A RADIALLY SYMMETRIC ANTI-MAXIMUM PRINCIPLE AND APPLICATIONS TO FISHERY MANAGEMENT MODELS

Similar documents
A New Proof of Anti-Maximum Principle Via A Bifurcation Approach

New exact multiplicity results with an application to a population model

Global bifurcations of concave semipositone problems

SEMILINEAR ELLIPTIC EQUATIONS WITH GENERALIZED CUBIC NONLINEARITIES. Junping Shi. and Ratnasingham Shivaji

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT

Exact multiplicity of boundary blow-up solutions for a bistable problem

LOGISTIC EQUATION WITH THE p-laplacian AND CONSTANT YIELD HARVESTING

Saddle Solutions of the Balanced Bistable Diffusion Equation

LIFE SPAN OF BLOW-UP SOLUTIONS FOR HIGHER-ORDER SEMILINEAR PARABOLIC EQUATIONS

EXISTENCE OF SOLUTIONS FOR A RESONANT PROBLEM UNDER LANDESMAN-LAZER CONDITIONS

SUBSOLUTIONS: A JOURNEY FROM POSITONE TO INFINITE SEMIPOSITONE PROBLEMS

UNIQUENESS OF POSITIVE SOLUTION TO SOME COUPLED COOPERATIVE VARIATIONAL ELLIPTIC SYSTEMS

MULTIPLE POSITIVE SOLUTIONS FOR P-LAPLACIAN EQUATION WITH WEAK ALLEE EFFECT GROWTH RATE

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

A simplified proof of a conjecture for the perturbed Gelfand equation from combustion theory

Existence and Multiplicity of Positive Solutions to a Quasilinear Elliptic Equation with Strong Allee Effect Growth Rate

SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP AND UNIFORM BLOW-UP PROFILES FOR REACTION-DIFFUSION SYSTEM

Stability properties of positive solutions to partial differential equations with delay

Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL

I Results in Mathematics

MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF PROBLEMS WITH SIGN-CHANGING POTENTIAL

Blow up points of solution curves for a semilinear problem

MULTIPLE SOLUTIONS FOR THE p-laplace EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

Localization phenomena in degenerate logistic equation

A REMARK ON MINIMAL NODAL SOLUTIONS OF AN ELLIPTIC PROBLEM IN A BALL. Olaf Torné. 1. Introduction

Krein-Rutman Theorem and the Principal Eigenvalue

Multiple positive solutions for a class of quasilinear elliptic boundary-value problems

Elliptic equations with one-sided critical growth

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS

UNIQUENESS OF SELF-SIMILAR VERY SINGULAR SOLUTION FOR NON-NEWTONIAN POLYTROPIC FILTRATION EQUATIONS WITH GRADIENT ABSORPTION

ANALYSIS AND APPLICATION OF DIFFUSION EQUATIONS INVOLVING A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL

EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL. 1. Introduction In this article, we consider the Kirchhoff type problem

COMPARISON THEOREMS FOR THE SPECTRAL GAP OF DIFFUSIONS PROCESSES AND SCHRÖDINGER OPERATORS ON AN INTERVAL. Ross G. Pinsky

A Computational Approach to Study a Logistic Equation

ALEKSANDROV-TYPE ESTIMATES FOR A PARABOLIC MONGE-AMPÈRE EQUATION

NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSION SYSTEM WITH NONLOCAL SOURCES

NONHOMOGENEOUS ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT AND WEIGHT

A Hopf type lemma for fractional equations

DYNAMICS IN 3-SPECIES PREDATOR-PREY MODELS WITH TIME DELAYS. Wei Feng

Bifurcation Diagrams of Population Models with Nonlinear Diffusion

EXISTENCE OF POSITIVE SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS

MULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC PROBLEMS WITH FRACTIONAL LAPLACIAN

A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators

MULTIPLE SOLUTIONS FOR AN INDEFINITE KIRCHHOFF-TYPE EQUATION WITH SIGN-CHANGING POTENTIAL

Existence and Multiplicity of Solutions for a Class of Semilinear Elliptic Equations 1

UPPER AND LOWER SOLUTIONS FOR A HOMOGENEOUS DIRICHLET PROBLEM WITH NONLINEAR DIFFUSION AND THE PRINCIPLE OF LINEARIZED STABILITY

SPECTRAL PROPERTIES AND NODAL SOLUTIONS FOR SECOND-ORDER, m-point, BOUNDARY VALUE PROBLEMS

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction

GROWTH OF SOLUTIONS TO HIGHER ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS IN ANGULAR DOMAINS

POTENTIAL LANDESMAN-LAZER TYPE CONDITIONS AND. 1. Introduction We investigate the existence of solutions for the nonlinear boundary-value problem

Sufficient conditions for functions to form Riesz bases in L 2 and applications to nonlinear boundary-value problems

EXISTENCE AND MULTIPLICITY OF PERIODIC SOLUTIONS GENERATED BY IMPULSES FOR SECOND-ORDER HAMILTONIAN SYSTEM

EXISTENCE AND UNIQUENESS FOR A TWO-POINT INTERFACE BOUNDARY VALUE PROBLEM

Landesman-Lazer type results for second order Hamilton-Jacobi-Bellman equations

A Semilinear Elliptic Problem with Neumann Condition on the Boundary

A global solution curve for a class of free boundary value problems arising in plasma physics

Symmetry of nonnegative solutions of elliptic equations via a result of Serrin

Positive and monotone solutions of an m-point boundary-value problem

EXISTENCE OF WEAK SOLUTIONS FOR A NONUNIFORMLY ELLIPTIC NONLINEAR SYSTEM IN R N. 1. Introduction We study the nonuniformly elliptic, nonlinear system

ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES

AN APPLICATION OF THE LERAY-SCHAUDER DEGREE THEORY TO THE VARIABLE COEFFICIENT SEMILINEAR BIHARMONIC PROBLEM. Q-Heung Choi and Tacksun Jung

POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT BOUNDARY-VALUE PROBLEM. Ruyun Ma

SYMMETRY IN REARRANGEMENT OPTIMIZATION PROBLEMS

THE HOT SPOTS CONJECTURE FOR NEARLY CIRCULAR PLANAR CONVEX DOMAINS

Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations

Existence of Multiple Positive Solutions of Quasilinear Elliptic Problems in R N

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION

Journal of Mathematical Analysis and Applications

Non-radial solutions to a bi-harmonic equation with negative exponent

Lecture Notes on PDEs

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTION OF A LOGISTIC EQUATION WITH NONLINEAR GRADIENT TERM

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS

A LOWER BOUND FOR THE GRADIENT OF -HARMONIC FUNCTIONS Edi Rosset. 1. Introduction. u xi u xj u xi x j

HARDY INEQUALITIES WITH BOUNDARY TERMS. x 2 dx u 2 dx. (1.2) u 2 = u 2 dx.

SUPER-QUADRATIC CONDITIONS FOR PERIODIC ELLIPTIC SYSTEM ON R N

Note on the Chen-Lin Result with the Li-Zhang Method

Nonvariational problems with critical growth

REACTION-DIFFUSION EQUATIONS FOR POPULATION DYNAMICS WITH FORCED SPEED II - CYLINDRICAL-TYPE DOMAINS. Henri Berestycki and Luca Rossi

Ambrosetti-Prodi Problem for Non-variational Elliptic Systems Djairo Guedes de Figueiredo

Some non-local population models with non-linear diffusion

PERTURBATION OF THE FREE BOUNDARY IN ELLIPTIC PROBLEM WITH DISCONTINUITIES

Partial Differential Equations

A Dirichlet problem in the strip

SYMMETRY OF SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS VIA MORSE INDEX

On semilinear elliptic equations with nonlocal nonlinearity

Nonnegative solutions with a nontrivial nodal set for elliptic equations on smooth symmetric domains

Xiyou Cheng Zhitao Zhang. 1. Introduction

MIXED BOUNDARY-VALUE PROBLEMS FOR QUANTUM HYDRODYNAMIC MODELS WITH SEMICONDUCTORS IN THERMAL EQUILIBRIUM

The Existence of Nodal Solutions for the Half-Quasilinear p-laplacian Problems

T. Godoy - E. Lami Dozo - S. Paczka ON THE ANTIMAXIMUM PRINCIPLE FOR PARABOLIC PERIODIC PROBLEMS WITH WEIGHT

A COUNTEREXAMPLE TO AN ENDPOINT BILINEAR STRICHARTZ INEQUALITY TERENCE TAO. t L x (R R2 ) f L 2 x (R2 )

GLOBAL ATTRACTIVITY IN A NONLINEAR DIFFERENCE EQUATION

Changing sign solutions for the CR-Yamabe equation

ON A CONJECTURE OF P. PUCCI AND J. SERRIN

Reaction-Diffusion Models and Bifurcation Theory Lecture 8: Global bifurcation

Math 46, Applied Math (Spring 2009): Final

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

REGULARITY RESULTS FOR THE EQUATION u 11 u 22 = Introduction

Stability Analysis of Stationary Solutions for the Cahn Hilliard Equation

Transcription:

Electronic Journal of Differential Equations, Vol. 24(24), No. 27, pp. 1 13. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) A RADIALLY SYMMETRIC ANTI-MAXIMUM PRINCIPLE AND APPLICATIONS TO FISHERY MANAGEMENT MODELS JUNPING SHI Abstract. For a boundary-value problem of an ordinary differential equation, we prove that the anti-maximum principle holds when the forcing term satisfies an integral inequality. As applications, we consider linear and nonlinear models arising from fishery management problems. 1. Introduction The maximum principle is one of most important tools to study linear and nonlinear elliptic equations. Let L be a uniformly elliptic operator, n 2 u n u Lu = a ij + a i + au, (1.1) x i x j x i i,j=1 where a ij C(Ω), a ij = a ji, and n i,j=1 a ij(x)ξ i ξ j > for x Ω and ξ = (ξ i ) R n \{}, and a i, a L (Ω). We consider a Dirichlet boundary-value problem i=1 Lu + λmu = f, x Ω, u =, x Ω, (1.2) where m L (Ω). The maximum principle holds if for f >, the solution (if exists) u of (1.2) is negative. It is known that the maximum principle holds for any f > if and only if λ < λ 1, the principal eigenvalue of the homogeneous equation Lφ + λmφ =. When λ crosses λ 1, it was proved by Clément and Peletier [3] (for the case m 1) and Hess [7] (for sign-changing m) that for f > and λ (λ 1, λ 1 + δ f ), the solution u of (1.2) is positive. This phenomenon is called the anti-maximum principle. More general anti-maximum principles are proved in [2], [14], [4], [1] and [13]. In particular, the author of the present paper shows in [13] that the set of nontrivial solutions of the equation Lu + λmu = (λ λ 1 ) 2 f near (λ 1, ) is a curve {(λ, u(λ))} R C 2,α (Ω), and u(λ) (λ λ 1 )φ 1 where φ 1 is a multiple of the positive principal eigenfunction. That provides an explanation of the transition from the maximum principle to the anti-maximum principle. 2 Mathematics Subject Classification. 34B5, 34B24, 92D25. Key words and phrases. Anti-maximum principle, Sturm-Liouville comparison lemma, nonlinear boundary value problem. c 24 Texas State University - San Marcos. Submitted December 16, 23. Published February 25, 24. 1

