Recent Advancements In The [2+2+2] Cycloaddition. Brandon Dutcher January 17, 2007 Michigan State University

Similar documents
Advanced Organic Chemistry

Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage

Literature Report III

Electrophilic Carbenes

Additions to Metal-Alkene and -Alkyne Complexes

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans

Catalytic Asymmetric Intramolecular. Reactions

O + k 2. H(D) Ar. MeO H(D) rate-determining. step?

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Chem 253 Problem Set 7 Due: Friday, December 3, 2004

Strained Molecules in Organic Synthesis

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Highlights of Schmidt Reaction in the Last Ten Years

Development of Chiral Phosphine Olefin Ligands and Their Use in Asymmetric Catalysis

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Chiral Bronsted Acids as Catalysts

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

A Simple Introduction of the Mizoroki-Heck Reaction

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

Literature Report IX. Cho, S. H. et al. Org. Lett. 2016, 18, Cho, S. H. et al. Angew. Chem. Int. Ed. 2017, 56,

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Carbenes and Carbene Complexes I Introduction

Catalyzed Hydroamination Reactions Lutz Ackermann Georg-August-Universität Göttingen

Mechanism Problem. 1. NaH allyl bromide, THF N H

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Iridium-Catalyzed Hydrogenation with Chiral P,N Ligands

Zr-Catalyzed Carbometallation

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

Initials: 1. Chem 633: Advanced Organic Chemistry 2011 Final Exam

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Organocatalysis Enabled by N-Heterocyclic Carbenes

Chiral Brønsted Acid Catalysis

Diels-Alder Reaction

Shi Asymmetric Epoxidation

Wilkinson s other (ruthenium) catalyst

VI. Metal alkyls from oxidative addition / insertion

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

JACS ASAP Article: Published 3/12/08. Lei Jiao, Changxia Yuan and Zhi-Xiang Yu. Current Literature: 3/29/08. David Arnold

Intramolecular Huisgen-Type Cyclization of Platinum-Bound Pyrylium Ions with Alkenes and Subsequent Insertion into a Benzylic C-H Bond

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Enantioselective 1,1-Arylborylation of. Transfer with Pd Catalysis

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

ASYMMETRIC PALLADIUM-CATALYZED ALKENE CARBOAMINATION REACTIONS FOR THE SYNTHESIS OF CYCLIC SULFAMIDES

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

Chapter 5 Three and Four-Membered Ring Systems

Homogeneous Catalysis - B. List

Branched-Regioselective Hydroformylation with Catalytic Amounts of a Reversibly Bound Directing Group

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

Memory of Chirality: A Strategy for Asymmetric Synthesis

Cu- Catalyzed Synthesis of Diaryl Thioethers and S- Cycles by reaction of Aryl Iodides with Carbon Disul;ide in the Presence of DBU.

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

Total synthesis of Spongistatin

Literature Report 3. Rapid Syntheses of (+)-Limaspermidine and (+)-Kopsihainanine A. Date :

Journal Club Presentation by Remond Moningka 04/17/2006

a-aminoallylation of Aldehydes with Ammonia: Stereoselective Synthesis of Homoallylic Primary Amines

Short Literature Presentation 10/4/2010 Erika A. Crane

Total Syntheses of Minfiensine

Homogeneous Gold Catalysis - Unique Reactivity for Activation of C C Multiple Bonds

Literature Report. A 11-Steps Total Synthesis of Magellanine through a Gold(І)-Catalyzed Dehydro Diels-Alder Reaction

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation

Total Syntheses of Nominine

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Asymmetric Nucleophilic Catalysis

Use of Cp 2 TiCl in Synthesis

Organic Electron Donors

Carbonyl Ylide Cycloadditions

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Hypervalent (III) iodine chemistry

Organocopper Reagents

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

Short Access to (+)-Lupinine and (+)-Epiquinamide via Double Hydroformylation

Organic Cumulative Exam February 22, 2018

THE DIELS-ALDER REACTION

James D. White. A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab. Education Experience

Non-Metathesis Ruthenium-Catalyzed Reactions for Organic Synthesis

Catalytic Reactions in Organic Synthesis

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Regioselective Reductive Cross-Coupling Reaction

Corey-Bakshi. Bakshi-Shibata Reduction. Name Reaction Nilanjana Majumdar

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Elementary Organometallic Reactions

π-alkyne metal complex and vinylidene metal complex in organic synthesis

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003

Total Synthesis of ( )-Virginiamycin M2

Synthesis of Substituted 1,4-Dienes by Direct Alkylation of Allylic Alcohols Kolundzic, F.; Micalizio, G. C. J. Am. Chem. Soc. 2007, 129,

