On estimating divisor sums over quadratic polynomials

Similar documents
On the Number of Divisors of n 2 1

A Pellian equation with primes and applications to D( 1)-quadruples

Explicit Bounds for the Burgess Inequality for Character Sums

A numerically explicit Burgess inequality and an application to qua

Part II. Number Theory. Year

On Diophantine quintuples and D( 1)-quadruples

Research Statement. Enrique Treviño. M<n N+M

ON THE SUM OF DIVISORS FUNCTION

OEIS A I. SCOPE

ON THE AVERAGE NUMBER OF DIVISORS OF REDUCIBLE QUADRATIC POLYNOMIALS

THE NUMBER OF DIOPHANTINE QUINTUPLES. Yasutsugu Fujita College of Industrial Technology, Nihon University, Japan

On Diophantine m-tuples and D(n)-sets

ON THE SEMIPRIMITIVITY OF CYCLIC CODES

M381 Number Theory 2004 Page 1

The Least Inert Prime in a Real Quadratic Field

MAS114: Solutions to Exercises

BOUNDS FOR DIOPHANTINE QUINTUPLES. Mihai Cipu and Yasutsugu Fujita IMAR, Romania and Nihon University, Japan

Summary Slides for MATH 342 June 25, 2018

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

On the prime divisors of elements of a D( 1) quadruple

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

D( 1)-QUADRUPLES AND PRODUCTS OF TWO PRIMES. Anitha Srinivasan Saint Louis University-Madrid campus, Spain

On The Weights of Binary Irreducible Cyclic Codes

EXPLICIT CONSTANTS IN AVERAGES INVOLVING THE MULTIPLICATIVE ORDER

Quadratic Congruences, the Quadratic Formula, and Euler s Criterion

Dimensions of the spaces of cusp forms and newforms on Γ 0 (N) and Γ 1 (N)

BURGESS INEQUALITY IN F p 2. Mei-Chu Chang

BURGESS BOUND FOR CHARACTER SUMS. 1. Introduction Here we give a survey on the bounds for character sums of D. A. Burgess [1].

Citation 数理解析研究所講究録 (2017), 2014:

CHEBYSHEV S BIAS AND GENERALIZED RIEMANN HYPOTHESIS

Integer partitions into Diophantine pairs

Objective Type Questions

ON THE AVERAGE RESULTS BY P. J. STEPHENS, S. LI, AND C. POMERANCE

Solution Sheet (i) q = 5, r = 15 (ii) q = 58, r = 15 (iii) q = 3, r = 7 (iv) q = 6, r = (i) gcd (97, 157) = 1 = ,

Quartic and D l Fields of Degree l with given Resolvent

Math 259: Introduction to Analytic Number Theory Exponential sums IV: The Davenport-Erdős and Burgess bounds on short character sums

Character sums with Beatty sequences on Burgess-type intervals

THE PROBLEM OF DIOPHANTUS FOR INTEGERS OF Q( 3) Zrinka Franušić and Ivan Soldo

The Weil bounds. 1 The Statement

THE PROBLEM OF DIOPHANTUS FOR INTEGERS OF. Zrinka Franušić and Ivan Soldo

Diophantine quintuples containing triples of the first kind

Contest Number Theory

On a special case of the Diophantine equation ax 2 + bx + c = dy n

On Anti-Elite Prime Numbers

E-SYMMETRIC NUMBERS (PUBLISHED: COLLOQ. MATH., 103(2005), NO. 1, )

Primes of the Form x 2 + ny 2

Dirichlet Series Associated with Cubic and Quartic Fields

ON DIRICHLET S CONJECTURE ON RELATIVE CLASS NUMBER ONE

Miller-Rabin Primality Testing and the Extended Riemann Hypothesis

EXPONENTIAL SUMS OVER THE SEQUENCES OF PRN S PRODUCED BY INVERSIVE GENERATORS

On Siegel s lemma outside of a union of varieties. Lenny Fukshansky Claremont McKenna College & IHES

Simultaneous Diophantine Approximation with Excluded Primes. László Babai Daniel Štefankovič

