TRANSPORT ANOMALIES OF THE STRANGE METAL: RESOLUTION BY HIDDEN FERMI LIQUID THEORY

Similar documents
5 Years (10 Semester) Integrated UG/PG Program in Physics & Electronics

!"#$%&'(&)*$%&+",#$$-$%&+./#-+ (&)*$%&+%"-$+0!#1%&

1. 4 2y 1 2 = x = x 1 2 x + 1 = x x + 1 = x = 6. w = 2. 5 x

MAT063 and MAT065 FINAL EXAM REVIEW FORM 1R x

I) Simplifying fractions: x x. 1) 1 1 y x. 1 1 x 1. 4 x. 13x. x y xy. x 2. Factoring: 10) 13) 12) III) Solving: x 9 Prime (using only) 11)

Quantum Mechanics: Foundations and Applications

Summer Review Packet. for students entering. IB Math SL

Skew-symmetric tensor decomposition

Summer Review Packet AP Calculus

CALCULUS AB/BC SUMMER REVIEW PACKET (Answers)

6. Multiple Reactions

Seventeen generic formulas that may generate prime-producing quadratic polynomials

Contents of the Supplemental Information

log 4 0.7m log m Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Module 1 Seismology Exercise Problems :

Interpolation and Polynomial Approximation I

Appendix A. Math Reviews 03Jan2007. A.1 From Simple to Complex. Objectives. 1. Review tools that are needed for studying models for CLDVs.

Factorizations of b n ±1, Up to High Powers. Third Edition. John Brillhart, D. H. Lehmer J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr.

SOP-C-120 Determination of ph

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2010.

MINISTRIES/DEPARTMENTS Internal and Extra-Budgetary Resources Total. Support Internal ECBs/ Others Total IEBR Resources Bonds Suppliers EBR

Final Analysis Report MIE 313 Design of Mechanical Components

Theory of Computation

Shareholding as a % of total no. of shares (calculated as per SCRR, 1957) Number of Voting Rights held in each class of securities

An energy and determinist approach of quantum mechanics

Performance of Feedback Control Systems

Atomic Data for Astrophysics. II. New Analytic Fits for Photoionization Cross Sections of Atoms and Ions

Moore-Penrose-invertible normal and Hermitian elements in rings

CHEMISTRY CLASS XII DESIGN OF THE QUESTION PAPER. 1. Weightage to Learning Outcomes S.NO. OBJECTIVE MARKS PERCENTAGE

Introduction to the Electronic Properties of Materials

EP elements in rings

Radiative Properties of Krypton Plasma & Emission of Krypton DPP Source in Water-Window Spectral Range

Does Pleasing Export-Oriented Foreign Investors Help Your. Balance of Payments? A General Equilibrium Analysis. (Available on Request Appendix)

Synthesis and Characterization of New 2,3-Disubstituted Thieno[3,4-b]pyrazines: Tunable Building Blocks for Low Band Gap Conjugated Materials

Chromatically Unique Bipartite Graphs With Certain 3-independent Partition Numbers III ABSTRACT

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2007.

Analytical formulas for calculating the extremal ranks and inertias of A + BXB when X is a fixed-rank Hermitian matrix

Design of invisibility cloaks for reduced observability of objects

BIOLOGY YEAR AT A GLANCE RESOURCE ( )

(iii) The elements arranged in the increasing order of their reactivity is: A. Na<Al<Zn<Ca B. Na>Al>Zn>Ca C. Na>Ca>Al>Zn D.

BIOLOGY YEAR AT A GLANCE RESOURCE ( ) REVISED FOR HURRICANE DAYS

Physics Curriculum. * Optional Topics, Questions, and Activities. Topics

Biswas Distribution. Deapon Biswas. Transport Officer, Private Concern, Chittagong, Bangladesh

Rapidity evolution of Wilson lines

MR. YATES. Vocabulary. Quadratic Cubic Monomial Binomial Trinomial Term Leading Term Leading Coefficient

AP Exercise 1. This material is created by and is for your personal and non-commercial use only.

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school.

