Minimax Estimation of the Parameter of ЭРланга Distribution Under Different Loss Functions

Similar documents
Estimation of the Loss and Risk Functions of Parameter of Maxwell Distribution

Minimax Estimation of the Parameter of the Burr Type Xii Distribution

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

VOL. 3, NO. 11, November 2013 ISSN ARPN Journal of Science and Technology All rights reserved.

A New Family of Transformations for Lifetime Data

Bayesian Inferences for Two Parameter Weibull Distribution Kipkoech W. Cheruiyot 1, Abel Ouko 2, Emily Kirimi 3

BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL DISTRIBUTION

Bayes Interval Estimation for binomial proportion and difference of two binomial proportions with Simulation Study

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution

STK4011 and STK9011 Autumn 2016

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Functions of Random Variables

Some Statistical Inferences on the Records Weibull Distribution Using Shannon Entropy and Renyi Entropy

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Analysis of Variance with Weibull Data

Point Estimation: definition of estimators

Bias Correction in Estimation of the Population Correlation Coefficient

Likelihood and Bayesian Estimation in Stress Strength Model from Generalized Exponential Distribution Containing Outliers

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

The Generalized Inverted Generalized Exponential Distribution with an Application to a Censored Data

BAYESIAN ESTIMATOR OF A CHANGE POINT IN THE HAZARD FUNCTION

Econometric Methods. Review of Estimation

A new Family of Distributions Using the pdf of the. rth Order Statistic from Independent Non- Identically Distributed Random Variables

Minimax Estimation of the Parameter of Maxwell Distribution Under Different Loss Functions

Multivariate Transformation of Variables and Maximum Likelihood Estimation

arxiv: v1 [math.st] 24 Oct 2016

Lecture 3. Sampling, sampling distributions, and parameter estimation

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

TESTS BASED ON MAXIMUM LIKELIHOOD

Special Instructions / Useful Data

Simulation Output Analysis

Iterated Logarithm Laws on GLM Randomly Censored with Random Regressors and Incomplete Information #

Lecture Notes Types of economic variables

BAYESIAN ESTIMATION OF GUMBEL TYPE-II DISTRIBUTION

Analysis of a Repairable (n-1)-out-of-n: G System with Failure and Repair Times Arbitrarily Distributed

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

Introduction to local (nonparametric) density estimation. methods

9.1 Introduction to the probit and logit models

Summary of the lecture in Biostatistics

On the Bayesian analysis of 3-component mixture of Exponential distributions under different loss functions

Median as a Weighted Arithmetic Mean of All Sample Observations

Bootstrap Method for Testing of Equality of Several Coefficients of Variation

Estimation and Testing in Type-II Generalized Half Logistic Distribution

Generating Multivariate Nonnormal Distribution Random Numbers Based on Copula Function

Confidence Intervals for Double Exponential Distribution: A Simulation Approach

22 Nonparametric Methods.

DISCRIMINATING BETWEEN WEIBULL AND LOG-LOGISTIC DISTRIBUTIONS

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

MYUNG HWAN NA, MOON JU KIM, LIN MA

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

Study of Correlation using Bayes Approach under bivariate Distributions

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

A NEW GENERALIZATION OF ERLANG DISTRIBUTION WITH BAYES ESTIMATION

CHAPTER VI Statistical Analysis of Experimental Data

Module 7: Probability and Statistics

Chapter 14 Logistic Regression Models

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Accelerated Life Test Sampling Plans under Progressive Type II Interval Censoring with Random Removals

Analyzing Fuzzy System Reliability Using Vague Set Theory

Exponentiated Pareto Distribution: Different Method of Estimations


Chapter 5 Properties of a Random Sample

Some Applications of the Resampling Methods in Computational Physics

STK3100 and STK4100 Autumn 2017

STK3100 and STK4100 Autumn 2018

A NEW MODIFIED GENERALIZED ODD LOG-LOGISTIC DISTRIBUTION WITH THREE PARAMETERS

Goodness of Fit Test for The Skew-T Distribution

Point Estimation: definition of estimators

1 Solution to Problem 6.40

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Improving coverage probabilities of confidence intervals in random effects meta-analysis with publication bias

Chapter 8: Statistical Analysis of Simulated Data

STATISTICAL INFERENCE

A New Method for Decision Making Based on Soft Matrix Theory

ESS Line Fitting

ENGI 3423 Simple Linear Regression Page 12-01

IJOART. Copyright 2014 SciResPub.