Transcription:

ecent Advancements In The [2+2+2] Cycloaddition Brandon Dutcher January 17, 2007 ichigan tate University

utline verview of [2+2+2] cycloaddition chanism of the [2+2+2] cycloaddition Issues with selectivity egioselectivity Chemoselectivity Enantioselectivity Conclusions Acknowledgments

utline verview of [2+2+2] cycloaddition chanism of the [2+2+2] cycloaddition Issues with selectivity egioselectivity Chemoselectivity Enantioselectivity Conclusions Acknowledgments

General Information [2+2+2] cycloaddition first reported by Bertholet in 1866 First transition metal catalyzed [2+2+2] cycloaddition by eppe et. al. in 1948. A multitude of metals have been employed on the catalysis of the [2+2+2] i, Co, Pd, Cr, h, Zr, b, Ir, Ta, and Ti The [2+2+2] cycloaddition has been found to have a wide range in synthesis

Important [2+2+2] Cycloadditions Bertholet First [2+2+2] cycloaddition Thermally induced reaction eppe Used the ickel complex i(p 3 ) 2 (C) 2 Between 25 C and 80 C 3 H 2 (P 3 ) 2 i(c) 2 benzene 65% H C 2 (P 3 ) 2 i(c) 2 benzene H H H H C 2 H =Bu Kotha,.; Brachmachary, E.; Lahiri, K. Eur. J. rg. Chem. 2005, 4741-4767 eppe, V.W.; chweckendeik, W.J. Justus Leibigs Ann. Chem. 1948, 560, 104-116

General [2+2+2] Cycloaddition Tolerant of many functional groups or catalyst Applicable to many π-bond containing systems Excellent for building aromatic systems benzene and pyridine moieties ymmetry favored exothermic ( H= -594 kj/mol) High temperature or catalyst required due to entropic factors Kotha,.; Brachmachary, E.; Lahiri, K. Eur. J. rg. Chem. 2005, 4741-4767

utline verview of [2+2+2] cycloaddition chanism of the [2+2+2] cycloaddition Issues with selectivity egioselectivity Chemoselectivity Enantioselectivity Conclusions Acknowledgments

π-bond ystem Approach To The tal Three possibilities for alignment Two possibilities give the 1,2,4 trisubstituted ring ne gives 1,3,5 trisubstituted ring tatistically slightly greater than a 2 to 1 mixture of 1,2,4- to 1,3,5-trisubstituted rings Kotha,.; Brachmachary, E.; Lahiri, K. Eur. J. rg. Chem. 2005, 4741-4767

tal-carbon Insertion chanism - - - Kotha,.; Brachmachary, E.; Lahiri, K. Eur. J. rg. Chem. 2005, 4741-4767

Diels-Alder Type chanism - - Kotha,.; Brachmachary, E.; Lahiri, K. Eur. J. rg. Chem. 2005, 4741-4767

utline verview of [2+2+2] cycloaddition chanism of the [2+2+2] cycloaddition Issues with selectivity egioselectivity ubstrate control eagent control Chemoselectivity Enantioselectivity Conclusions Acknowledgments

tatistical egioselectivity of [2+2+2] cycloaddition tatistically a slightly greater than a 2 to 1 1,2,4- to 1,3,5-trisubstitution ratio 1,2,4 tri-substituted only 1,2,4 tri-substituted only ixture of Both

Tethered Alkynes 1 2 =,, C(C 2 ) 2 etc. 1 3 3 3 3 2 Force regiochemistry of alkyne reaction peed up reaction intramolecular reaction Increase yield

acrocycles by [2+2+2] Cycloaddition ptol 15 mol% CpCo(C) 2 o-xylene 140 o C, 100 h ptol ptol meta para α,ω-diynes Yield % ta:para 42 1:1 57 1:1 55 1:7 Et 2 C Et2 C (CH 2 ) 7 (CH 2 ) 6 49 3:4 aryanoff, B.E.; et. al. J. Am. Chem. oc. 2006, 128, 3473-3485

acrocycle egioselectivity Tol- p-tol p-tol p-tol p-tol

utline verview of [2+2+2] cycloaddition chanism of the [2+2+2] cycloaddition Issues with selectivity egioselectivity ubstrate control eagent control Chemoselectivity Enantioselectivity Conclusions Acknowledgments