2 JUNPING SHI EJDE-24/27 In this paper, we discuss the question whether the anti-maximum principle holds for λ > λ 1 and certain f but beyond a small interval (λ 1, λ 1 + δ f ). In particular, we are interested in that for which f the anti-maximum principle holds for all λ (λ 1, λ 2 ), where λ 2 is the second eigenvalue of Lφ + λmφ =. (In general, λ 2 may not be a real number, but in the situations we will consider, L is always self-adjoint, so λ 2 is real.) For general f > the anti-maximum principle obviously fails when λ λ 2 since the solution of (1.2) u f (λ λ 2 ) 1 φ 2 (which is a sign-changing function) if Ω fφ 2dx. Thus a necessary condition for the antimaximum principle to be extended up to λ = λ 2 is that Ω fφ 2dx =. For many domains with symmetry, it can be proved that φ 1 is symmetric, and φ 2 is asymmetric. Thus the necessary condition can be fulfilled if f has the same symmetry as Ω, and such situations do arise often from applications. So we will consider the anti-maximum principle when Ω, L and f have a compatible symmetry. First we consider the one-dimensional case: a Sturm-Liouville boundary-value problem [p(r)u ] + s(r)u + λq(r)u = f(r), r ( 1, 1), (1.3) u( 1) = u(1) =. Here p, p, s, q, f are continuous, p and q are positive, and p, s, q, f are even functions. for the homogeneous equation, it is well-known that the principal eigenfunction φ 1 is an even function with one sign, and the eigenfunction φ 2 corresponding to λ 2 is an odd function. For f satisfying an integral constraint (2.6), we show that the anti-maximum principle holds for λ (λ 1, λ 2 ]. In the special case of u + λu = f(r), r ( 1, 1), u( 1) = u(1) =, (1.4) we show that the anti-maximum principle holds for all λ (λ 1, λ 2 ] if f(r) cos(πr)dr. In [8], Korman proved the anti-maximum principle holds for λ = λ 2 and f satisfying the same integral inequality. Our result is much more general (for general Strum-Liouville problem (1.3) instead of (1.4)), and the proof is also different. We point out that an alternate proof of the result can also be given via the Green function of the problem, by using the ideas in, for example, Schröder [12]. Our second result is about the radially symmetric solutions of Schödinger type equation u + K(x)u + λv (x)u = f(x), x B n, u =, x B n (1.5), where B n is the unit ball in R n with n 2, and V, K and f are positive and radially symmetric. The principal eigenfunction φ 1 of the homogeneous equation is radially symmetric and is of one sign. We show that the anti-maximum principle holds for λ (λ 1, λ ] for some λ < λ 2 when an integral inequality is satisfied. Note that the solution u f of (1.5) in this case is also radially symmetric, thus satisfies a Sturm-Liouville problem: (r n 1 u ) + r n 1 K(r) + λr n 1 V (r)u = r n 1 f(r), r (, 1), u () = u(1) =. (1.6) We will study the Sturm-Liouville boundary-value problem (1.3) in Section 2, and we will discuss (1.5) and (1.6) in Section 3. In Section 4, we consider an

EJDE-24/27 A RADIALLY SYMMETRIC ANTI-MAXIMUM PRINCIPLE 3 u u 1 (, c) u 2 (, c) c 2 c Figure 1. Precise bifurcation diagram for λ 1 < a < λ 1 + δ equation arising from models of fishery management u + au bu 2 ch(x) =, x ( 1, 1), u( 1) = u(1) =, (1.7) where a >, b, c >, and h(x) is an even non-negative function on [ 1, 1]. The solutions of (1.7) are the steady state solutions of a reaction-diffusion equation (with spatial dimension n = 1) u t = u + au bu2 ch(x), (t, x) (, T ) Ω; u(t, x) =, (t, x) (, T ) Ω; u(, x) = u (x), x Ω, (1.8) where Ω is a smooth domain in R n. Here u(t, x) is the population density of a fish species, Ω R n (n 1) is the habitat of the fish; the population is assumed to have a logistic growth when b >, and it is a Malthus growth when b = ; c h(x) represents harvesting effect, and we assume that h(x) for x Ω and max x Ω h(x) = 1 (thus h( ) determines the spacial fishing patterns, and c determines the quantity of the fishing.) The steady state solutions of (1.8) was studied by Oruganti, Shivaji and the author in [1]. In particular, it was proved in [1] that when b >, a (λ 1, λ 1 + δ) for some δ >, then there exists c 2 > such that (1.8) has exactly two positive steady state solution when c (, c 2 ), has exactly one positive steady state solution when c = c 2, and has no non-negative steady state solution when c > c 2 (see Figure 1.) This result is valid for general smooth domain Ω but only for a (λ 1, λ 1 +δ) since we use a perturbation argument and the classical anti-maximum principle. In Section 4, we will show that a similar result can be extended to a (λ 1, λ 2 ) and the one-dimensional case (1.7) with a more restrictive but natural h(x) by using the ideas in Section 2 and a bifurcation approach. We will also consider the case when b = (Malthus growth.) 2. One-Dimensional Problem We consider a linear non-homogeneous Strum-Liouville boundary-value problem Here we assume that [p(r)u ] + s(r)u + λq(r)u = f(r), r ( 1, 1), u( 1) = u(1) =. (2.1)