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

Maximum Likelihood Estimation

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2

Non-uniform Turán-type problems

Bayes (Naïve or not) Classifiers: Generative Approach

Simple Linear Regression

Construction and Evaluation of Actuarial Models. Rajapaksha Premarathna

Confidence Interval Estimations of the Parameter for One Parameter Exponential Distribution

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc. Research on scheme evaluation method of automation mechatronic systems

Interval Estimation of a P(X 1 < X 2 ) Model for Variables having General Inverse Exponential Form Distributions with Unknown Parameters

Continuous Distributions

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

Generative classification models

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Applied Mathematics and Computation

Chapter 8. Inferences about More Than Two Population Central Values

Transcription:

Scece Joural of Appled Mathematcs ad Statstcs 06; 4(5): 9-35 http://www.scecepublshggroup.com/j/sjams do: 0.648/j.sjams.060405.6 ISSN: 376-949 (Prt); ISSN: 376-953 (Ole) Mmax stmato of the Parameter of ЭРланга Dstrbuto Uder Dfferet Loss Fuctos Lapg L Departmet of Basc Subjects, Hua Uversty of Face ad coomcs, Chagsha, Cha mal address: Llapg98@63.com o cte ths artcle: Lapg L. Mmax stmato of the Parameter of ЭРланга Dstrbuto Uder Dfferet Loss Fuctos. Scece Joural of Appled Mathematcs ad Statstcs. Vol. 4, No. 5, 06, pp. 9-35. do: 0.648/j.sjams.060405.6 Receved: August 3, 06; Accepted: September, 06; Publshed: October 8, 06 Abstract: he am of ths artcle s to study the estmato of the parameter of ЭРланга dstrbuto based o complete samples. he Bayes estmators of the parameter of ЭРланга dstrbuto are obtaed uder three dfferet loss fuctos, amely, weghted square error loss, squared log error loss ad etropy loss fuctos by usg cojugate pror verse Gamma dstrbuto. he the mmax estmators of the parameter are derved by usg Lehma s theorem. Fally, performaces of these estmators are compared terms of rsks whch obtaed uder squared error loss fucto. Keywords: Bayes stmator, Mmax stmator, Squared Log rror Loss Fucto, tropy Loss Fucto. Itroducto I relablty ad supportablty data aalyss feld, the most commoly used dstrbuto are the expoetal dstrbuto, ormal dstrbuto ad Webull dstrbuto, etc. But some practcal applcato, such as the repar tme, guaratee the dstrbuto delay tme, the above several dstrbutos does ot just as oe wsh. At ths tme ЭРланга dstrbuto was proposed as a sutable alteratve dstrbuto []. Suppose that the repar tme obeys the ЭРланга dstrbuto wth the followg probablty desty fucto (pdf) ad dstrbuto fucto respectvely: t f(; t ) = 4 t e, t 0, > 0 () t F(; t ) = ( + t) e, t 0, > 0 () Here, s the ukow parameter. It s easly to see that =, ad the the parameter s also ofte referred to as the mea tme to repar equpmet. Lv et al. [] studed the characterstc parameters, such as mea, varace ad meda ad the maxmum lkelhood estmato of ЭРланга dstrbuto was also derved. Pa et al. [] studed the terval estmato ad hypothess test of ЭРланга dstrbuto based o small sample, ad the dfferece of expoetal dstrbuto wth З рланга dstrbuto was also dscussed. Log [3] studed the estmato of the parameter of З рланга dstrbuto based o mssg data. Yu et al. [4] used the Эрланга dstrbuto to ft the battlefeld jury degree, ad establshed the smulatg model, the proposed a ew method to solve the problem the producto ad dstrbuto of battlefeld jury campag macrocosm. Log [5] studed the Bayes estmato of Эрлангa dstrbuto uder type-ii cesored samples o the bass cojugate pror, Jeffreys pror ad o formato pror dstrbutos. he mmax estmato was troduced by Abraham Wald 950, ad the mmax approach has receved great atteto ad applcato may aspects by researchers [6-9]. Mmax estmato s oe of the most aspect statstcal ferece feld. Uder quadratc ad MLINX loss fuctos, he refereces [0-3] studed the mmax estmato of the Webull dstrbuto, Pareto dstrbuto ad Raylegh dstrbutos ad Mmax dstrbuto, respectvely. Rasheed ad Al-Shareef [4] dscussed the mmax estmato of the scale parameter of Laplace dstrbuto uder squared-log error loss fucto. L [5] studed the mmax estmato of the parameter of expoetal dstrbuto based o record values. L [6] obtaed the mmax estmators of the parameter of Maxwell dstrbuto uder dfferet loss fuctos. he purpose of ths paper s to study maxmum lkelhood estmato (ML) ad Bayes estmato of the parameter of ЭРланга dstrbuto. Further, by usg Lehma s theorem we derve mmax estmators uder three loss fuctos,