rtho/meta electivity f Tethered Alkynes 2 mol% [Ir(cod)Cl] 2 4 mole % ligand argon Entry 1 n-bu Ligand DPPE Conditions Benzene r.t 0.5 h Yield% 92 atio / 20/80 2 P P 2 DPPE 2 n-ct DPPE Benzene r.t 1 h 80 19/81 2 P 3 4 5 6 (CH 2 ) 3 H n-bu n-ct (CH 2 ) 3 H DPPE DPPF DPPF DPPF Benzene r.t 12 h Benzene reflux 1 h Benzene reflux 1 h Benzene reflux 2 h 75 84 83 68 18/82 88/12 86/14 84/16 Fe DPPF P 2 Takeuchi,.; et. al. J. rg. Chem. 2006, 71, 543-552

egioselective Pathways ta Pathway Ir Cl P P Ir P P rtho Pathway Ir Cl P A P B Ir Cl P B P A P B Ir Cl P A Takeuchi,.; et. al. J. rg. Chem. 2006, 71, 543-552

ubstrate Directed egioselectivity CpCo B C 2 H 2 (1atm) THF -40 o C to rt, 4 h (Pin)B CoCp B(Pin) A (Pin)B CoCp B(Pin) B Entry A/B (yield%) 1 2 tbu ipr - 2A/2B 1:0 (18) (Pin)B CoCp 3 4 5 C 6 H 13 CH 2 3A/3B 1.5:1 (93) 4A/4B 1:9 (84) 5A/5B 1:20 (92) B(Pin) =tbu 59% Aubert, C.; Vollhardt, K.P.C.; alacria,.; et. al. Angew. Chem. Int. Ed. 2005, 44, 7114-7118

1,2,4 Trisubstitution Using Titanium- Calixarene Complexes Catalyst a, toluene A B Entry 1 2 3 4 T p-tol, -dimethylamine A(Yield%) 2 3 <3 -- B(Yield%) 98 97 >97 100 Cl Cl Ti i Lapido, F.T.; zerov,.v.; Patrick, B.. J. Am. Chem. oc. 1999, 121, 7941-7942

1,3,5 Trisubstitution Using Titanium- Calixarene Complexes Cl Ti Cl Cl Ti Cl Catalyst a, toluene r.t., 20 h A Cl Cl Ti B 1: 65% yield ratio A:B 77:23 Cl Ti Cl 2: 95% yield ratio A:B 85:15 orohashi,.;yokomakura, K., Hattori, T, iyanao,. Tet. Lett. 2006, 47, 1157-1161

1,3,5 Trisubstitution Using Titanium- Calixarene Complexes (continued) Pr i i Pr i Pr i i H Pr i H Catalyst a, toluene r.t., 20 h A H B H 3: =: 93% yield ratio A:B 83:17 4: =CH 2 : 94% yield ratio A:B 1:99 5: =: 95% yield ratio A:B 32:68 6: =CH 2 : 85% yield ratio A:B 33:67 orohashi,.;yokomakura, K., Hattori, T, iyanao,. Tet. Lett. 2006, 47, 1157-1161

1,3,5 Trisubstitution Using Titanium- Calixarene Complexes (continued) 2.5 mol% 2 a, toluene A B Entry 1 2 3 4 5 4-Tol 4-CF 3 C 6 H 4 Pr ct T Temp ( o C) 23 23 23 23 50 Time (h) 3.5 3.5 15 15 15 Yield% 95 30 73 71 14 atio A:B 95:5 ~100:0 75:25 95:5 100:0 Cl Cl Ti Ti Cl Cl 2 orohashi,.;yokomakura, K., Hattori, T, iyanao,. Tet. Lett. 2006, 47, 1157-1161

Lapido catalyst vs. orohashi catalyst Cl Cl Ti Cl Cl Ti Ti Cl Cl i

Lapido catalyst vs. orohashi catalyst Cl Cl Ti Cl Cl Ti Cl Ti Cl i

1,2,4 regioselectivity Cl Cl Ti i Ti i Ti i orohashi,.;yokomakura, K., Hattori, T, iyanao,. Tet. Lett. 2006, 47, 1157-1161

1,2,4 regioselectivity (continued) Ti i Ti i

1,3,5 egioselectivity Ti Ti Ti Ti

1,3,5 egioselectivity (continued) Ti Ti Ti Ti

Explanation of egioselectivity Ti Ti

utline verview of [2+2+2] cycloaddition chanism of the [2+2+2] cycloaddition Issues with selectivity egioselectivity Chemoselectivity itriles, olefins and alkynes Isocyanates, isothiocyanates and carbondisulfide Enantioselectivity Conclusions Acknowledgments

lefin vs. itrile C 2 mol % Wilkinson's catalyst tbuh 82 o C, 6 h C 59% Grigg,.; cott,.; tevenson, P. J. Chem. oc. Perkin Trans I, 1988, 1365-1369 C 3 mol% [h(cod) 2 ]BF 4 / BIAP CH 2 Cl 2, rt-40 o C P 2 P 2 =C(C 2 ) 2 59% BIAP Tanaka, K.; uzuki,.; ishida, G. Eur. J. rg. Chem., 2006, 3917-3922

utline verview of [2+2+2] cycloaddition chanism of the [2+2+2] cycloaddition Issues with selectivity egioselectivity Chemoselectivity itriles, olefins and alkynes Isocyanates, isothiocyanates and carbondisulfide Enantioselectivity Conclusions Acknowledgments

