arxiv: v1 [math.pr] 19 Nov 2017

Similar documents
A Note on Hadamard Fractional Differential Equations with Varying Coefficients and Their Applications in Probability

arxiv: v1 [math.ap] 26 Mar 2013

arxiv: v1 [math.pr] 14 Jul 2011

FRACTIONAL RELAXATION WITH TIME-VARYING COEFFICIENT

arxiv: v1 [math-ph] 9 Mar 2018

A generalized Gronwall inequality and its application to fractional differential equations with Hadamard derivatives

arxiv: v2 [math-ph] 22 Jan 2018

Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients

A Fractional Spline Collocation Method for the Fractional-order Logistic Equation

arxiv: v1 [math-ph] 2 May 2016

Applied Mathematics Letters

Nonlocal Fractional Semilinear Delay Differential Equations in Separable Banach spaces

DETERMINATION OF AN UNKNOWN SOURCE TERM IN A SPACE-TIME FRACTIONAL DIFFUSION EQUATION

arxiv:math/ v1 [math.ca] 23 Jun 2002

On boundary value problems for fractional integro-differential equations in Banach spaces

An Alternative Definition for the k-riemann-liouville Fractional Derivative

On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions

On Local Asymptotic Stability of q-fractional Nonlinear Dynamical Systems

arxiv: v1 [math.ca] 28 Feb 2014

Partial Hadamard Fractional Integral Equations

NEW GENERAL FRACTIONAL-ORDER RHEOLOGICAL MODELS WITH KERNELS OF MITTAG-LEFFLER FUNCTIONS

A SEMIGROUP APPROACH TO FRACTIONAL POISSON PROCESSES CARLOS LIZAMA AND ROLANDO REBOLLEDO

Some New Results on the New Conformable Fractional Calculus with Application Using D Alambert Approach

arxiv: v1 [math.pr] 4 Feb 2016

THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY

Picard s Iterative Method for Caputo Fractional Differential Equations with Numerical Results

ON THE C-LAGUERRE FUNCTIONS

Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions

Positive solutions for a class of fractional boundary value problems

Covariance structure of continuous time random walk limit processes

Existence of Minimizers for Fractional Variational Problems Containing Caputo Derivatives

FRACTIONAL FOURIER TRANSFORM AND FRACTIONAL DIFFUSION-WAVE EQUATIONS

Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators

Applied Mathematics Letters. A reproducing kernel method for solving nonlocal fractional boundary value problems

India

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 1. Yong Zhou. Abstract

Numerical methods for non-standard fractional operators in the simulation of dielectric materials

IMPROVEMENTS OF COMPOSITION RULE FOR THE CANAVATI FRACTIONAL DERIVATIVES AND APPLICATIONS TO OPIAL-TYPE INEQUALITIES

FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY

THE p-adic VALUATION OF LUCAS SEQUENCES

Certain Generating Functions Involving Generalized Mittag-Leffler Function

Research Article New Method for Solving Linear Fractional Differential Equations

A NEW CLASS OF INTEGRALS INVOLVING EXTENDED MITTAG-LEFFLER FUNCTIONS

THE ANALYSIS OF MULTIDIMENSIONAL ANOMALOUS DIFFUSION EQUATION

arxiv: v1 [math.na] 8 Jan 2019

Full characterization of the fractional Poisson process

Fractional and operational calculus with generalized fractional derivative operators and Mittag Leffler type functions

A NEW CLASS OF INTEGRALS INVOLVING EXTENDED MITTAG-LEFFLER FUNCTIONS

Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag Leffler Functions

arxiv: v2 [math.ca] 8 Nov 2014

ON A TWO-VARIABLES FRACTIONAL PARTIAL DIFFERENTIAL INCLUSION VIA RIEMANN-LIOUVILLE DERIVATIVE

Research Article A New Fractional Integral Inequality with Singularity and Its Application

SERIES IN MITTAG-LEFFLER FUNCTIONS: INEQUALITIES AND CONVERGENT THEOREMS. Jordanka Paneva-Konovska