30 Lapg L: Mmax stmato of the Parameter of ЭРланга Dstrbuto Uder Dfferet Loss Fuctos amely, weghted squared error loss, squared log error loss ad etropy loss fuctos.. Maxmum Lkelhood stmato LetX = ( X, X,, X ) be a sample draw from ЭРланга dstrbuto wth pdf (), ad x = ( x, x,, x ) s the observato of X. For gve sample observato, we ca get the lkelhood fucto of the parameter as follows: x x = l( ; x) = f( x; ) = 4 xe = ( 4 x) e (3) hat s ( x ) t l( ; x) = ( 4 x) e = ( 4 x) e (4) Here t = x s the observato of = X. he the log-lkelhood fucto s L[( l ; x)] = l(4 x) + l t By solvg log-lkelhood equato dll [( ; x)] = 0, d the maxmum lkelhood estmator of ca be easly derved as follows: ˆM = (5) Ad by q. (), we ca easly show that s a radom varable dstrbuted wth the Gamma dstrbuto Γ (, ), whch has the followg probablty desty fucto: t f(; t ) = t e, t > 0, > 0 Γ( ) 3. Bayesa stmato I Bayesa statstcal aalyss, loss fucto plays a mportat role the Bayes estmato ad Bayes test problems. May loss fucto are proposed Bayesa aalyss, ad squared error loss fucto s the most commo loss fucto, whch s a symmetrc loss fucto. I may practcal problems, especally the estmato of relablty ad falure rates, symmetrc loss may be ot sutable, because t s to be thought the overestmato wll brg more loss tha uderestmato [7]. he some asymmetrc loss fuctos are developed. For example, Zeller [8] proposed the LINX loss Bayes estmato, Brow [9] put forward the squared log error loss fucto for estmatg ukow (6) parameter, Dey et al. [0] proposed the etropy loss fucto the Bayesa aalyss. I ths paper, we wll dscuss the Bayes estmato of the ukow parameter of ЭРланга dstrbuto uder the followg loss fuctos: () Weghted squared error loss fucto ( δ ) L(, δ) = (7) Uder the weghted squared error loss fucto (7), the Bayes estmator of s ˆ δ [ X] = (8) [ X] () Squared log error loss fucto Squared log error loss fucto s a asymmetrc loss fucto, whch frst proposed by Brow for estmatg scale parameter. hs loss fucto ca also be foud Kapoura ad Nematollahb [] wth the followg form: L(, δ) (lδ l ) = (9) Obvously, L(, δ) as δ 0or. he loss fucto δ (9) s ot always covex, ad t s covex for e ad cocave otherwse. But the rsk fucto of ths fucto has mmum value, whch we also call t the Bayes estmator ˆ δ uder squared log error loss fucto. hat s ˆ δ = exp[ (l X)] (0) () tropy loss fucto I may practcal stuatos, t appears to be more realstc ˆ to express the loss terms of the rato. I ths case, Dey et al. [0] poted out a useful asymmetrc loss fucto amed etropy loss fucto: L( ˆ δ δ, ) = l () Whose mmum occurs at δ =. Also, ths loss fucto has bee used Sgh et al. [], Nematollah ad Motamed-Sharat [3]. he Bayes estmator uder the etropy loss () s deoted by ˆB, obtaed by ˆ δb [ ( X)] = () I ths secto, we wll estmate the ukow parameter o the bass of the above three metoed loss fuctos. We further assume that some pror kowledge about the parameter s avalable to the vestgato from past experece wth the ЭРланга model. he pror kowledge ca ofte be summarzed terms of the so-called pror destes o parameter space of. I the followg

