2, χ 4). (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 17 / 23

Lehmer's question for odd higher measure Theorem Let P n (x) = x n 1. For h 1 xed, x 1 lim m 2h+1(P n ) = 0. n Moreover, the sequence m 2h+1(P n ) is nonconstant. (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 18 / 23

Theorem (essentially Boyd, Lawton) Let P(x 1,..., x n ) C[x 1,..., x n ] and r = (r 1,..., r n ), r i Z >0. Dene P r (x) as P r (x) = P(x r 1,..., x rn ), and let q(r) = min H(s) : s = (s 1,..., s n ) Z n, s (0,..., 0), n s j r j = 0, j=1 Then lim m(p 1r,..., P l r ) = m(p 1,..., P l ). q(r) (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 19 / 23

m 2h+1 lim n m 2h+1 ( x n ) 1 x 1 (suggested by Soundararajan) ( x n ) ( ) 1 y 1 = m 2h+1 = 0. x 1 x 1 = C(h) log2h 1 n n ( ( )) 1 + O log 1 n. (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 20 / 23

Summing up Lehmer's question FALSE for m 2h, h 1. Lehmer's question TRUE for m 2h+1, h 1. m k (P) is interesting for P cyclotomic and that answers Lehmer's question. (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 21 / 23

Further questions m 3 (P) for P noncyclotomic? Lehmer's question for P noncyclotomic. Bounds for m 2h(P), h 2. Explain zeta values!!! (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 22 / 23

Thank you! Merci! (j/w Sinha) Lalín (U de M) La mesure de Mahler supérieure Conférence Québec-Maine 23 / 23