4 JUNPING SHI EJDE-24/27 (A1) p, p, s, q, f are continuous in [ 1, 1]; (A2) p, s, q, f are all even functions, i.e. g( x) = g(x); (A3) q(r) > for r [ 1, 1]; (A4) p(r) > for r [ 1, 1]; (A5) f(r) for r [ 1, 1]. It is well-known that if (A1), (A3) and (A4) are satisfied, then the homogeneous equation [p(r)φ ] + s(r)φ + λq(r)φ =, r ( 1, 1), (2.2) φ( 1) = φ(1) =, has a sequence of eigenvalues {λ i } i=1, such that λ i < λ i+1, lim i λ i =, and the eigenfunction φ i corresponding to λ i changes sign exactly (i 1) times in ( 1, 1), and all zeros of φ i are simple. If in addition (A2) is satisfied, one can easily show that φ 1 is an even function of one sign on [ 1, 1], and φ 2 is an odd function on [ 1, 1] which only changes sign at r =. Similarly, the homogeneous equation with no-flux boundary condition [p(r)φ ] + s(r)φ + λq(r)φ =, r ( 1, 1), φ ( 1) = φ (1) =, (2.3) has a sequence of eigenvalues {λ N i } i=1, such that λn i < λ N i+1, lim i λ N i =, and the eigenfunction φ N i corresponding to λ N i satisfies that (φ N i ) changes sign exactly (i 1) times in ( 1, 1), and all zeros of (φ N i ) are simple. We recall a standard Sturm comparison lemma (see for example, [11]). Lemma 2.1. Let Lu(t) = [(p(t)u (t)] +q(t)u(t), where p(t) and q(t) are continuous in [a, b] and p(t), t [a, b]. Suppose Lw(t) =, w. (1) If there exists v C 2 [a, b] such that v(t) and Lv(t) ( ), then w has at most one zero in [a, b]. (2) If there exists v C 2 [a, b] such that v(t) and Lv(t) ( ), and v(a) = v(b) =, then w has at least one zero in (a, b). To study the solution set (λ, u) of (2.1), we first collect a few well-known facts about the solutions of (2.1): Lemma 2.2. Assume that (A1)-(A5) are satisfied. (1) For any λ λ i, (2.1) has a unique solution u(λ, r), which is an even function; (2) For λ = λ 1, (2.1) has no solution; (3) For λ = λ 2, (2.1) has infinite many solutions, and it has a unique even solution u(λ, ); (4) When λ < λ 1, then u(λ, r) < for r ( 1, 1), u r (λ, 1) < ; (5) There exists δ f > such that for λ (λ 1, λ 1 + δ f ), u(λ, r) > for r ( 1, 1), u r (λ, 1) >. Consider the homogeneous equation [p(r)ϕ ] + s(r)ϕ + λq(r)ϕ =, r ( 1, 1), ϕ () =, ϕ() = 1 >. (2.4) From the existence and uniqueness of the solution of the initial value problem, (2.4) has a unique solution ϕ(λ, r) for any λ >, and ϕ(λ, r) is an even function.

EJDE-24/27 A RADIALLY SYMMETRIC ANTI-MAXIMUM PRINCIPLE 5 Moreover, from Lemma 2.1, when λ 1 < λ λ 2, there exists r > such that ϕ(r) satisfies ϕ(r)(r r ) >, r (, 1)\{r }. (2.5) The function ϕ(λ, r) will play an important role in our main result. We say that (2.1) satisfies the anti-maximum principle for f if for λ (λ 1, λ 2 ] the even solution u(λ, r) > for r ( 1, 1). Our main result in this section is as follows. Theorem 2.3. Assume that (A1)-(A5) are satisfied, and u(λ, r) is the unique even solution of (2.1) when λ (λ 1, λ 2 ]. Let ϕ(λ, r) be the solution of (2.4). Then (2.1) satisfies the anti-maximum principle for f at λ (λ 1, λ 2 ] if and only if 1 f(r)ϕ(λ, r)dr = 2 f(r)ϕ(λ, r)dr. (2.6) Moreover u r (λ, 1) < if f(r)ϕ(λ, r)dr >, and u r(λ, 1) = if f(r)ϕ(λ, r)dr =. Proof. From the symmetry of the solution, u(r) = u(λ, r) satisfies [p(r)u ] + s(r)u + λq(r)u = f(r), r (, 1), u () = u(1) =. (2.7) We denote Lu = [p(r)u ] + λq(r)u. Suppose that ψ is the solution of the initial value problem [p(r)ψ ] + s(r)ψ + λq(r)ψ =, r ( 1, 1), u( 1) =, u ( 1) = a >. (2.8) We claim that ψ has exactly one zero in ( 1, 1), and ψ(1). First we assume that λ 1 < λ < λ 2. If we also assume that rφ 2 (r) > for r, then φ 2 < and Lφ 2 = (λ λ 2 )qφ 2 for r ( 1, ). Hence by Lemma 2.1 part 1, ψ has no zero in [ 1, ] besides r = 1. Similarly, φ 2 > and Lφ 2 = (λ λ 2 )qφ 2 < for r (, 1). Thus ψ has at most one zero in [, 1], and has at most two zeros in [ 1, 1]. On the other hand, φ 1 >, Lφ 1 = (λ λ 1 )qφ 1 >, and φ 1 ( 1) = φ 1 (1) =, then from Lemma 2.1 part 2, ψ has at least one zero in ( 1, 1). Therefore ψ has exactly one zero in ( 1, 1), and ψ(1) < if λ 1 < λ < λ 2. If λ = λ 2, then ψ = kφ 2 from the uniqueness of the equation, which implies that ψ has exactly one zero in ( 1, 1), and ψ(1) =. Let I + = {x ( 1, 1) : u(λ, x) > }. Then I + is the union of countable disjoint open sub-intervals of ( 1, 1). For each (a, b) I +, u > and Lu = f > in (a, b), and u(a) = u(b) =, thus by Lemma 2.1 part 2, ψ has at least one zero in (a, b). However from the claim above, ψ has exactly one zero in ( 1, 1). Hence I + has at most one connected component. Since u(λ, u) is even, then the only connected component of I + must be symmetric about r =. Therefore I + must satisfy one of the following three: (a) I + = ; (b) I + = ( r, r ) for some r (, 1); or (c) I + = ( 1, 1). Case (a) is not possible since I + =, u and Lu = f in [ 1, 1], which will imply ψ has at most one zero in [ 1, 1] from Lemma 2.1 part 1, but ψ has two zeros (including r = 1) in [ 1, 1). Therefore, for any λ (λ 1, λ 2 ], u(λ, r) is either positive in ( 1, 1), or u(λ, r) > when r < r and u(λ, r) when 1 > r > r. If u r (λ, 1) <, then u(λ, r) > for all r ( 1, 1); and if u r (λ, 1) >, then the latter case occurs. If u r (λ, 1) =, then from the equation p(1)u rr (λ, 1) = f(1) >, u is positive in a right neighborhood of r = 1, and consequently positive in ( 1, 1).