A NOTE ON CHARACTER SUMS IN FINITE FIELDS. 1. Introduction

joint with Katherine Thompson July 29, 2015 The Wake Forest/Davidson Experience in Number Theory Research A Generalization of Mordell to Ternary

ON VALUES OF CYCLOTOMIC POLYNOMIALS. V

198 VOLUME 46/47, NUMBER 3

arxiv: v1 [math.nt] 26 Apr 2017

Introduction to Number Theory

Explicit Kummer Varieties for Hyperelliptic Curves of Genus 3

Construction of latin squares of prime order

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences.

OVERPARTITION M 2-RANK DIFFERENCES, CLASS NUMBER RELATIONS, AND VECTOR-VALUED MOCK EISENSTEIN SERIES

Optimal curves of genus 1, 2 and 3

GUO-NIU HAN AND KEN ONO

COUNTING MOD l SOLUTIONS VIA MODULAR FORMS

THE GENERALIZED ARTIN CONJECTURE AND ARITHMETIC ORBIFOLDS

ON THE LIFTING OF HERMITIAN MODULAR. Notation

ON INTEGERS EXPRESSIBLE BY SOME SPECIAL LINEAR FORM. 1. Introduction

Residual modular Galois representations: images and applications

TATE-SHAFAREVICH GROUPS OF THE CONGRUENT NUMBER ELLIPTIC CURVES. Ken Ono. X(E N ) is a simple

Uniqueness of Factorization in Quadratic Fields

Algebra for error control codes

arxiv: v1 [math.nt] 7 Sep 2015

DISCRIMINANTS: CALCULATION, PROPERTIES, AND CONNECTION TO THE ROOT DISTRIBUTION OF POLYNOMIALS WITH RATIONAL GENERATING FUNCTIONS KHANG D.

Diophantine triples in a Lucas-Lehmer sequence

On a diophantine equation of Andrej Dujella

Algebraic Cryptography Exam 2 Review

Continuing the pre/review of the simple (!?) case...

Factorization of zeta-functions, reciprocity laws, non-vanishing

SOME CONGRUENCES ASSOCIATED WITH THE EQUATION X α = X β IN CERTAIN FINITE SEMIGROUPS

The Jacobi Symbol. q q 1 q 2 q n

Divisibility of the 5- and 13-regular partition functions

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru

arxiv: v2 [math.nt] 23 Sep 2011

AN ESTIMATE FOR THE LENGTH OF AN ARITHMETIC PROGRESSION THE PRODUCT OF WHOSE TERMS IS ALMOST SQUARE 1. INTRODUCTION

Number Theory. Final Exam from Spring Solutions

Elementary Number Theory Review. Franz Luef

Flat primes and thin primes

Maximal Class Numbers of CM Number Fields

MA 162B LECTURE NOTES: THURSDAY, FEBRUARY 26

Sums of Consecutive Perfect Powers is Seldom a Perfect Power

Analytic Number Theory

Mathematics for Cryptography

Congruence Properties of Partition Function

Partitions with Fixed Number of Sizes

E.J. Barbeau. Polynomials. With 36 Illustrations. Springer

On pseudosquares and pseudopowers

CYCLOTOMIC FIELDS CARL ERICKSON

1, for s = σ + it where σ, t R and σ > 1

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Transcription:

On estimating divisor sums over quadratic polynomials ELAZ 2016, Strobl am Wolfgangsee Kostadinka Lapkova Alfréd Rényi Institute of Mathematics, Budapest (currently) Graz University of Technology (from next week on) 5.09.2016 K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 1 / 18

Introduction Let τ(n) denote the number of positive divisors of the integer n. We use the notation T (f ; N) := τ(f (n)) n N K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 2 / 18

Introduction Let τ(n) denote the number of positive divisors of the integer n. We use the notation T (f ; N) := τ(f (n)) n N Establishing asymptotic formulae for T (f ; N) when f - linear polynomial : classical problem, Dirichlet hyperbola method; K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 2 / 18