Maximum principle for the fractional diusion equations and its applications

NEW RHEOLOGICAL PROBLEMS INVOLVING GENERAL FRACTIONAL DERIVATIVES WITH NONSINGULAR POWER-LAW KERNELS

AN OPERATIONAL METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS WITH THE CAPUTO DERIVATIVES

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO FUNCTIONAL INTEGRO-DIFFERENTIAL FRACTIONAL EQUATIONS

Mahmoud M. El-Borai a, Abou-Zaid H. El-Banna b, Walid H. Ahmed c a Department of Mathematics, faculty of science, Alexandria university, Alexandria.

On Bessel Functions in the framework of the Fractional Calculus

On the Finite Caputo and Finite Riesz Derivatives

ISSN Article

Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform. 1 Introduction. 2 Preliminaries and notations

Laguerre-type exponentials and generalized Appell polynomials

Numerical solution of the Bagley Torvik equation. Kai Diethelm & Neville J. Ford

THE FUNDAMENTAL SOLUTION OF THE DISTRIBUTED ORDER FRACTIONAL WAVE EQUATION IN ONE SPACE DIMENSION IS A PROBABILITY DENSITY

Some Results Based on Generalized Mittag-Leffler Function

A RECURSION FORMULA FOR THE COEFFICIENTS OF ENTIRE FUNCTIONS SATISFYING AN ODE WITH POLYNOMIAL COEFFICIENTS

arxiv: v3 [physics.class-ph] 23 Jul 2011

Bull. Math. Soc. Sci. Math. Roumanie Tome 60 (108) No. 1, 2017, 3 18

Differential equations with fractional derivative and universal map with memory

SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS. Kai Diethelm. Abstract

ON A COUPLED SYSTEM OF HILFER AND HILFER-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

OSCILLATORY PROPERTIES OF A CLASS OF CONFORMABLE FRACTIONAL GENERALIZED LIENARD EQUATIONS

Existence of Solutions for Nonlocal Boundary Value Problems of Nonlinear Fractional Differential Equations

Economic Interpretation of Fractional Derivatives

CRRAO Advanced Institute of Mathematics, Statistics and Computer Science (AIMSCS) Research Report. B. L. S. Prakasa Rao

Dual identities in fractional difference calculus within Riemann. Thabet Abdeljawad a b

The Role of the Mittag-Leffler Function in Fractional Modeling. Received: 31 March 2015 / Accepted: 6 May 2015 / Published: 13 May 2015

An extension of Caputo fractional derivative operator and its applications

Ann. Funct. Anal. 1 (2010), no. 1, A nnals of F unctional A nalysis ISSN: (electronic) URL:

ON A CONNECTION BETWEEN THE DISCRETE FRACTIONAL LAPLACIAN AND SUPERDIFFUSION

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

Analytical solutions for the fractional Klein-Gordon equation

ON A CONNECTION BETWEEN THE DISCRETE FRACTIONAL LAPLACIAN AND SUPERDIFFUSION

This work has been submitted to ChesterRep the University of Chester s online research repository.

Homotopy Analysis Method for Nonlinear Differential Equations with Fractional Orders

( ) ( ) Page 339 Research Guru: Online Journal of Multidisciplinary Subjects (Peer Reviewed)

On the Concept of Local Fractional Differentiation

Iterative scheme to a coupled system of highly nonlinear fractional order differential equations

THE ZEROS OF THE SOLUTIONS OF THE FRACTIONAL OSCILLATION EQUATION

Solutions of Fractional Diffusion-Wave Equations in Terms of H-functions

arxiv: v1 [physics.geo-ph] 5 Nov 2016

Fractional Calculus for Solving Abel s Integral Equations Using Chebyshev Polynomials

Nonlocal problems for the generalized Bagley-Torvik fractional differential equation

SIGNALING PROBLEM FOR TIME-FRACTIONAL DIFFUSION-WAVE EQUATION IN A HALF-PLANE. Yuriy Povstenko. Abstract