6 JUNPING SHI EJDE-24/27 Therefore, u(λ, r) > in ( 1, 1) if and only if u r (λ, 1). From (2.1) and (2.4), we have p(1)ϕ(λ, 1)u r (λ, 1) = [pu ϕ pϕ u] 1 = ϕ(λ, r)f(r)dr. (2.9) Since ϕ(λ, 1) < for any λ (λ 1, λ 2 ) and p(1) >, then u r (λ, 1) is equivalent to ϕ(λ, r)f(r)dr. The last statement in the theorem is also clear from (2.9). We illustrate the result in Theorem 2.3 with the special case of p(r) = q(r) 1 and s(r) : u + λu = f(r), r ( 1, 1), u( 1) = u(1) =. (2.1) The homogeneous equation (2.4) becomes ϕ + λϕ =, r ( 1, 1), ϕ () =, ϕ() = 1, (2.11) and it is easy to calculate that ϕ(λ, r) = cos( λr). The eigenvalues of φ + λφ =, r ( 1, 1), φ( 1) = φ(1) =, (2.12) are λ i = i 2 π 2 /4 (i N), and the corresponding eigenfunctions are φ 2i 1 (r) = cos[(2i 1)πr/2] and φ 2i (r) = sin(iπr). The condition (2.6) now becomes f(r) cos( λr)dr. (2.13) We observe that the family of functions {cos( λr) : π 2 /4 < λ < π 2 } satisfy (cos( λr)) λ = sin( λr) 2 λ for r (, 1) and λ (π 2 /4, π 2 ]. We define a functional: I(λ, f) = <, (2.14) f(r) cos( λr)dr, (2.15) for λ [π 2 /4, π 2 ]. Then for any even positive function f, I(λ, f) is decreasing in λ. Hence we obtain a stronger result for (2.1): Theorem 2.4. Suppose that f C [ 1, 1], f( r) = f(r) and f(r) ( ) for r 1. Let u(λ, r) be the unique even solution of (2.1) for λ (π 2 /4, π 2 ]. (1) If f(r) cos(πr)dr, then u(λ, r) > for r ( 1, 1) and all λ (π 2 /4, π 2 ]; (2) If f(r) cos(πr)dr <, then there exists λ (π 2 /4, π 2 ) such that u(λ, r) > for r ( 1, 1) and λ (π 2 /4, λ ], and u(λ, r) changes sign exactly twice in ( 1, 1) for λ (λ, π 2 ].

EJDE-24/27 A RADIALLY SYMMETRIC ANTI-MAXIMUM PRINCIPLE 7 3. Radially Symmetric Problem In this section, we consider the anti-maximum principle for the equation u + K(x)u + λv (x)u = f(x), x B n, u =, x B n, where B n is the unit ball in R n, n 2. We assume that V and f satisfy (B1) V, K, f C(B n ); (B2) V, K and f are radially symmetric; (B3) V (x) > for x B n ; (B4) f(x) > for x B n. For the homogeneous equation φ + K(x)φ + λv (x)φ =, x B n, φ =, x B n, (3.1) (3.2) It is well-known that the principal eigenfunction φ 1 is of one sign and is radially symmetric. In general the second eigenvalue λ is not simple. It was shown in [9] that three cases can happen for the solution space W of [ + K(x) + λ 2 V (x)]φ = : (1) dim(w ) = 1, W = span{φ 2 }, and φ 2 is radially symmetric; (2) dim(w ) = n, W = span{ψ i ψ( x )x i x 1 : i = 1, 2,, n}, where x = (x 1, x 2,, x n ); (3) dim(w ) = n + 1, W = span[{ψ i ψ( x )x i x 1 : i = 1, 2,, n} {φ 2 ( x )}]. For example, for V (x) 1, it is well-known that the second case above occurs, i.e. all eigenfunctions are asymmetric with respect to a hyperplane through the origin. Indeed, we can define λ R i to be the i-th eigenvalue with radially symmetric eigenfunction, and λ n i to be the i-th eigenvalue with non-radial eigenfunction. Then λ 1 = λ R 1, and λ 2 = λ R 2 < λ n 1 or λ 2 = λ n 1 < λ R 2 or λ 2 = λ R 2 = λ n 1 corresponds to one of three cases above. In all three cases, when λ (λ 1, λ 2 ), (3.1) has a unique solution u(x) which is also radially symmetric. Thus the solution u satisfies (r n 1 u ) + r n 1 K(r)u + λr n 1 V (r)u = r n 1 f(r), r (, 1), u () = u(1) =. We define λ to be the principal eigenvalue of the equation (r n 1 ϕ ) + r n 1 K(r)ϕ + λr n 1 V (r)ϕ =, r (, 1), ϕ() = ϕ(1) =. Then by applying Theorem 2.3, we obtain the following result. (3.3) (3.4) Theorem 3.1. Suppose that (B1)-(B4) are satisfied. Let u(λ, x) be the unique (radially symmetric) solution of (3.1) for λ (λ 1, λ ], and let ψ be the unique radially symmetric solution of the linear equation ψ + K(x)ψ + λv (x)ψ =, x B n, ψ() = 1, ψ() =. (3.5) Then (2.1) satisfies the anti-maximum principle for f at λ (λ 1, λ ] if and only if B n ψ(x)f(x)dx. (3.6)