Introduction Let τ(n) denote the number of positive divisors of the integer n. We use the notation T (f ; N) := τ(f (n)) n N Establishing asymptotic formulae for T (f ; N) when f - linear polynomial : classical problem, Dirichlet hyperbola method; f - quadratic polynomial : Dirichlet hyperbola method still works; K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 2 / 18

Introduction Let τ(n) denote the number of positive divisors of the integer n. We use the notation T (f ; N) := τ(f (n)) n N Establishing asymptotic formulae for T (f ; N) when f - linear polynomial : classical problem, Dirichlet hyperbola method; f - quadratic polynomial : Dirichlet hyperbola method still works; deg(f ) 3 : the hyperbola method does not work any more, error term larger than the main term. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 2 / 18

Introduction We consider quadratic polynomials f (n) = n 2 + 2bn + c Z [n] with discriminant = 4(b 2 c) =: 4δ. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 3 / 18

Introduction We consider quadratic polynomials f (n) = n 2 + 2bn + c Z [n] with discriminant = 4(b 2 c) =: 4δ. We want to understand asymptotic formulae explicit upper bounds for the sum T (f, N), when f is a quadratic polynomial. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 3 / 18

Introduction We consider quadratic polynomials f (n) = n 2 + 2bn + c Z [n] with discriminant = 4(b 2 c) =: 4δ. We want to understand asymptotic formulae explicit upper bounds for the sum T (f, N), when f is a quadratic polynomial. These explicit upper bounds have applications in certain Diophantine sets problems. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 3 / 18

Irreducible f : asymptotic formulae for T (f ; N) Scourfield, 1961 (first published): T (an 2 + bn + c; N) C 1 (a, b, c)n log N, when N. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 4 / 18

Irreducible f : asymptotic formulae for T (f ; N) Scourfield, 1961 (first published): T (an 2 + bn + c; N) C 1 (a, b, c)n log N, when N. More precise work on the coefficient C 1 and the error terms for polynomials of special type: K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 4 / 18

Irreducible f : asymptotic formulae for T (f ; N) Scourfield, 1961 (first published): T (an 2 + bn + c; N) C 1 (a, b, c)n log N, when N. More precise work on the coefficient C 1 and the error terms for polynomials of special type: Hooley, 1963: f (n) = n 2 + c ; McKee, 1995, 1999: f (n) = n 2 + bn + c. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 4 / 18

Irreducible f : asymptotic formulae for T (f ; N) Scourfield, 1961 (first published): T (an 2 + bn + c; N) C 1 (a, b, c)n log N, when N. More precise work on the coefficient C 1 and the error terms for polynomials of special type: Hooley, 1963: f (n) = n 2 + c ; McKee, 1995, 1999: f (n) = n 2 + bn + c. Corollary: T (n 2 + 1; N) = 3 N log N + O(N). π K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 4 / 18

Irreducible f : explicit upper bound for T (f ; N) Elsholtz, Filipin and Fujita, 2014 : T (n 2 + 1; N) N log 2 N +... K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 5 / 18

Irreducible f : explicit upper bound for T (f ; N) Elsholtz, Filipin and Fujita, 2014 : T (n 2 + 1; N) N log 2 N +... Trudgian, 2015 : with 6/π 2 < 0.61. T (n 2 + 1; N) 6/π 2 N log 2 N +..., K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 5 / 18

Irreducible f : explicit upper bound for T (f ; N) Elsholtz, Filipin and Fujita, 2014 : T (n 2 + 1; N) N log 2 N +... Trudgian, 2015 : T (n 2 + 1; N) 6/π 2 N log 2 N +..., with 6/π 2 < 0.61. Remember T (n 2 + 1; N) 3/πN log N. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 5 / 18

Irreducible f : explicit upper bound for T (f ; N) Elsholtz, Filipin and Fujita, 2014 : T (n 2 + 1; N) N log 2 N +... Trudgian, 2015 : with 6/π 2 < 0.61. T (n 2 + 1; N) 6/π 2 N log 2 N +..., Remember T (n 2 + 1; N) 3/πN log N. Theorem (L,2016) For any integer N 1 we have T (n 2 + 1; N) = N n=1 τ(n 2 + 1) < 12 N log N + 4.332 N. π2 K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 5 / 18