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation

Some Generalizations of Poisson Processes

Research Article On a Fractional Master Equation

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 11 Oct 2002

Transcription:

Article A note on Hadamard fractional differential equations with varying coefficients and their applications in probability Roberto Garra 1,, Enzo Orsingher 1 and Federico Polito 2 arxiv:1711.07016v1 [math.pr] 19 Nov 2017 1 Dipartimento di Scienze Statistiche, Sapienza Università di Roma, P. le A. Moro 5, 00185 Roma, Italy; 2 Dipartimento di Matematica G. Peano, Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino, Italy. * Correspondence: roberto.garra@sbai.uniroma1.it Abstract: In this paper we show several connections between special functions arising from generalized COM-Poisson-type statistical distributions and integro-differential equations with varying coefficients involving Hadamard-type operators. New analytical results are obtained, showing the particular role of Hadamard-type derivatives in connection with a recently introduced generalization of the Le Roy function. We are also able to prove a general connection between fractional hyper-bessel-type equations involving Hadamard operators and Le Roy functions. Keywords: Hadamard fractional derivatives, COM-Poisson distributions, Modified Mittag Leffler functions. MSC: 33E12, 34A08, 60G55. 1. Introduction The analysis of fractional differential equations involving Hadamard fractional derivatives has gained interest in mathematical analysis, as proved, for example, by the publication of the recent monograph [1]. On the other hand, few results regarding the applications of Hadamard fractional differential equations in mathematical physics see for example [8]) and probability see [31]) exist. In [9], some analytical results regarding Hadamard fractional equations with time-varying coefficients have been pointed out. In particular, the following α-mittag Leffler function was introduced: E α;ν,γ z) = z k α, z C, α, ν, γ C. 1) [Γνk + γ)] The α-mittag Leffler function is an entire function of the complex variable z if the parameters are such that Rν) > 0, γ R and α R + see [10]). This function was independently introduced and studied by Gerhold in [11]. In [9], we called this special function α-mittag Leffler function, since it includes for α = 1 the well-known two-parameters Mittag Leffler function E ν,γ z) = z k, z C, ν C, Rν) > 0, γ R, 2) Γνk + γ) widely used in the theory of fractional differential equations see the recent monograph [12] and the references therein). Moreover, the α-mittag Leffler function is a generalization of the so-called Le Roy function [22] R ρ z) = z k, z C, α > 0. 3) [k + 1)!] α pages 1 10

2 of 10 In the more recent paper [10], the authors studied the asymptotic behavior and numerical simulation of this new class of special functions. We observe that the Le Roy functions are used in probability in the context of the studies of COM-Poisson distributions [7], which are special classes of weighted Poisson distributions see for example [2]). Therefore, the α-mittag Leffler functions can also be used in the construction of a new generalization of the COM-Poisson distribution that can be interesting for statistical applications and in physics in the context of generalized coherent states [33]. The aim of this paper is to study some particular classes of Hadamard fractional integrals or differential equations whose solutions can be written in terms of the α-mittag Leffler function 1) and somehow related to a fractional-type generalization of the COM-Poisson distribution. We also observe that Imoto [16] has recently introduced the following generalization of the COM-Poisson distribution, involving the normalizing function P{Nt) = k} = Γν + k))r t k, k 0, 4) k!cr, ν, t) Cr, ν, t) = Γν + k)) r t k, 5) k! with r < 1/2, t > 0 and 1 > ν > 0 or r = 1, ν = 1 and t < 1. The special function 5) is somehow related to the generalization of the Le Roy function, while the distribution 4) includes the COM-Poisson for ν = 1 and r = 1 n, n R. In Section 4, we show that this function is related to integral equations with a time-varying coefficient involving Hadamard integrals. In Section 5, we present other results concerning the relation between Le Roy-type functions and Hadamard fractional differential equations. We introduce a wide class of integro-differential equations extending the hyper-bessel equations. This is a new interesting approach in the context of the mathematical studies of fractional Bessel equations we refer for example to the recent paper [32] and the references therein). Concluding, the main aim of this paper is to establish a connection between some generalizations of the COM-Poisson distributions and integro-differential equations with time-varying coefficients involving Hadamard integrals or derivatives. As a by-product we suggest a possible application of the α-mittag Leffler function to build a generalized COM-Poisson distribution that in future should be investigated in more detail. 2. Preliminaries about fractional Hadamard derivatives and integrals Starting from the seminal paper by Hadamard [14], many papers have been devoted to the analysis of fractional operators with logarithmic kernels we refer in particular to [18]). In this section we briefly recall the definitions and main properties of Hadamard fractional integrals and derivatives and their Caputo-like regularizations recently introduced in the literature. Definition 1. Let t R + and Rα) > 0. The Hadamard fractional integral of order α, applied to the function f L p [a, b], 1 p < +, 0 < a < b <, for t [a, b], is defined as J α f t) = 1 Γα) t a ln t 1 f τ) dτ τ τ. 6) Before constructing the corresponding derivative operator we must define the following space of functions.