8 JUNPING SHI EJDE-24/27 Moreover u < on Ω if B n ψ(x)f(x)dx >, and u = on Ω if B n ψ(x)f(x)dx =. Proof. We consider the boundary-value problem: where (p(r)u ) + s(r)u + λq(r)u = r n 1 f(r), r ( 1, 1), u( 1) = u(1) =, { r n 1, r [, 1]; p(r) = ( r) n 1, r [ 1, ]. { r n 1 K(r), r [, 1]; s(r) = ( r) n 1 K(r), r [ 1, ]. { r n 1 V (r), r [, 1]; q(r) = ( r) n 1 V (r), r [ 1, ]. Then the proof of Theorem 2.3 can be carried over although p() = q() =. (3.7) (3.8) Note that λ is not an eigenvalue associated with the PDE operator + K(x) + λv (x). In fact, λ is the second eigenvalue of the homogeneous problem associated with (3.7): (p(r)φ ) + s(r)φ + λq(r)φ =, r ( 1, 1), (3.9) φ( 1) = φ(1) =, while λ R 2 is the third eigenvalue of (3.9). Thus λ < λ R 2. On the other hand it is well-known (see [9]) that the eigenfunction θ corresponding to λ n 1 is of form η(r) (x i / x ), and η satisfies (r n 1 η ) + r n 1 K(r)η + λr n 1 V (r)η (n 1)r n 2 η =, r (, 1), η() = η(1) =. (3.1) Comparing the variational characterization of η > (3.1) and ϕ > (3.4), we can see that λ < λ n 1. Thus λ < λ 2 = min(λ R 2, λ n 1 ). It would be an interesting question whether the anti-maximum principle holds for all λ (λ 1, λ 2 ) like the one-dimensional case. 4. Applications to Fishery Management Problems In this section, we consider the equation: u + au bu 2 ch(x) =, x ( 1, 1), u( 1) = u(1) =, (4.1) where a >, b, c >, and h(x)( ) is an even non-negative function on [ 1, 1] such that max x [ 1,1] h(x) = 1. First as a direct application of the result in Section 2, we consider the case when b =. Then the solution u gives the asymptotic spatial distribution of the fish population, when the population has a uniform Malthus growth, and the population is harvested at a constant rate ch(x). In this case, when a λ i, then (4.1) has a unique solution u, and we are interested in the question whether u is positive. If that is the case, then it is not hard to show that for any sufficiently large initial population u, the population will approach this equilibrium distribution when

EJDE-24/27 A RADIALLY SYMMETRIC ANTI-MAXIMUM PRINCIPLE 9 t, thus the population will not become extinct. From Theorem 2.3, we have the following result. Proposition 4.1. Suppose that a (λ 1, λ 2 ) and b =, and h(x) is an even function. Then the unique solution u(x) of (4.1) is positive in ( 1, 1) if and only if 1 h(x) cos( ax)dx = 2 In particular, when u(x) is positive, h(x) cos( ax)dx. (4.2) h C 1 [ 1, 1] and h (x) for x (, 1). (4.3) The assumption (4.3) is reasonable in fishery business since fishermen tend to catch more fish from the interior part of the habitat, where the fish has higher population density. Note that u(x) must also be an even function because of the uniqueness of solution. Next we consider the case when a (λ 1, λ 2 ), b > (logistic growth) and (4.3) is satisfied. Suppose that u is a non-negative solution of (4.1). Then u is stable if all eigenvalues µ i (u) of ϕ + (a 2u)ϕ = µϕ, ϕ( 1) = ϕ(1) =, (4.4) are positive, and otherwise it is unstable. For a unstable solution u, the Morse index M(u) is defined as the number of negative eigenvalues of (4.4). It is well-known that the eigenvalues µ i (u) can be rearranged into an increasing order: µ 1 < µ 2 < µ 3 <. A solution u of (4.1) is degenerate if µ i (u) = for some integer i, and otherwise it is non-degenerate. Our main result reads as follows. Theorem 4.2. Suppose that b >, a (λ 1, λ 2 ), h( x) = h(x) and h(x) for x [, 1], and we assume that (4.3) holds. Then there exists c 2 > such that (1) (4.1) has exactly two positive solutions u 1 (, c) and u 2 (, c) for c [, c 2 ), exactly one positive solution u 1 (, c) for c = c 2, and no non-negative solution for c > c 2 ; (2) u i (c, x) = u i (c, x) and x u i (c, x) < for c (, c 2 ], x (, 1] and i = 1, 2; (3) The Morse index M(u 1 (, c)) = (stable) and M(u 2 (, c)) = 1, c [, c 2 ), u 1 (, c 2 ) is degenerate with µ 1 (u 1 (, c 2 )) = ; (4) All solutions lie on a smooth curve Σ. On (c, u) space, Σ starts from (, ), continues to the right, reaches the unique turning point at c = c 2 where it turns back, then continues to the left without any turnings until it reaches (, v a ), where v a is the unique positive solution of (4.1) with c = (see Figure 1.) To prove this theorem, we first prove some lemmas. Lemma 4.3. Suppose that b >, a (λ 1, λ 2 ), h( x) = h(x) and h(x) for x [, 1], and u is a non-negative solution of (4.1). Then (1) µ 2 (u) >, thus the Morse index M(u) is either or 1; (2) If u is a degenerate solution, then M(u) = and the eigenfunction w of µ 1 (u) = can be chosen as positive.