Alkenyl Isocyanates and Alkynes [h(ethylene) 2 Cl] 2 (5 mol%) C P(4--C 6 H 4 ) 3 10 mol% toluene, 110 o C 1 2 3 4 Entry Yield% 3 Yield% 4 1 p-tol -- 63 2 p-c 6 H 4 -- 72 3 2-thiophenyl 34 38 4 3-furanyl 31 36 5 n-pr 60 trace 6 n-bu 70 12 7 (CH 2 ) 2 TB 56 Trace ovis, T.; Yu,.T. J. Am. Chem. oc. 2006, 128, 2782-2783

chanistic Pathways C Pathway B h h h h 1 2 1 h Pathway A h h h h 3 4 ovis, T.; Yu,.T. J. Am. Chem. oc. 2006, 128, 2782-2783

(+)-Lasubine II H H

(+)-Lasubine II H H 2 1 C [h(ethylene) 2 Cl] 2 (5 mol%) P(4--C 6 H 4 ) 3 10 mol% toluene, 110 o C 2 1 1 2 1 = H 2= ovis, T.; Yu,.T. J. Am. Chem. oc. 2006, 128, 2782-2783

Total ynthesis of (+)-Lasubine II H C H L= 5 mol% h(c 2 H 2 ) 2 Cl] 2 10 mol% L Toluene, 110 o C P 1) P 3, DEAD p-nitrobenzoic acid 2) K 2 C 3, H 64% yield Pd/C, H 2 H ovis, T.; Yu,.T. J. Am. Chem. oc. 2006, 128, 12370-12371 H H 62% yield 98% ee H 80% yield d.r.>20:1

Isocyanate electivity C 5 mol% Cp*uCl(cod) DCE, 90 o C Argon Entry Yield% 1 C(C 2 ) 2 87 2 C(C 2 ) 2 1-napthyl 79 3 C(C 2 ) 2 2-furyl 87 4 C(C 2 ) 2 Bn 93 5 C(C 2 ) 2 Pr 89 6 C(C 2 ) 2 Cy 85 7 58 8 60 Yamamoto, Y.; Takagishi, H. J. Am. Chem. oc. 2005, 127, 605-613

Isothiocyanate And Carbon Disulfide electivity 2 C 2 C C 10 mol% Cp*uCl(cod) dichloroethane, 90 o C Argon 2 C 2 C Entry 1 2 3 4 5 Cy C 2 Et C Yield% 88 50 71 76 54 Yamamoto, Y.; Takagishi, H. J. Am. Chem. oc. 2005, 127, 605-613

Isothiocyanate And Carbon Disulfide electivity (continued) Y C [h(cod)cl] 2 /2BIAP (5 mol% h) dichloroethane 80 o C, 12-20 h Y entry Y Yield% 1 C(C 2 ) 2 88 2 C(C 2 ) 2 (4-ClC 6 H 4 ) 89 3 C(C 2 ) 2 85 4 C(C=) 2 81 5 C(C=) 2 74 6 C(CH 2 ) 2 87 7 C(CH 2 ) 2 75 Tanaka, K.; Wada, A.; oguchi, K. rg. Lett. 2006, 8, 907-909

utline verview of [2+2+2] cycloaddition chanism of the [2+2+2] cycloaddition Issues with selectivity egioselectivity Chemoselectivity Enantioselectivity Conclusions Acknowledgments

Total Chirality Transfer H >95%ee () P 2 >95%ee () CpCo(C) 2 CpCo THF, hν H P quant. >95%ee alacria,.; Aubert, C.; Buisine,. ynthesis, 2000, 7, 985-989