3 of 10 Definition 2. Let [a, b] be a finite interval such that < a < b < and let AC[a, b] be the space of absolutely continuous functions on [a, b]. Let us denote δ = t d and define the space { ) } ACδ n[a, b] = f : t [a, b] R such that δ n 1 f AC[a, b]. 7) Clearly ACδ 1 [a, b] AC[a, b] for n = 1. Definition 3. Let δ = t d, Rα) > 0 and n = [α] + 1, where [α] is the integer part of α. The Hadamard fractional derivative of order α applied to the function f t) ACδ n [a, b], 0 a < b <, is defined as D α f t) = 1 t d Γn α) ) n t a ln t ) n α 1 f τ) dτ τ τ = δn J n α f ) t). 8) It has been proved see e.g. Theorem 4.8 in [19]) that in the L p [a, b] space, p [1, ), 0 a < b <, the Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional integral, i.e. D α J α f t) = f t), t [a, b]. 9) Analogously to the Caputo fractional calculus, the regularized Caputo-type Hadamard fractional derivative is defined in terms of the Hadamard fractional integral in the following way see, for example, [17]) f t) = 1 Γn α) t a ln t ) n α 1 τ d ) n f τ) dτ τ dτ τ = J n α δ n f ) t), 10) where t [a, b], 0 a < b < and n 1 < α n, with n N. In this paper we will use the symbol for the Caputo-type derivative in order to distinguish this one from the Riemann-Liouville type definition 8) and also to underline the fact that essentially it coincides with the fractional power of the operator δ = t / t. Moreover, by definition, when α = n, t d δ n. The relationship between the Hadamard derivative 8) and the regularized Caputo-type derivative is given by [17], eqn. 12) t d [ f t) = D α n 1 δ f t) k ) ] f t 0 ) ln k t, α n 1, n], n = [α] + 1. 11) k! t 0 In the sequel we will use the following useful equalities that can be checked by simple calculations), for β 1, ) \ {0} and α > 0. It is immediate to see that t β = β α t β, 12) J α t β = β α t β, 13) const = 0. 14) 3. Generalized COM-Poisson processes involving the α-mittag Leffler function and the related Hadamard equations Here we show a possible application of the α-mittag Leffler function 1) in the context of fractional-type Poisson statistics and we discuss the relation with Hadamard equations.