1 JUNPING SHI EJDE-24/27 Proof. From the variational characterization of µ 2 (u): µ 2 (u) = inf sup 1 [ϕ 2 (a 2u)ϕ 2 ]dx T 1 ϕ T 1 ϕ2 > inf T sup ϕ T 1 [ϕ 2 aϕ 2 ]dx 1 ϕ2 = λ 2 a >, where T is any two dimensional subspace of H 1 [ 1, 1]. If u is a degenerate solution, then µ 1 (u) = since µ 2 (u) >, and w can be chosen as positive from the wellknown result for the principal eigenfunction. Lemma 4.4. Suppose that b >, a (λ 1, λ 2 ), h( x) = h(x) and h(x) for x [, 1], h(x) satisfies (4.3), and u is a non-negative even solution of (4.1). Then either u (x) < for x (, 1] or there exists x 1 (, 1) such that u (x) in (, x 1 ) and u (x) < in (x 1, 1)]. Proof. Since µ 2 (u) > from Lemma 4.3, then similar to the proof of Theorem 2.3 about function ψ, we can show that the solution of Ψ + (a 2u)Ψ =, r ( 1, 1), Ψ( 1) =, Ψ ( 1) = k >, (4.5) changes sign at most once in ( 1, 1), Ψ(1) > if u is stable, Ψ(1) < if M(u) = 1, and Ψ(1) = if µ 1 (u) = (in that case, Ψ = w.) On the other hand, u satisfies (u ) + (a 2u)u = ch (x), x ( 1, 1), u () =. (4.6) At x = 1, u (1) = ch(1) and u, thus u (x) on (1 δ, 1] for some δ >. If u (x) for (1 δ 1, 1] for some δ 1 >, then h(x) on (1 δ 1, 1], and a contradiction can be reached by the Hopf boundary lemma. Thus we can assume that u (x) < on (1 δ 1, 1). Let x 1 be the first zero of u left of x = 1. If x 1 =, then u (x) < on (, 1); if u (1) =, then L(u ) = ch, where Lφ = φ + (a 2u)φ, u < on (, 1), and u () = u (1) =, thus by Lemma 2.2 (2), Ψ has at least one zero in (, 1). From the symmetry of u and h, Ψ has at least one zero in ( 1, ). Thus Ψ has at least two zeros in ( 1, 1). That is a contradiction. Thus u (1) <, and u (x) < for x (, 1]. If x 1 >, then for the same reason above, u (1) <. If there exists another interval (x 2, x 3 ) (, 1) such that u (x) < on (x 2, x 3 ) and u (x 2 ) = u (x 3 ) =, then on the interval (x 2, x 3 ), L(u ) = ch and u, by Lemma 2.2 (2), Ψ has at least one zero in (, 1) and we reach a similar contradiction as in the last paragraph. Hence u (x) on [, x 1 ). Proof of Theorem 4.2. From [1] page 361 Theorem 3.2, there exists c 2 > such that (4.1) has a maximum solution u 1 (c, x) for c (, c 2 ). Moreover from the proof of Theorem 3.2 in [1], Σ 1 = {(c, u 1 (c, )) : c (, c 2 )} is a smooth curve and c u 1 (c, x) < for x ( 1, 1). On the other hand, from [1] Theorem 3.3, (4.1) has a second solution u 2 (c, x) for c (, c 3 ) for some c 3 < c 2. The solution u 2 (c, x) is positive if the solution w

EJDE-24/27 A RADIALLY SYMMETRIC ANTI-MAXIMUM PRINCIPLE 11 of the linearized equation at (c, u) = (, ): w + aw = h(x), x ( 1, 1), w( 1) = w(1) =, (4.7) is positive. Since h satisfies (4.3) and a (λ 1, λ 2 ), from Theorem 2.3, w(x) > for x ( 1, 1). Hence u 2 (c, x) = cw(x) + o( c ) > for c (, c 3 ) and x ( 1, 1). We can use the implicit function theorem to continue the solution branch Σ 2 = {(c, u 2 (c, x) : c (, c 3 )} as long as the linearized operator φ φ + (a 2u 2 )φ is non-degenerate. Suppose Σ 2 can be extended to c = c 4 > c 3 such that u 2 (c, x) is non-degenerate for c (, c 4 ). We claim that u 2 (c, x) > for c (, c 4 ) and x ( 1, 1) and x u 2 (c, x) when x = ±1. The function c u 2 (c, x) satisfies the equation v + [a 2u 2 (c, )]v = h(x), x ( 1, 1), v( 1) = v(1) =. (4.8) The Morse index M(u 2 (c, )) = M(u 2 (, )) = 1 from the implicit function theorem. Thus all conditions of Theorem 2.3 except (2.6) are satisfied for (4.8) since λ = (λ 1, λ 2 ) and (4.3). Although Theorem 2.3 cannot be applied here since the integral condition is hard to check, as long as λ (λ 1, λ 2 ), the set I + = {x : c u 2 (c, x) > } must be one of the two cases (b) or (c) listed in the proof of Theorem 2.3. In either case, I + and thus c u 2 (c, ) > for all c (, c 4 ). In particular, u 2 (c, ) > for all c (, c 4 ). Suppose that u 2 (c, x) > is not true for some c (, c 4 ) and x ( 1, 1), then c 5 = inf{c > : u 2 (c, x) for some x} > since u 2 (c, x) > for x ( 1, 1) and c (, c 3 ). At c = c 5, either there exists x 1 ( 1, 1) such that u 2 (c 5, x 1 ) = or x u 2 (c 5, ±1) =. The latter case cannot happen from Lemma 4.4 since u 2 (c 5, x) is a non-negative solution of (4.1). In the former case, it can only happen when x = is a local minimum of u 2 (c 5, ) from Lemma 4.4, thus x 1 =. But this cannot happen since we show that u 2 (c, ) > for all c (, c 4 ). Therefore such c 5 does not exist, and the claim holds. At c = c 4, u 2 (c 4, x) = lim c c u 2 (c, x) > exists for x ( 1, 1). From 4 the Schauder estimates, we can show that the u 2 (c, ) u 2 (c 4, ) in C 2 [ 1, 1], thus u 2 (c 4, ) is a non-negative solution of (4.1) when c = c 4. Moreover, since x u 2 (c, 1) <, then u 2 (c 4, x) >. From the definition of c 4, u 2 (c 4, x) is degenerate, and from Lemma 4.3, µ 1 (u 2 (c 4, x)) = and the principal eigenfunction w can be assumed to be positive. Hence a bifurcation theorem of Crandall-Rabinowitz [5] can be applied here as in the proof of Theorem 3.2 in [1], and the solution curve near u 2 (c 4, ) can be written as (c(s), u(s, )) for s ( δ, δ), c(s) = c 4 + c ()s 2 + o(s 2 ), u(s) = u 2 (c 4, ) + sw + o( s ), and c () = 2b 1 w3 (x)dx <. (4.9) h(x)w(x)dx 1 Thus the solution continuum which contains Σ 2 (which we will still call Σ 2 ) is a curve which turns at (c 4, u 2 (c 4, )). For c (c 4 δ 1, c 4 ), (4.1) has another solution u 3 (c, ) on Σ 2. We denote Σ 2 = {(c, u 2(c, ) : c (, c 4 )}, and Σ + 2 = {(c, u 3(c, ) : c (c 4 δ 1, c 4 )}. Σ + 2 can also be extended via the implicit function theorem, and from the change of stability theorem in [5], u 3 is stable (µ 1 (u 3 ) > ). In fact Σ + 2 can be extended for all c (, c 4 ) with u 3 always non-degenerate and stable. Suppose not, there there is c 6 (, c 4 ) such that u 3 (c 4, ) is degenerate. Then µ 1 (u 2 (c 4, x)) =