Irreducible f : explicit upper bound for T (f ; N) The upper theorem is a corollary of a result for slightly more general polynomials. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 6 / 18

Irreducible f : explicit upper bound for T (f ; N) The upper theorem is a corollary of a result for slightly more general polynomials. Theorem (L, 2016) Let f (n) = n 2 + 2bn + c Z[n], such that δ := b 2 c is non-zero and square-free, and δ 1 (mod 4). Assume also that for n 1 the function f (n) is positive and non-decreasing. Then for any integer N 1 there exist positive constants C 1, C 2 and C 3, such that N τ(n 2 + 2bn + c) < C 1 N log N + C 2 N + C 3. n=1 K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 6 / 18

Irreducible f : explicit upper bound for T (f ; N) Theorem (L, 2016, cont.) Let A be the least positive integer such that A max( b, c 1/2 ), let ξ = 1 + 2 b + c and κ = g(4 δ ) for g(q) = 4/π 2 q log q + 0.648 q. Then we have C 1 = 12 (log κ + 1), π2 [ ( )] 6 C 2 = 2 κ + (log κ + 1) log ξ + 1.166, π2 C 3 = 2κA. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 7 / 18

Reducible f : asymptotic formulae for T (f ; N) Ingham, 1927: For a fixed positive integer k N τ(n)τ(n + k) 6 π 2 σ 1(k)N log 2 N, as N ; n=1 K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 8 / 18

Reducible f : asymptotic formulae for T (f ; N) Ingham, 1927: For a fixed positive integer k N τ(n)τ(n + k) 6 π 2 σ 1(k)N log 2 N, as N ; n=1 Dudek, 2016: T (n 2 1; N) = τ(n 2 1) 6 π 2 N log2 N, as N. n N K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 8 / 18

Reducible f : asymptotic formulae for T (f ; N) Theorem (L, 2016) Let b < c be integers with the same parity. Then we have the asymptotic formula τ ((n b)(n c)) 6 π 2 N log2 N, as N. c<n N K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 9 / 18

Reducible f : asymptotic formulae for T (f ; N) Theorem (L, 2016) Let b < c be integers with the same parity. Then we have the asymptotic formula τ ((n b)(n c)) 6 π 2 N log2 N, as N. c<n N Remark: The main coefficient does not change for different discriminants (coefficients)! K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 9 / 18

Reducible f : asymptotic formulae for T (f ; N) Theorem (L, 2016) Let b < c be integers with the same parity. Then we have the asymptotic formula τ ((n b)(n c)) 6 π 2 N log2 N, as N. c<n N Remark: The main coefficient does not change for different discriminants (coefficients)! Proof: the method of Dudek with some information from [Hooley, 1958] about the number of solutions of quadratic congruences and the representation of a Dirichlet series. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 9 / 18

Reducible f : explicit upper bound for T (f ; N) If we write T (n 2 1; N) C 1 N log 2 N +..., we have Elsholtz, Filipin and Fujita, 2014 : C 1 2; Trudgian, 2015 : C 1 12/π 2 ; Cipu, 2015 : C 1 9/π 2 ; K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 10 / 18

Reducible f : explicit upper bound for T (f ; N) If we write T (n 2 1; N) C 1 N log 2 N +..., we have Elsholtz, Filipin and Fujita, 2014 : C 1 2; Trudgian, 2015 : C 1 12/π 2 ; Cipu, 2015 : C 1 9/π 2 ; Cipu and Trudgian, 2016 : C 1 6/π 2 ; K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 10 / 18

Reducible f : explicit upper bound for T (f ; N) If we write T (n 2 1; N) C 1 N log 2 N +..., we have Elsholtz, Filipin and Fujita, 2014 : C 1 2; Trudgian, 2015 : C 1 12/π 2 ; Cipu, 2015 : C 1 9/π 2 ; Cipu and Trudgian, 2016 : C 1 6/π 2 ; Bliznac and Filipin, 2016 : T (n 2 4; N) 6/π 2 N log 2 N +... K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 10 / 18