4 of 10 We first recall that weighted Poisson distributions have been widely studied in statistics in order to consider over or under-dispersion with respect to the homogeneous Poisson process. The probability mass function of a weighted Poisson process N w t), t > 0, is given by see [2]) P{N w t) = n} = wn)pn, t), n 0, 15) E[wN)] where N is a Poisson distributed random variable pn, t) = tn n! e t, n 0, t > 0, w ) is a non-negative weight function with non-zero, finite expectation, i.e. 0 < E[wN)] = wk)pk, t) < +. 16) The so-called COM-Poisson distribution introduced by Conway and Maxwell [7] in a queueing model belongs to this wide class of distributions. A random variable N ν t) is said to have a COM-Poisson distribution if where P{N ν t) = n} = 1 t n, n 0, t > 0, 17) f t) n! ν f t) = t k, ν > 0, 18) k! ν i.e. the Le-Roy function. This distribution can be viewed as a particular weighted Poisson distribution with wn) = 1/n!) ν 1. The Conway-Maxwell-Poisson distribution is widely used in statistics in order to take into account over-dispersion for 0 < ν < 1) or under-dispersion for ν > 1) in data analysis. Moreover it represents a useful generalization of the Poisson distribution that is obtained for ν = 1) for many applications see for example [29] and references therein). Observe that when t 0, 1) and ν 0 it reduces to the geometric distribution, while for ν + it converges to the Bernoulli distribution. Another class of interesting weighted Poisson distributions are the fractional Poisson-type distributions where P{N α t) = k} = 1 E α,1 t) E α,1 t) = t k, α 0, 1), 19) Γαk + 1) t k Γαk + 1), 20) is the Mittag Leffler function see the recent monograph [12] for more details). In this case the weight function is given by wk) = k!/γαk + 1). There is a recent wide literature about fractional generalizations of Poisson processes see e.g. [4,5,15,21,23 27]) and we should explain in which sense we can speak about fractionality in the last case. The relationship of this kind of distributions with fractional calculus, first considered by Beghin and Orsingher in [3], is given by the fact that the probability generating function Gu, t) = u k P{N α t) = k} = E α,1ut), α 0, 1], 21) E α,1 t)

5 of 10 satisfies the fractional differential equation d α Gu α, t) du α = tgu α, t), α 0, 1], u 1, 22) where d α /du α denotes the Caputo fractional derivative w.r.t. the variable u see [19] for the definition). Essentially the connection between the distribution 19) and fractional calculus is therefore given by the normalizing function, since the Mittag Leffler plays the role of the exponential function in the theory of fractional differential equations. In this context, we discuss a new generalization of the COM-Poisson distribution by using the generalized α-mittag Leffler function 1), independently introduced by Gerhold in [11] and by Garra and Polito in [9]. This new fractional distribution includes a wide class of special distributions already studied in the recent literature: the fractional Poisson distribution 19) considered by Beghin and Orsingher [3], the classical COM-Poisson distribution and so on. In this paper we introduce the following generalization, namely the fractional COM-Poisson distribution λt) P{N ν;α,γ t) = n} = n 1 Γαn + γ)) ν E ν;α,γ λt), 23) where E ν;α,γ t) = t k ν, α > 0, ν > 0, γ R 24) Γαk + γ)) is the α-mittag Leffler function, considered by Gerhold [11], Garra and Polito [9]. The distribution 23) is a weighted Poisson distribution with weights wk) = k!/ Γαk + γ)) ν. Obviously the probability generating function is here given by a ratio of α-mittag Leffler functions, i.e. Gu, t) = n=0 u n P{N ν;α,γ t) = n} = E ν;α,γλut), u 1. 25) E ν;α,γ λt) With the next theorem we explain the reason why we consider the distribution 23), a kind of fractional generalization of the COM-Poisson classical distribution related to Hadamard fractional equations with varying coefficients. Theorem 1. For ν 0, 1), the function satisfies the equation where u d du gu, t) = u ν 1 E ν;1,νλut) E ν;1,ν λt) = uν 1 Gu, t), u d ) ν gu, t) = λtugu, t) + uν 1 du Γ ν ν 1), 26) ) ν is the Caputo-Hadamard fractional derivative of order ν. Proof. By direct calculations we obtain that u d ) ν u ν 1 E ν;1,νλut) du E ν;1,ν λt) = 1 E ν;1,ν λt) = 1 E ν;1,ν λt) λ k u k+ν 1 t k Γk + ν 1)) ν 27) λ k+1 u k+ν t k+1 k= 1 Γk + ν)) ν = λtugu) + u ν 1 Γν 1)) ν, where we changed the order of summation with fractional differentiation since the α-mittag Leffler function is, for α 0, 1), an entire function.

