Applications of the Definite Integral

Similar documents
8.4 Application to Economics/ Biology & Probability

Find all points where the function is discontinuous. 1) Find all vertical asymptotes of the given function. x(x - 1) 2) f(x) =

PDF Created with deskpdf PDF Writer - Trial ::

HOMEWORK SOLUTIONS MATH 1910 Sections 6.1, 6.2, 6.3 Fall 2016

Answer Key for AP Calculus AB Practice Exam, Section I. Question 23: B

Calculus I 5. Applications of differentiation

AP Calculus Free-Response Questions 1969-present AB

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom

MAC Find the x-value that maximizes the area of the shaded rectangle inscribed in a right triangle below.

8.2 APPLICATIONS TO GEOMETRY

v ( t ) = 5t 8, 0 t 3

Math 2413 General Review for Calculus Last Updated 02/23/2016

Purdue University Study Guide for MA Credit Exam

L. Function Analysis. ). If f ( x) switches from decreasing to increasing at c, there is a relative minimum at ( c, f ( c)

Chapter 4 Integration

1 Antiderivatives graphically and numerically

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

MATH 223 REVIEW PROBLEMS

AP Calculus AB 2nd Semester Homework List

Chapter 3 The Integral Business Calculus 197

Math 212-Lecture 20. P dx + Qdy = (Q x P y )da. C

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION

CHAPTER 3 APPLICATIONS OF THE DERIVATIVE

Possible C4 questions from past papers P1 P3

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

MTH 230 COMMON FINAL EXAMINATION Fall 2005

Antiderivatives and Indefinite Integrals

NO CALCULATORS: 1. Find A) 1 B) 0 C) D) 2. Find the points of discontinuity of the function y of discontinuity.

Doug Clark The Learning Center 100 Student Success Center learningcenter.missouri.edu Overview

lim4 4. By the definition of a limit, there is a positive real number such that if 0 x 2. The largest valid value of is

Second Midterm Exam Name: Practice Problems Septmber 28, 2015

MA 123 Recitation Activity Sheets

Math 611b Assignment #6 Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 236 ELAC FALL 2017 TEST 3 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Optimization. MATH 161 Calculus I. J. Robert Buchanan. Summer Department of Mathematics

2.3 BASIC DIFFERENTIATION FORMULAS. dy dx 12 d dx x 1 12 x 2 12

PSI AP Physics C Sources of Magnetic Field. Multiple Choice Questions

Calculus BC: Section I

MATH 1242 FINAL EXAM Spring,

Sudoku Puzzle A.P. Exam (Part B) Questions are from the 1997 and 1998 A.P. Exams A Puzzle by David Pleacher

MULTIVARIABLE CALCULUS

Chapter. Integration. 1. Antidifferentiation: The Indefinite Integral. 2. Integration by Substitution. 3. Introduction to Differential Equations

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 2) h(x) = x2-5x + 5

Review: A Cross Section of the Midterm. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions

The Definite Integral as an Accumulator

Math 131 Week-in-Review #7 (Exam 2 Review: Sections , , and )

f x and the x axis on an interval from x a and

AP Calculus AB. Review for Test: Applications of Integration

5. Find the intercepts of the following equations. Also determine whether the equations are symmetric with respect to the y-axis or the origin.

Examples. 1. (Solution) (a) Suppose f is an increasing function, and let A(x) = x

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO.

Bozeman Public Schools Mathematics Curriculum Calculus

Science One Integral Calculus. January 9, 2019

where people/square mile. In

Math 142 (Summer 2018) Business Calculus 5.8 Notes

Applications of Derivatives

CHAPTER 1 Prerequisites for Calculus 2. CHAPTER 2 Limits and Continuity 58

INTERMEDIATE VALUE THEOREM

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions

AP Calculus BC Fall Final Part IIa

Displacement and Total Distance Traveled

Lecture : The Definite Integral & Fundamental Theorem of Calculus MTH 124. We begin with a theorem which is of fundamental importance.

Practice Exam 1 Solutions

Foothill High School. AP Calculus BC. Note Templates Semester 1, Student Name.

Technique 1: Volumes by Slicing

Solutions to Homework 1

Math 122 Fall Handout 15: Review Problems for the Cumulative Final Exam

Applications of the definite integral to rates, velocities and densities

Math 142 Week-in-Review #10 (Exam 3 Review: Sections 5.8 and )

5.3 Interpretations of the Definite Integral Student Notes

Week In Review #8 Covers sections: 5.1, 5.2, 5.3 and 5.4. Things you must know

NO CALCULATORS: 1. Find A) 1 B) 0 C) D) 2. Find the points of discontinuity of the function y of discontinuity.