12 JUNPING SHI EJDE-24/27 and w > at (c 6, u 3 (c 6, )), thus the bifurcation theorem can be applied, and (4.9) holds, but (c 6, u 3 (c 6, )) cannot be a minimum of the solution curve since the continuation is from right to left. Hence Σ + 2 can be extended to {(c, u 3(c, ) : c (, c 4 )} and also c =. Moreover we can show that c u 3 (c, x) < from the proof of [1] Theorem 3.2 since u 3 is stable. Thus u 3 (, x) = lim c + u 3 (c, x) is a nonnegative solution of (4.1) when c = which is the classical logistic equation. It is well-known that (4.1) has a unique nonnegative (positive indeed) solution u 1 when c = (see [1] Section 2.3), and the branch Σ 1 emanates from (, u 1 ). Therefore Σ + 2 must be coincident to Σ 1, c 2 = c 4, and u 1 (c, x) = u 3 (c, x) for c (, c 2 ). If there is any other solution for c (, c 2 ), then the same continuation and bifurcation arguments above. But (4.1) has only two non-negative solutions u 1 and when c =, so no any other solution exist. This concludes the proof. Remarks. (1) The results in Theorem 2.3 hold for a general smooth domain Ω in R n and all f, but only for a (λ 1, λ 1 + δ f ). That is proved in [1]. (2) We point out that although h(x) is an even function, the solution u(x) of (4.1) may not satisfy u (x) < for x (, 1) as in the classical Gidas-Ni-Nirenberg [6] since h (x) on (, 1). The result in [6] holds when h (x), thus u 1 or u 2 may be the two-peak solution described in Lemma 4.4. Acknowledgement. This research is partially supported by NSF grant DMS- 314736, College of William and Mary summer research grants, and a grant from Science Council of Heilongjiang Province, China. References [1] Arcoya, David and Gámez, José L., Bifurcation theory and related problems: anti-maximum principle and resonance. Comm. Partial Differential Equations, 26 (21), no. 9-1, 1879 1911. [2] Birindelli, Isabeau, Hopf s lemma and anti-maximum principle in general domains. J. Differential Equations, 119 (1995), no. 2, 45 472. [3] Clément, Ph. and Peletier, L. A., An anti-maximum principle for second-order elliptic operators. J. Differential Equations, 34 (1979), no. 2, 218 229. [4] Clément, Ph. and Sweers, G., Uniform anti-maximum principles. J. Differential Equations, 164 (2), no. 1, 118 154. [5] Crandall, Michael G. and Rabinowitz, Paul H., Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Rational Mech. Anal., 52 (1973), 161 18. [6] Gidas, B.; Ni, Wei Ming and Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), no. 3, 29 243. [7] Hess, Peter, An anti-maximum principle for linear elliptic equations with an indefinite weight function. J. Differential Equations, 41 (1981), no. 3, 369 374. [8] Korman, Philip, Monotone approximations of unstable solutions. J. Comput. Appl. Math., 136 (21), no. 1-2, 39 315. [9] Lin, Chang-Shou; Ni, Wei-Ming, A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Math. Soc., 12 (1988), no. 2, 271 277. [1] Oruganti, Shohba; Shi, Junping and Shivaji, Ratnasingham, Diffusive Logistic equation with constant effort harvesting, I: Steady States. Trans. Amer. Math. Soc., 354 (22), no. 9, 361 3619. [11] Ouyang, Tiancheng and Shi, Junping, Exact multiplicity of positive solutions for a class of semilinear problem:ii. Jour. Diff. Equa., 158, (1999), no. 1, 94 151. [12] Schröder, Johann, Operator inequalities. Mathematics in Science and Engineering, 147. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 198. [13] Shi, Junping, Anti-maximum principle and bifurcation, submitted. [14] Takáč, Peter, An abstract form of maximum and anti-maximum principles of Hopf s type. J. Math. Anal. Appl., 21 (1996), no. 2, 339 364.

EJDE-24/27 A RADIALLY SYMMETRIC ANTI-MAXIMUM PRINCIPLE 13 Junping Shi Department of Mathematics, College of William and Mary, Williamsburg, VA 23185, USA, and Department of Mathematics, Harbin Normal University, Harbin, Heilongjiang, China E-mail address: shij@math.wm.edu