Chirality Transfer chanism approach syn to H Cp Co P H Cp Co P approach anti to P = P H P H Co P CpCo Cp alacria,.; Aubert, C.; Buisine,. ynthesis, 2000, 7, 985-989

rtho-diarylbenzenes Ar 10 mol% [IrCl(cod)] 2 + 2(,)-DUPH Ar Ar P Ar xylene P Entry Ar Temp. ( C) Time (hours) Yield% %ee dl:meso A (,)-DUPH 1 2 A B 60 r.t. 0.5 18 82 68 90 87 5:1 >20:1 B D 3 4 5 C D E 60 60 60 0.3 0.3 0.5 86 >99 95 90 95 90 14:1 2:1 12:1 C E 2 Cl hibata, T.;Tsuchikama, K.; tsuka, Tetrahedron: Asym, 2006, 17, 614-619

dl rtho-dinaphthylbenzene tructure: ChemDraw 3D

Chiral Intermediate Ir P P Ir P P

Enantioselective Isothiocyanate Addition 2 C [h(cod)cl] 2 /2()-BIAP (10 mol% h) C dichloroethane 2 C 60 o C, 12 h 1 2 ()-(+)-3 98%, 61% ee 2 C 1 h 2 2 A 2 C B h h High %ee Low %ee 3 C 2 Tanaka, K.; Wada, A.; oguchi, K. rg. Lett. 2006, 8, 907-909

Chiral Anilides 3 10% 2 3 2 [h(cod) 2 ]BF 4 / 1 ()-xyl-biap 1 i 3 CH 2 Cl 2, rt 1 15-42 h 1 i 3 entry 1 2 3 Yield% %ee 1 C(C 2 ) 2 Bn 29 97 2 C(C 2 ) 2 79 97 3 2 (4-BrC 6 H 4 ) Bn 69 98 4 Et 62 96 Tanaka, K.; Takeishi, K.; oguchi, K. J. Am. Chem. oc. 2006, 128, 4586-4587

Chiral Anilide - electivity Ar 3 i Ar 3 10% 2 3 2 [h(cod) 2 ]BF 4 / 1 ()-xyl-biap 1 i 3 CH 2 Cl 2, rt 1 15-42 h 1 i 3 P P Ar h 1 3 1 Ar 2 1 1 Ar 3 i Ar h P P Ar 3 Ar 2 Tanaka, K.; Takeishi, K.; oguchi, K. J. Am. Chem. oc. 2006, 128, 4586-4587

Enantioselective 1,4-Diene-Ynes to Bridged Cyclohexenes [h(cod) 2 ]BF 4 / 1 tolbiap 10 mol% DCE, 60 o C * 1 2 * 1 2 2 Entry 1 Time (h) Yield% %ee 1 2 Ts Ts Bu H 48 6 46 83 >99 93 P(p-Tol) 2 P(p-Tol) 2 3 C(C 2 Bn) 2 H 48 76 93 4 24 40 92 tolbiap hibata, T.; Tahara, Y. J. Am. Chem. oc. 2006, 128, 11766-11767

Enantioselective 1,4-Diene-Ynes to Cyclohexadienes 1 [h(cod) 2 ]BF 4 / tolbiap 10 mol% DCE, 60 o C * 1 3 Entry 1 Time (h) Yield% %ee 1 2 Ts C(C 2 Bn) 2 H 12 6 91 80 99 90 P(p-Tol) 2 P(p-Tol) 2 3 48 55 94 tolbiap hibata, T.; Tahara, Y. J. Am. Chem. oc. 2006, 128, 11766-11767

1,4-diene-yne cyclization mechanism 1 1 olefin insertion 1 2 * * - 2 = H * 1 2 * 2 2 2 1 1 2 * 3 H H hibata, T.; Tahara, Y. J. Am. Chem. oc. 2006, 128, 11766-11767

Chiral pyrocycles From Diynes and Exo-thylene Compounds Entry =C(C 2 Bn) 2 Exo-methylene [h(cod){()-xylyl-binap}]bf 4 (5 mol%) dichloroethane, 80 o C, 30 min Yield% %ee Y n 1 94 99 2 93 98 P(3,5-ylyl) 2 P(3,5-ylyl) 2 3 88 97 ()-xylyl-binap 4 62 81 hibata, T.; Kuwata, Y.; Tsuchikama, K. J. Am. Chem. oc. 2006, 128, 13686-13687

Chiral Intermediate 3,5-xylyl 3,5-xylyl P h PH 3,5-xylyl 3,5-xylyl lylyx-5,3 lylyx-5,3 h 3,5-xylyl P P 3,5-xylyl =C(C 2 Bn) 2

utline verview of [2+2+2] cycloaddition chanism of the [2+2+2] cycloaddition Issues with selectivity egioselectivity Chemoselectivity Enantioselectivity Conclusions Acknowledgments

Conclusions [2+2+2] cycloaddition is a useful synthetic tool Wide scope of reaction highly functional group tolerant Excellent multi-component reaction Enantioselective and regioselective advancements increase synthetic value of [2+2+2] cycloaddition