Exam 2 - Part I 28 questions No Calculator Allowed. x n D. e x n E. 0

MA EXAM 2 Form 01

MATH 122 FALL Final Exam Review Problems

PARAMETRIC EQUATIONS AND POLAR COORDINATES

SECTION 5.1: Polynomials

Math 241 Final Exam, Spring 2013

v(t) v(t) Assignment & Notes 5.2: Intro to Integrals Due Date: Friday, 1/10

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt

Absolute Extrema and Constrained Optimization

Let s Get Series(ous)

BC Exam 1 - Part I 28 questions No Calculator Allowed - Solutions C = 2. Which of the following must be true?

MATH 1207 R02 FINAL SOLUTION

Applications of Integration

REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS

Exam A. Exam 3. (e) Two critical points; one is a local maximum, the other a local minimum.

. CALCULUS AB. Name: Class: Date:

36. Double Integration over Non-Rectangular Regions of Type II

See animations and interactive applets of some of these at. Fall_2009/Math123/Notes

MA CALCULUS II Friday, December 09, 2011 FINAL EXAM. Closed Book - No calculators! PART I Each question is worth 4 points.

t (hours) H t ( ) (percent)

The University of Sydney Math1003 Integral Calculus and Modelling. Semester 2 Exercises and Solutions for Week

APPLICATIONS OF INTEGRATION

Math 115 Final Exam December 19, 2016

Vectors, dot product, and cross product

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

BC Exam 2 - Part I 28 questions No Calculator Allowed. C. 1 x n D. e x n E. 0

Transcription:

Department of Mathematics, Computer Science, and Statistics loomsburg University loomsburg, Pennsylvania 17815 pplications of the Definite Integral Summary The new dvanced Placement Course Description now includes more general, conceptual applications of the definite integral. The usual geometric applications (area, volume, arc length) are still important and required, but other problems involve the integral as an accumulation function. The purpose of this presentation is to discuss some unusual, engaging geometric applications as well as different applications that require the definite integral. ddress: Stephen Kokoska Department of Mathematics, Computer Science, and Statistics loomsburg University 400 East Second Street loomsburg, P 17815 Phone: (570) 389-4629 Email: skokoska@planetx.bloomu.edu

Introduction Definite integrals aren t just for area any more! 1. ny definite integral may be interpreted as a signed area. 2. rea, volume, arc length, work, mass, fluid pressure, and accumulated financial value are quantities that may be calculated with definite integrals. 3. The most important components of these problems are constructing the correct integral and interpreting the results. Two views of the definite integral: When using the definite integral to solve various problems, it is useful to consider two different interpretations. 1. limit of approximating sums: The definite integral is formally defined as a limit of approximating sums. Using right sums b n f(x) dx = lim f(x i ) x i a n i=1 The integral adds up small parts, each of the form f(x i ) x i. 2. ccumulated change in an antiderivative: The Fundamental Theorem of Calculus states b where F is any antiderivative of f on [a, b]. a f(x) dx = F (b) F (a) The difference F (b) F (a) represents the accumulated change (or net change) in F over the interval [a, b]. To find the accumulated change in F over [a, b], integrate f, the rate function associated with F, over the interval [a, b]. Which view is better: sum or antiderivative? 1. Often we need to decide which view (or interpretation) of the definite integral is the correct one for a given application. It could be that an approximating sum is acceptable or that a precise symbolic antiderivative is more appropriate. 2. If an integral is presented in symbolic form, then antidifferentiation seems reasonable. 3. For data given graphically or in a table, approximating sums are the logical choice.

1. (Stewart) Find the area enclosed by the line y = x 1 and the parabola y 2 = 2x + 6. y 4 3 2 1-3 -2-1 1 2 3 4 5-1 -2 x

2. (Stewart) Estimate the area enclosed by the loop of the curve with parametric equations x = t 2 + t + 1 y = 3t 4 8t 3 18t 2 + 25. y 50 40 30 20 10-10 1 2 3 x

3. (Stewart) The graph below shows the velocity curves for two cars, and, that start side by side and move along the same road. What does the area between these two curves represent? Use Simpson s Rule to estimate this area. 60 50 40 Sfrag replacements 30 20 10 t 0 2 4 6 8 10 12 14 16 v 0 34 54 67 76 84 89 92 95 v 0 21 34 44 51 56 60 63 65 v V 0 13 20 23 25 28 29 29 30 (velocity in f/s) 2 4 6 8 10 12 14 16