Scece Joural of Appled Mathematcs ad Statstcs 06; 4(5): 9-35 3 dscusso, we assume the followg Jeffrey s oformatve quas-pror desty defed as, π( ), > 0 (3) d Hece, d = 0 leads to a dffuse pror ad d = to a oformatve pror. LetX = ( X, X,, X ) be a sample draw from ЭРланга dstrbuto wth pdf (), ad x = ( x, x,, x ) s the observato of X. Combg the lkelhood fucto (3) wth the pror desty (3), the posteror probablty desty of ca be derved usg Bayes heorem as follows ( ) ( ; ) π( ) t d d t h x l x e e (4) heorem. Let X = ( X, X,, X ) be a sample of Э Рланга dstrbuto wth probablty desty fucto (), ad = (,,, ) s the observato of X. t = x s the x x x x observato of = X he () Uder the weghted square error loss fucto (7), the Bayes estmator s ˆ δ X d = = (5) [ ] [ X] () he Bayes estmator uder the squared log error loss fucto (9) s Ψ( ) ˆ e δ = exp[ (l X)] = (6) () he Bayes estmator uder the etropy loss fucto () s ˆ d δb = [ ( X)] = (7) Proof. () Form quato (4), t s obvously cocluded that the posteror dstrbuto of the parameter s Gamma dstrbuto Γ( d +, t). hat us he X ~ Γ( d +, ), [ X] =, [ X] d = ( d)( d ) (8) hus, the Bayes estmator uder the weghted square error loss fucto (7) s derved as ˆ δ X d = = For the case (): By usg (4), [ ] [ X] (l X) Γ( + ) e d d = d + ( d + ) l 0 d = l Γ( d + ) l( ) = Ψ( d + ) l( ) d Where l y d + y y e Ψ ( ) = l Γ ( ) = 0 dy d Γ( ) s a Dgamma fucto. he the Bayes estmator uder the squared log error loss fucto (9) s come out to be ˆ e δ = exp[ (l X)] = Ψ( d + ) () By qs. () ad (7), the Bayes estmator uder the etropy loss fucto () s gve by ˆ d δb = [ ( X)] = 4. Mmax stmato of ЭРланга Dstrbuto hs secto wll derve the mmax extmators of Э Рланга Dstrbuto by usg Lehma s heorem, whch depeds o specfc pror dstrbuto ad loss fuctos of a Bayesa method. he Lehma s heorem s stated as follows: τ = ; Θ be a class dstrbuto F Lemma Let { } fuctos ad Dbe the estmators of. Suppose thatδ D s a Bayes estmator, whch derved o the bass of a pror π o Θ. he f the Bayes rsk fucto dstrbuto ( ) (, ) R δ equals costat o Θ, the δ s a mmax estmator of. heorem Let X = ( X, X,, X ) be a sample draw from ЭРланга dstrbuto wth pdf (), ad x = ( x, x,, x ) s the observato of = (,,, ). Suppose that X X X X observato of the statstcs = X he t = x s the () Uder the weghted square error loss fucto (7), d ˆ δ = s the mmax estmator of parameter

3 Lapg L: Mmax stmato of the Parameter of ЭРланга Dstrbuto Uder Dfferet Loss Fuctos () Uder the squared log error loss fucto, Ψ( d + ) ˆ e δ = s the mmax estmator of parameter 3 d () Uder the etropy loss fucto, ˆB δ = s the mmax estmator of parameter Proof. o use Lehma s heorem for the proof of the results. We eed calculate the rsk fucto of Bayes estmators ad prove these rsk fuctos are costats. For the case (), we ca derve the rsk fucto of the Bayes estmator ˆ δ uder the weghted square error loss fucto (7) as follows: ( ) (, ˆ δ ) d R = =, = ( ) ( ) ( ) ( ) + L L d d From equato (6), we have ~ Γ (, ), the we have Cosequetly, = = ( )( ) ( ), ( ) d ( d ) R( ) = ( ) ( ) d d + = + ( )( ) ( )( ) he, for Bayes estmator ˆ δ, the rsk fucto R( ) s a costat o the parameter So, Accordg to Lemma, ˆ δ s the mmax estmator of parameter uder the weghted square error loss fucto (7). For the case (). he rsk fucto of the Bayes estmator ˆ δ s By ~ Γ (, ), we ca easly get the result he R L ( ) ( ˆ ) ( ˆ ) ˆ ˆ =, δ = l δ l = [l δ ] l l[ δ ] + (l ) (l ) = Ψ( ) l [l ˆ δ ] = ( Ψ( d + ) l ) = Ψ( d + ) [ Ψ( ) l ] = Ψ( d + ) Ψ ( ) + l ˆ δ = Ψ d + = Ψ d + Ψ d + + [l ] [ ( ) l( )] ( ) ( ) [l( )] [(l ) ] Let Y~ Γ (,), the we ca prove that Y = ~ Γ (,). he dervatve of Ψ ( ) s he From above results, we ca the fact Further, we have (l y) y e (l y) y e Ψ = Ψ = Ψ Γ( ) Γ( ) ( ) y ( ) [(l ) ] ( ) 0 y dy dy Y 0 Ψ ( ) + Ψ ( ) = [(l Y) ] = [(l( ) + l ) ] = [(l( )) ] + l (l( )) + (l ) = [(l( )) ] + l ( Ψ( ) l ) + (l ) [(l ) ] = Ψ ( ) + Ψ ( ) l Ψ ( ) + (l ) ˆ δ = Ψ d + Ψ d + + [l ] ( ) ( ) (l( )) [(l ) ]