6 of 10 A more detailed analysis about the statistical properties and possible applications of this new class of distributions is not object of this paper and will be considered in a future work. We finally observe that the fractional COM-Poisson distribution 23) includes as a special case, for ν = 1 the fractional Poisson distribution 19) previously introduced by Beghin and Orsingher in [3] and recently treated by Chakraborty and Ong [6], Herrmann [15] and Porwall and Dixit [28]. Asymptotic results for the multivariate version of this distribution have been recently analyzed by Beghin and Macci in [4]. 4. Hadamard fractional equations related to the GCOM-Poisson distribution In a recent paper, Imoto [16] studied a different generalization of the Conway-Maxwell-Poisson distribution in the following GCOM Poisson distribution), depending from two real parameters r and ν. According to [16], a random variable Xt) is said to have a GCOM Poisson distribution if where P{Xt) = n} = Γν + n))r t n, t 0, n = 0, 1,..., 28) n!cr, ν, t) Cr, ν, t) = Γν + k)) r t k, 29) k! is the normalizing function which converges for ν > 0, t > 0 and r < 1/2 by applying the ratio criterium) or r = 1, ν > 0 and t < 1. In the context of weighted Poisson distributions, it corresponds to the choice wk) = Γ r ν + k). This distribution includes as particular cases the COM-Poisson distribution for ν = 1 and r = 1 n, the geometric for r = ν = 1, t < 1 and the homogeneous Poisson distribution for r = 0. The new parameter introduced in the distribution plays the role of controlling the length of tails within the framework of queueing processes. Indeed it was proved that, it gives over-dispersion for r 0, 1) and under-dispersion for r < 0. Moreover, from the ratios of successive probabilities, when ν > 1 and r 0, 1) it is heavy tailed, while for r < 0 light-tailed. We also underline that for r = 1 n, with n > 0, the function 29) becomes a sort of generalization of the Wright function in the spirit of the α-mittag Leffler function C1 n, ν, t) = t k k!γ n ν + k). 30) Recall that, in the general form, the Wright function is defined as follows we refer to [13] for a good survey): t W α,β t) = k, α > 1, β C. 31) k!γαk + β) We show now the relation between the normalizing function 29) and an Hadamard fractional differential equation with varying coefficients. Therefore, we can consider in some sense also the GCOM Poisson distribution as a fractional-type modification of the homogeneous distribution, in the sense that its probability generating function satisfies a fractional differential equation. Proposition 1. The function satisfies the integro-differential equation Cr, ν, t) = Γ r ν + k)λt) k, 32) k! J r t ν d f ) = λt ν f, t > 0, ν 0, 1], r 0, 1/2) 33)

7 of 10 involving an Hadamard fractional integral J r of order r. Proof. J r t ν dc ) = J r Γ r ν + k)λ k t k+ν 1 k 1)! k=1 Γ = r ν + k 1)λ k t k+ν 1 k 1)! k=1 = Γ r ν + k)k + ν 1) r λ k t k+ν 1 k 1)! k=1 = λt ν f, 34) where we used 13). Corollary 1. The probability generating function Gu, t) of the GCOM Poisson distribution 28) Gu, t) = satisfies the integro-differential equation u k P{Xt) = k} = Cr, ν, ut), u 1, 35) Cr, ν, t) J r u ν d f ) = u ν f, u 1. 36) du 5. Further connections between modified Mittag Leffler functions and Hadamard fractional equations. The analysis of fractional differential equations with varying coefficients is an interesting and non-trivial topic. In particular the analysis of equations involving fractional-type Bessel operators i.e. the fractional counterpart of singular linear differential operators of arbitrary order) has attracted the interest of many researchers see e.g. [20,32] and references therein). In [9], some results about the connection between Le-Roy functions and equations with space-varying coefficients involving Hadamard derivatives and Laguerre derivatives have been obtained. Here we go on in the direction started in [9], showing other interesting applications of Hadamard fractional equations in the theory of hyper-bessel functions. With the next theorem, we find the equation interpolating classical Bessel equations of arbitrary order possessing exact solution in terms of Le Roy functions. We remark, indeed, that Le Roy functions include as special cases hyper-bessel functions. Theorem 2. The Le Roy function E α;1,1 t α /α) satisfies the equation 1 t α t d f x) = α α 1 f t) 37) Proof. Recall that t β = β α t β. 38) Therefore E α;1,1 t α ) = α αk) α t αk α k k! α = α α 1 t α E α;1,1 t α α ). 39)