Reducible f : explicit upper bound for T (f ; N) If we write T (n 2 1; N) C 1 N log 2 N +..., we have Elsholtz, Filipin and Fujita, 2014 : C 1 2; Trudgian, 2015 : C 1 12/π 2 ; Cipu, 2015 : C 1 9/π 2 ; Cipu and Trudgian, 2016 : C 1 6/π 2 ; Bliznac and Filipin, 2016 : T (n 2 4; N) 6/π 2 N log 2 N +... Remark: C.-Tr. and Bl.-F. method is different than ours. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 10 / 18

Reducible f : explicit upper bound for T (f ; N) Theorem (L, 2016) Let b < c be integers with the same parity and δ = (b c) 2 /4 factor as δ = 2 2t Ω 2 for integers t 0 and odd Ω 1. Assume that σ 1 (Ω) 4/3. Let c = max(1, c + 1) and X = f (N). Then for any integer N c we have c n N τ ((n b)(n c)) < 2N ( ( 3 6 π 2 log2 X + π 2 + C(Ω) + 2C(Ω)N + 2X ) ( ) 6 log X + C(Ω) π2 ) log X, where C(Ω) = 2 d Ω 1 d (2σ 0(Ω/d) 1.749 σ 1 (Ω/d) + 1.332). K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 11 / 18

Reducible f : explicit upper bound for T (f ; N) In a standard way we obtain τ(f (n)) 2N ρ δ (d)/d + 2 ρ δ (d), n N d f (N) d f (N) where ρ k (d) := # { 0 x < d : x 2 k (mod d) } is defined for integers k 0 and d > 0. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 12 / 18

Reducible f : explicit upper bound for T (f ; N) In a standard way we obtain τ(f (n)) 2N ρ δ (d)/d + 2 ρ δ (d), n N d f (N) d f (N) where ρ k (d) := # { 0 x < d : x 2 k (mod d) } is defined for integers k 0 and d > 0. On the other hand the condition σ 1 (Ω) = d Ω 1 d 4/3 is fulfilled for example for Ω = 1, i.e. δ = 2 2t for integer t 0. These are the cases f (n) = n 2 2 2t. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 12 / 18

Reducible f : explicit upper bound for T (f ; N) A corollary of the previous theorem: Theorem (L, 2016) For any integer N 1 we have the following claims: i) For any integer t 0 we have λ N ρ 2 2t (λ) λ < 3 π 2 log2 N + 2.774 log N + 2.166. ii) N τ(n 2 1) < N n=1 ( ) 6 π 2 log2 N + 5.548 log N + 4.332. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 13 / 18

Reducible f : explicit upper bound for T (f ; N) A corollary of the previous theorem: Theorem (L, 2016) For any integer N 1 we have the following claims: i) For any integer t 0 we have λ N ρ 2 2t (λ) λ < 3 π 2 log2 N + 2.774 log N + 2.166. ii) N τ(n 2 1) < N n=1 ( ) 6 π 2 log2 N + 5.548 log N + 4.332. Remark: This claim recreates the right main term as in the lemmas of Cipu-Trudgian for f (n) = n 2 1 and Bliznac-Filipin for f (n) = n 2 4. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 13 / 18

Proofs: the convolution method for ρ δ (d) For irreducible f (n) = n 2 + 2bn + c we have Lemma Let δ = b 2 c be square-free, δ 1 (mod 4) and χ(n) = ( ) 4δ n for the Jacobi symbol (..). Then ρ δ = µ 2 χ. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 14 / 18

Proofs: the convolution method for ρ δ (d) The convolution method Estimate the sums d x ρ δ (d) = l x d x ρ δ (d)/d = l x µ 2 (l) µ 2 (l)/l m x/l m x/l χ(m), χ(m)/m using available explicit estimates for each of the sums on RHS. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 15 / 18