Scece Joural of Appled Mathematcs ad Statstcs 06; 4(5): 9-35 33 = Ψ ( d + ) Ψ( d + )[ Ψ( ) l ] + Ψ ( ) + Ψ ( ) l Ψ ( ) + (l ) ( ) ˆ ˆ R = [l δ ] l l[ δ ] + (l ) = Ψ ( d + ) Ψ( d + )[ Ψ( ) l ] + Ψ ( ) + Ψ ( ) l Ψ( ) + Ψ + Ψ + + = Ψ + Ψ Ψ + + Ψ + Ψ (l ) l [ ( d ) ( ) l ] (l ) ( d ) ( ) ( d ) ( ) ( ) he R ( ) s also a costat about the parameter. So, accordg to Lemma, we kow that, ˆ δ s a mmax estmator for parameter uder the squared log error loss fucto. For the case (). he rsk fucto of the Bayes estmator ˆB δ ca be obtaed as follows: ( ) ˆ (, δ ) d d d R = L B = l + l( ) l (l ) = d + + + d d = l( d) + l + Ψ( ) l + = l( d) + Ψ ( ) + he R( ) s also a costat about the parameter. So, accordg to lemma, we kow that, ˆB δ s a mmax estmator for the parameter uder the etropy loss fucto. 5. Performaces of Bayes stmators o llustrate the performace of these Bayes estmators, squared error loss fucto L( ˆ, ) = ( δ ) s used as a loss fucto to compare them. We oter( ˆ δ ), ( ˆ R δbl) adr( ˆ δb) are the rsk fuctos of estmators ˆ δ, ˆ δ ad BL ˆB δ relatve to the squared error loss, respectvely. hey ca be easly derved as follows: ˆ ˆ ˆ δ δ δ d R L ( ) = [ (, )] = [( ) ] = [( ) ] ( d ) ( d ) ( ) ( ) () d d = + = + 0 f t dt, t t ( )( ) Ψ( d + ) Ψ( d + ) Ψ( d + ) ˆ ˆ e e e R( δ) = [( δ ) ] = [( ) ] = + ( )( ) ˆ ˆ ˆ ( ) ( ) δ δ δ d = = = = d d + B B B R( ) [ L(, )] [( ) ] [( ) ] ( )( ) Let L, L ad L 3 are the rato of the rsk fuctos to, whch are plotted Fgs. -4 wth dfferet sample szes, (=0, 0, 30, 50) Fgure. Performace of estmators wth =0. Fgure. Performace of estmators wth =0.