4. (FDWK) The graph below shows the velocity in cm/sec of a particle moving along the x axis. The numbers in the graph are the areas of the enclosed regions. (a) What is the displacement of the particle between t = 0 and t = c? (b) What is the total distance traveled by the particle in the same time period? (c) pproximately where does the particle achieve its greatest positive acceleration on the interval [0, b]? (d) pproximately where does the particle achieve its greatest positive acceleration on the interval [0, c]? y 3 9 a b c x 5

5. (FDWK) For each positive integer k, let k denote the area of the butterfly shaped region enclosed between the graphs of y = k sin kx and y = 2k k sin kx on the interval [0, π/k]. The regions for k = 1 and k = 2 are shown in the figure below. (a) Find the area of the two figures (b) Set up a definite integral for k. Find 1. (c) Make a conjecture about the area k, k 3. (d) What is lim k? k Sfrag replacements y 2 1 y 4 3 2 π/8 π/4 3π/8 π/2 π/4 π/2 3π/4 π π/4 π/2 3π/4 π x 1 π/8 π/4 3π/8 π/2 x k = 1 k = 2

6. (FDWK) Population density measures the number of people per square mile inhabiting a given living area. The population density of a certain city decreases as you move away from the center of the city. The density at a distance r miles from the city center can be approximated by the function 10000(2 r). (a) If the population density tails off to zero at the edges of the city, what is the city radius? (b) thin ring of area around the center of the city has thickness r and radius r. If the ring is straightened out, it becomes a rectangular strip. What is the area of this region? (c) Explain why the population of the ring in part (b) is given by 10000(2 r)(2πr) r. (d) Find the total population of the city by setting up and evaluating a definite integral.

7. (FDWK) Let R be the shaded region in the first quadrant enclosed by the y axis and the graphs of y = sin x and y = cos x, as shown in the figure below. (a) Find the area of the region R. (b) Find the volume of the solid when R is revolved about the x axis. (c) Find the volume of the solid whose base is R and whose cross sections cut by planes perpendicular to the x axis are squares. 1 0.5 y π/8 π/4 3π/8 x

8. (FDWK) Find a formula for the area (x) of the cross sections of the solid perpendicular to the x axis. Find the volume of the resulting solid. The solid lies between planes perpendicular to the x axis at x = 1 and x = 1. In each case, the cross sections perpendicular to the x axis between these planes run from the semicircle y = 1 x 2 to the semicircle y = 1 x 2. (a) The cross sections are circular disks with diameters in the xy plane. (b) The cross sections are squares with bases in the xy plane.

(c) The cross sections are squares with diagonals in the xy plane. (The length of a square s diagonal is 2 times the length of its sides.) (d) The cross sections are equilateral triangles with bases in the xy plane.

9. (ETS) 3 dimensional object has square base, defined by 1 x 7 and 0 y 6. The height of the object at any point (x, y) in the base is given by h(x) = x 2 + 1. (a) pproximate the volume of this object by dividing the base into 3 strips of width 2 and using the height at the left edge of each strip. (b) Write a Riemann sum that approximates the volume of the object, dividing the base into n strips of width x = 7 1 and using the height at the left edge of each strip. n (c) Write an integral for the volume of the object. (d) Find the volume of the object. 40 20 0 2 4 6 0 2 4 6

10. (Consumer Surplus: Stewart) typical demand curve is shown in the figure below; a graph of p = p(x). Suppose X is the amount of the commodity currently available: P = p(x) is the current selling price. (a) Divide [0, X] into n subintervals, each of length x = X/n. Let x i = x i be the right endpoint of the ith subinterval. (b) If, after the first x i 1 units were sold, a total of only x i units had been available and the price per unit had been set at p(x i ) dollars, then the additional x units could have been sold. (c) The consumers who would have paid p(x i ) dollars placed a high value on the product; they would have paid what it was worth to them. (d) In paying only P dollars they have saved an amount of (savings per unit)(number of units) = [p(x i ) P ] x. (e) Considering similar groups of willing consumers for each of the subintervals and adding the savings, we get the total savings: n [p(x i ) P ] x. i=1 (f) s n this Riemann sum approaches the integral X 0 [p(x) P ] dx. y y Sfrag replacements P P X x X x