8 of 10 Remark 1. For α = 2, we have that the function E 2;1,1 t 2 /2) is a solution of ) 2 f t) = 2t 2 f t). 40) For α = 3, the function E 3;1,1 t 3 /3) satisfies ) 3 f t) = 9t 3 f t), 41) and so forth for any integer value of α. From this point of view, the solution of Hadamard equation 37), for non integer values of α, leads to an interpolation between successive hyper-bessel functions. Let us consider the operator L H = 1 t αn t d t d... t d, }{{} α > 0, 42) n times where H stands for an Hyper-Bessel type operator involving Caputo-type Hadamard derivatives. We have the following general Theorem 3. A solution of the equation L H f t) = α nα n n nα f t), 43) is given by f t) = E nα;1,1 t αn /α n ) To conclude this section, we restate Theorem 3.3 of [9], in view of the comments of Turmetov [34] in the case in which Caputo-type Hadamard derivatives appear in the governing equations. Theorem 4. The function E β;1,1 t), with β [1, ), t 0, λ R is an eigenfunction of the operator where n = [β] is the integer part of β and of order β r. d... d t d t d ) β r, }{{ } r = 1,..., n 1, 44) r derivatives ) β r denotes the Caputo-type regularized Hadamard derivative The difference w.r.t. the previous version is simply given by the fact that, by using the regularized Caputo-type Hadamard derivative t d t 0 = 0, that is necessary for the correctness of the result. Acknowledgments: The work of R.G. has been carried out in the framework of the activities of GNFM. F.P. has been supported by the projects Memory in Evolving Graphs Compagnia di San Paolo/Università di Torino), Sviluppo e analisi di processi Markoviani e non Markoviani con applicazioni Università di Torino), and by INDAM GNAMPA. References 1. Ahmad, B.; Alsaedi, A.; Ntouyas, S. K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities., Springer, 2017