34 Lapg L: Mmax stmato of the Parameter of ЭРланга Dstrbuto Uder Dfferet Loss Fuctos helpful commets ad suggestos of the revewers, whch have mproved the presetato. Refereces [] Lv H. Q., Gao L. H. ad Che C. L., 00. Э рланга dstrbuto ad ts applcato supportablty data aalyss. Joural of Academy of Armored Force geerg, 6 (3): 48-5. [] Pa G.., Wag B. H., Che C. L., Huag Y. B. ad Dag M.., 009. he research of terval estmato ad hypothetcal test of small sample of З рланга dstrbuto. Applcato of Statstcs ad Maagemet, 8 (3): 468-47. Fgure 3. Performace of estmators wth =30. [3] Log B., 03. he estmatos of parameter from З рланга dstrbuto uder mssg data samples. Joural of Jagx Normal Uversty (Natural Scece), 37 (): 6-9. [4] Yu C. M., Ch Y. H., Zhao Z. W., ad Sog J. F., 008. Mateace-decso-oreted modelg ad emulatg of battlefeld jury campag macrocosm. Joural of System Smulato, 0 (0): 5669-567. [5] Log B., 05. Bayesa estmato of parameter o Эрлангa dstrbuto uder dfferet pror dstrbuto. Mathematcs Practce & heory, (4): 86-9. [6] Jao J., Vekat K., Ha Y., Wessma, 05. Mmax estmato of fuctoals of dscrete dstrbutos. Iformato heory I rasactos o, 6 (5): 835-885. [7] Gao C., Ma Z., Re Z., Zhou H. H, 04. Mmax estmato sparse caocal correlato aalyss. Aals of Statstcs, 43 (5): 905-9. Fgure 4. Performace of estmators wth =50. From Fgure to Fgure 4, we kow that o of these estmators s uformly better that other estmators. he practce, we recommed to select the estmator accordg to the pror parameter value d whe assumg the quas-pror as the pror dstrbuto. 6. Cocluso hs paper derved Bayes estmators of the parameter of Э Рланга dstrbuto uder weghted squared error loss, squared log error loss ad etropy loss fuctos. Mote Carlo smulatos show that the rsk fuctos of these estmators, defed uder squared error loss fucto, are all decrease as sample sze creases. he rsk fuctos more ad more close to each other aehe the sample sze s large, such as >50. Ackowledgemet hs study s partally supported by Natural Scece Foudato of Hua Provce (No. 05JJ3030) ad Foudato of Hua ducatoal Commttee (No. 5C08). he author also gratefully ackowledge the [8] Koga M. M., 04. LMI-based mmax estmato ad flterg uder ukow covaraces. Iteratoal Joural of Cotrol, 87 (6): 6-6. [9] chraka.., Zhuk S., 05. A macroscopc traffc dataassmlato framework based o the Fourer Galerk method ad Mmax estmato [J]. I rasactos o Itellget rasportato Systems, 6 (): 45-464. [0] Roy, M. K., Podder C. K. ad Bhuya K. J., 00. Mmax estmato of the scale parameter of the Webull dstrbuto for quadratc ad MLINX loss fuctos, Jahagragar Uversty Joural of Scece, 5: 77-85. [] Podder, C. K., Roy M. K., Bhuya K. J. ad Karm A., 004. Mmax estmato of the parameter of the Pareto dstrbuto for quadratc ad MLINX loss fuctos, Pak. J. Statst., 0 (): 37-49. [] Dey, S., 008. Mmax estmato of the parameter of the Raylegh dstrbuto uder quadratc loss fucto, Data Scece Joural, 7 (): 3-30 [3] Shadrokh, A. ad Pazra H., 00. Mmax estmato o the Mmax dstrbuto, Iteratoal Joural of Statstcs ad Systems, 5 (): 99-8. [4] Rasheed H. A., Al-Shareef. F, 05. Mmax estmato of the scale parameter of Laplace dstrbuto uder squared-log error loss fucto. Mathematcal heory & Modelg, 5 (): 83-93.

Scece Joural of Appled Mathematcs ad Statstcs 06; 4(5): 9-35 35 [5] L L. P., 04. Mmax estmato of the parameter of expoetal dstrbuto based o record values. Iteratoal Joural of Iformato echology & Computer Scece, 6 (6): 47-53. [6] L L. P., 06, Mmax estmato of the parameter of Maxwell dstrbuto uder dfferet loss fuctos, Amerca Joural of heoretcal ad Appled Statstcs, 5 (4): 0-07. [7] L X., Sh Y., We J., Cha J., 007. mprcal Bayes estmators of relablty performaces usg LINX loss uder progressvely ype-ii cesored samples [J]. Mathematcs & Computers Smulato, 007, 73 (5): 30-36. [8] Zeller, A., 986. Bayesa estmato ad predcto usg asymmetrc loss fucto. Joural of Amerca statstcal Assocato, 8 (394): 446-45. [0] Dey, D. K., Ghosh M. ad Srvasa C., 987. Smultaeous estmato of parameters uder etropy loss, J. Statst. Pla. ad Ifer., 5 (3): 347-363. [] Kapoura A. ad Nematollahb N., 0. Robust Bayesa predcto ad estmato uder a squared log error loss fucto. Statstcs & Probablty Letters, 8 (): 77-74. [] Sgh S. K., Sgh U. ad Kumar D., 0. Bayesa estmato of the expoetated Gamma parameter ad relablty fucto uder asymmetrc loss fucto. RVSA, 9 (3): 47-60. [3] Nematollah N., Motamed-Sharat F., 009. stmato of the scale parameter of the selected Gamma populato uder the etropy loss fucto. Commucato Statstcs- heory ad Methods, 38 (7): 08-. [9] Brow L., 968. Iadmssblty of the usual estmators of scale parameters problems wth ukow locato ad scale parameters. Aals of Mathematcal Statstcs, 39 (): 9-48.