11. demand curve is given by p = 1000/(x + 20). Find the consumer surplus when the selling price is $20. 50 40 30 20 10 p 10 20 30 x

12. (lood Flow: Stewart) When we consider the flow of blood through a blood vessel, such as a vein or an artery, we may take the shape of the blood vessel to be a cylindrical tube with radius R and length l. ecause of friction at the walls of an artery or vein, the velocity v of the blood is greatest along the central axis of the tube and decreases as the distance r from the axis increases until v becomes 0 at the wall. The relationship between v and r is given by the law of laminar flow (Poisseuille): v = P 4ηl (R2 r 2 ) where η is the viscosity of the blood and P is the pressure difference between the ends of the tube. If P and l are constant, then v is a function of r with domain [0, R]. In order to compute the flux (volume per unit time), we consider smaller, equally spaced radii r 1, r 2,.... The approximate area of the annulus with inner radius r i 1 and outer radius r i is 2πr i r where r = r i r i 1. If r is small, then the velocity is almost constant throughout this annulus and can be approximated by v(r i ). So, the volume of blood per unit time that flows across the annulus is approximately (2πr i r)v(r i ) = 2πr i v(r i ) r and the total volume of blood that flows across a cross section per unit time is approximately n 2πr i v(r i ) r. i=1

The velocity and the volume per unit time increase toward the center of the blood vessel. The approximation gets better as n increases. Take the limit to obtain the exact value of the flux (or discharge), which is the volume of blood that passes a cross section per unit time:

13. The probability distribution for a continuous random variable X is given by a probability density function (pdf) such that the probability that X takes on values between a and b is the area under the curve between a and b. The failure time for a certain computer component is modeled by an exponential random variable with pdf given by { 0 if x < 0 f(x) = 3e 3x if x 0 (a) Find the probability the part lasts for at least 4 years. (b) Suppose the part lasts for 4 years, find the probability it lasts for at least another 4 years. 3 y 3 y Sfrag replacements 4 x 4 8 x

14. (Stewart) solid is generated by rotating about the x axis the region bounded by the x axis, the y axis, and the curve y = f(x), where f is a positive function and x 0. The volume generated by the part of the curve from x = 0 to x = b is b 2 for all b > 0. Find the function f.

15. (Stewart) high tech company purchases a new computing system whose initial value is V. The system will depreciate at the rate f = f(t) and will accumulate maintenance costs at the rate of g = g(t), where t is measured in months. The company wants to determine the optimum time to replace the system. (a) Let Find the critical number of C. (b) Suppose that C(t) = 1 t t V f(t) = 15 V 450 t 0 < t 30 0 t > 30 0 [f(s) + g(s)] ds and g(t) = V t2 12900, t > 0 Determine the length of time T for the total depreciation D(t) = initial value V. (c) Determine the absolute minimum of C on (0, T ]. t 0 f(s) ds to equal the (d) Sketch the graphs of C and f + g on the same coordinate system. Verify the result in part (a).

16. (Hughes Hallett) The density of oil in a circular oil slick on the surface of the ocean at a distance r meters from the center of the slick is given by ρ(r) = 50/(1 + r) kg/m 2. (a) If the slick extends from r = 0 to r = 10000 m, find a Riemann sum approximating the total mass of oil in the slick. (b) Find the exact value of the mass of oil in the slick. (c) Within what distance r is half the oil of the slick contained?

17. (Stewart) The hydrogen atom is composed of one proton in the nucleus and one electron, which moves about the nucleus. In the quantum theory of atomic structure, it is assumed that the electron does not move in a well defined orbit. Instead, it occupies a state known as an orbital, which may be thought of as a cloud of negative charge surrounding the nucleus. t the state of lowest energy, called the ground state, or 1s orbital, the shape of this cloud is assumed to be a sphere centered at the nucleus. This sphere is described in terms of the probability density function p(r) = 4 a 3 0 r 2 e 2r/a 0 r 0 where a 0 is the ohr radius (a 0 5.59 10 11 m). The integral P (r) = r 0 4 s 2 e 2s/a 0 ds a 3 0 gives the probability that the electron will be found within the sphere of radius r meters centered at the nucleus. (a) Sketch the graph of the probability density function p. (b) Determine the probability that the electron will be within the sphere of radius 4a 0 centered at the nucleus. (c) The most probable distance (expected value) of the electron from the nucleus in the ground state of the hydrogen atom is given by Find the value of E. E = 0 rp(r) dr