9 of 10 2. Balakrishnan, N.; Kozubowski, T.J. A class of weighted Poisson processes, Statistics & Probability Letters, 2008, 7815), 2346 2352. 3. Beghin, L.; Orsingher, E. Fractional Poisson processes and related planar random motions, Electronic Journal of Probability, 2009, 14, 1790 1826. 4. Beghin, L.; Macci, C. Asymptotic results for a multivariate version of the alternative fractional Poisson process, Statistics & Probability Letters, 2017, 129, 260 268. 5. Beghin, L.; Ricciuti, C. Time-inhomogeneous fractional Poisson processes defined by the multistable subordinator, submitted, arxiv preprint arxiv:1608.02224, 2016. 6. Chakraborty, S.; Ong, S. H. Mittag - Leffler function distribution - A new generalization of hyper-poisson distribution, Journal of Statistical Distributions and Applications, 2017, 41), 8. 7. Conway, R. W.; Maxwell, W. I. A queueing model with state dependent service rate, J. Industrial. Eng., 1961, 12, 132 136. 8. Garra, R.; Giusti, A.; Mainardi, F.; Pagnini G. Fractional relaxation with time-varying coefficient, Fractional Calculus and Applied Analysis, 2014, 17.2, 424-439. 9. Garra, R.; Polito, F. On Some Operators Involving Hadamard Derivatives, Integral Transform and Special Functions, 2013, 2410), 773 782. 10. Garrappa, R.; Mainardi, F.; Rogosin, S. V. On a generalized three-parameter Wright function of Le Roy-type, Fractional Calculus and Applied Analysis, 2017,205), 1196-1215. 11. Gerhold, S. Asymptotics for a variant of the Mittag Leffler function, Integral Transform and Special Functions, 2012 236), 397 403. 12. Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogosin, S. V. Mittag Leffler functions. Related Topics and Applications, Springer Monographs in Mathematics, Berlin, 2014 13. Gorenflo, R.; Luchko, Y.; Mainardi, F. Analytical properties and applications of the Wright function, Fractional Calculus and Applied Analysis, 1999, 24), 383 414. 14. Hadamard, J. Essai sur l etude des fonctions donnees par leur developpment de Taylor. J. Mat. Pure Appl. Ser., 1892, 8, 101 186. 15. Herrmann, R. Generalization of the fractional Poisson distribution, Fractional Calculus and Applied Analysis, 2006, 19.4, 832 842. 16. Imoto, T. A generalized Conway Maxwell Poisson distribution which includes the negative binomial distribution, Appl. Math. Comput, 2014, 247, 824 834. 17. Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivative, Advances in Difference Equations, 2012, 1 8. 18. Kilbas, A. A. Hadamard-type fractional calculus, Journal of the Korean Mathematical Society, 2001, 38.6, 1191 1204. 19. Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, Vol. 204. Elsevier Science Limited, 2006. 20. Kiryakova, V. S. Generalized fractional calculus and applications. CRC press, 1993. 21. Laskin, N. Fractional Poisson process, Communications in Nonlinear Science and Numerical Simulation, 2003, 8.3: 201 213. 22. Le Roy, E. Valeurs asymptotiques de certaines séries procédant suivant les puissances entéres et positives d une variable réelle in French). Darboux Bull., 1899, 2) 24, 245 268. 23. Mainardi, F.; Gorenflo, R.; Scalas, E. A fractional generalization of the Poisson processes, Vietnam Journal of Mathematics, 2013 32, 53 64. 24. Meerschaert, M.; Nane, E.; Vellaisamy, P. The fractional Poisson process and the inverse stable subordinator, Electronic Journal of Probability, 2011, 16, 1600 1620. 25. Orsingher, E.; Toaldo, B. Counting processes with Bernstein intertimes and random jumps. Journal of Applied Probability, 2015, 52, 1028 1044. 26. Orsingher, E.; Polito, F. The space-fractional Poisson process, Statistics and Probability Letters, 2012, 82, 852 858. 27. Polito, F.; Scalas, E. A Generalization of the Space-Fractional Poisson Process and its Connection to some Lévy Processes, Electronic Communications in Probability, 2016, 2120), 1 14. 28. Porwal, S.; Dixit, K. K. On Mittag Leffler type Poisson distribution, Afrika Matematika, 2017, 281-2), 29 34.

10 of 10 29. Rodado, A.; Bebbington, M.; Noble, A. S.; Cronin, G.; Jolly, On selection of analog volcanoes, Mathematical Geosciences, 2011, 43, 505 519. 30. Samko, S. G.; Kilbas, A. A.; Marichev, O. I. Fractional integrals and derivatives, Gordon and Breach Science, Yverdon, Switzerland, 1993 31. Saxena, R. K.; Garra, R.; Orsingher, E. Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives, Integral Transforms and Special Functions, 2016, 27.1, 30 42. 32. Shishkina, E. L.; Sitnik, S. M. On fractional powers of Bessel operators, Journal of Inequalities and Special Functions, 2017, 81), 49 67. 33. Sixdeniers, J. M.; Penson, K. A.; Solomon, A. I. Mittag Leffler coherent states, J. Phys. A: Math. Gen., 1999, 32, 7543 7563. 34. Turmetov, B. K. On certain operator method for solving differential equations, 2015, AIP Conference Proceedings. Vol. 1676. No. 1. AIP Publishing.