Proofs: the convolution method for ρ δ (d) The convolution method Estimate the sums d x ρ δ (d) = l x d x ρ δ (d)/d = l x µ 2 (l) µ 2 (l)/l m x/l m x/l χ(m), χ(m)/m using available explicit estimates for each of the sums on RHS. For example m x/l χ(m) : effective Pólya-Vinogradov inequality; l x µ2 (l)/l : effective inequality from [Ramaré, 2016]. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 15 / 18

Proofs: the convolution method for ξ δ (d) For reducible f (n) = (n b)(n c) with δ = (b c) 2 /4 = 2 2t Ω 2 for odd Ω 1 the function ρ δ can be expressed as a more complicated sum over d Ω of functions ξ d = µ 2 χ d, where χ d is the principal character modulo 2Ω/d. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 16 / 18

Proofs: the convolution method for ξ δ (d) For reducible f (n) = (n b)(n c) with δ = (b c) 2 /4 = 2 2t Ω 2 for odd Ω 1 the function ρ δ can be expressed as a more complicated sum over d Ω of functions ξ d = µ 2 χ d, where χ d is the principal character modulo 2Ω/d. Hooley, 1958 : Analyses on the Dirichlet series λ=1 ρ n(λ)/λ s for a general positive integer n. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 16 / 18

Applications for D(m)-sets For integer m 0 a set of n positive integers {a 1,..., a n } is called a K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 17 / 18

Applications for D(m)-sets For integer m 0 a set of n positive integers {a 1,..., a n } is called a D(m) n-tuple: a i a j + m is a perfect square for all i, j with 1 i < j n. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 17 / 18

Applications for D(m)-sets For integer m 0 a set of n positive integers {a 1,..., a n } is called a D(m) n-tuple: a i a j + m is a perfect square for all i, j with 1 i < j n. Application of explicit upper bounds of T (f (n); N): T (n 2 1; N) : for limiting the maximal possible number of Diophantine quintuples (D(1) quintuples) [Cipu-Trudgian, 2016]; K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 17 / 18

Applications for D(m)-sets For integer m 0 a set of n positive integers {a 1,..., a n } is called a D(m) n-tuple: a i a j + m is a perfect square for all i, j with 1 i < j n. Application of explicit upper bounds of T (f (n); N): T (n 2 1; N) : for limiting the maximal possible number of Diophantine quintuples (D(1) quintuples) [Cipu-Trudgian, 2016]; T (n 2 + 1; N) : improving the maximal possible number of D( 1) quadruples [L, 2016]; K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 17 / 18

Applications for D(m)-sets For integer m 0 a set of n positive integers {a 1,..., a n } is called a D(m) n-tuple: a i a j + m is a perfect square for all i, j with 1 i < j n. Application of explicit upper bounds of T (f (n); N): T (n 2 1; N) : for limiting the maximal possible number of Diophantine quintuples (D(1) quintuples) [Cipu-Trudgian, 2016]; T (n 2 + 1; N) : improving the maximal possible number of D( 1) quadruples [L, 2016]; T (n 2 4 t ; N) : D(4 t ) sets for t 1 [Bliznac-Filipin, 2016 for D(4)-quintuples]; K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 17 / 18

Applications for D(m)-sets For integer m 0 a set of n positive integers {a 1,..., a n } is called a D(m) n-tuple: a i a j + m is a perfect square for all i, j with 1 i < j n. Application of explicit upper bounds of T (f (n); N): T (n 2 1; N) : for limiting the maximal possible number of Diophantine quintuples (D(1) quintuples) [Cipu-Trudgian, 2016]; T (n 2 + 1; N) : improving the maximal possible number of D( 1) quadruples [L, 2016]; T (n 2 4 t ; N) : D(4 t ) sets for t 1 [Bliznac-Filipin, 2016 for D(4)-quintuples]; T (n 2 + k; N) : D( k) sets for k 0. K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 17 / 18

Thank you for your attention! K. Lapkova (Rényi Institute) On estimating divisor sums 5.09.2016 18 / 18