APPENDIX A. Guangzhou weather data from 30/08/2011 to 04/09/2011 i) Guangzhou Weather Data: Day 242 (30/08/2011) Diffuse Solar Radiation (W/m2)

MATHEMATICAL MODELING OF DISBONDED COATING AND CATHODIC DELAMINATION SYSTEMS KERRY N. ALLAHAR

Summer Review Packet. for students entering. AP Calculus BC

REAL LINEAR ALGEBRA: PROBLEMS WITH SOLUTIONS

Welcome to AP Calculus!

Modern Statistical Mechanics Paul Fendley

Asset Backed Securities Corporation Home Equity Loan Trust Series, 2004-HE1

EXPERIMENTS IN PHYSICAL CHEMISTRY

xvi xxiii xxvi Construction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7

An Introduction to Probability Theory and Its Applications

The CHIANTI Atomic Database

Iv roman numerals. Cari untuk: Cari Cari

Microcosmo e Macrocosmo

Southington High School 720 Pleasant Street Southington, CT 06489

Calculating Radiative Recombination Continuum From a Hot Plasma

Factorization of weighted EP elements in C -algebras

Addition of n-butyllithium to an Aldimine: On the Role of Chelation, Aggregation, and Cooperative Solvation

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2005.

GATE Engineering Mathematics SAMPLE STUDY MATERIAL. Postal Correspondence Course GATE. Engineering. Mathematics GATE ENGINEERING MATHEMATICS

THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL FORM TWO SECONDARY EDUCATION EXAMINATION

Moral Hazard: Characterization of SB

The Coq Proof Assistant

c 2011 JOSHUA DAVID JOHNSTON ALL RIGHTS RESERVED

Classes of Linear Operators Vol. I

Analysis of Ordinary Differential Equations

Fe (III), Co (II), Ni(II), Cu(II) -3,3'-(5- -1,2,4- Co(II), Ni(II) 121

Topic 2060 Gibbs Energies; Salt Solutions; Aqueous Mixtures The solubilities of chemical substance j in two liquids l

ELECTROMAGNETIC WAVES

A Revised Denotational Semantics for the Dataflow Algebra. A. J. Cowling

Lecture 7. Please note. Additional tutorial. Please note that there is no lecture on Tuesday, 15 November 2011.

Partial isometries and EP elements in rings with involution

Quantum Tunneling and

Data collection. (Sheldrick, 2008a)] T min = 0.191, T max = Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = 1.

AND IMPACT OF E-JOURNALS IN THE UK

Honors ALG II Douglas Tisdahl, Instructor FIU

The WhatPower Function à An Introduction to Logarithms

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

MATH spring 2008 lecture 3 Answers to selected problems. 0 sin14 xdx = x dx. ; (iv) x +

Statistics 349(02) Review Questions

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2009.

Transient Analysis of Single Phase Transformer Using State Model

i) An article X is to be plated with Nickel. Answer the following questions: c) Write the reactions that take place at cathode and anode.

Methods for Marsh Futures Area of Interest (AOI) Elevation Zone Delineation

DETAILED CONTENTS PART I INTRODUCTION AND DESCRIPTIVE STATISTICS. 1. Introduction to Statistics

Real-Time Software Transactional Memory: Contention Managers, Time Bounds, and Implementations

CHEMISTRY 135 REVISION OF NAMES, FORMULAE AND EQUATIONS

SUMMER VACATION ASSIGNMENT (MAY- JUNE 2015) CLASS X

AP Chemistry. Syllabus and Essential Outcomes. Overview: Resources: Student Generated Resources:

Lycée des arts Math Grade Algebraic expressions S.S.4

CALCULUS AB/BC SUMMER REVIEW PACKET

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION AND VOCATIONAL TRAINING FORM TWO SECONDARY EDUCATION EXAMINATION, 2008.

TABLE OF CONTENTS ABSTRACT ABSTRAK ACKNOWLEDGEMENT LIST OF FIGURES LIST OF TABLES LIST OF SCHEMES CHAPTER 1 INTRODUCTION 1

INDIAN SCHOOL MUSCAT MIDDLE SECTION FIRST SUMMATIVE ASSESSMENT SOCIAL SCIENCE. Date: Max. Marks: 60

Science 9 Chemistry Objectives Greene s Study Guide. By the end of this unit, students are expected to be able to. -WHMIS -MSDS

Transcription:

TRANSPORTANOMALIESOFTHESTRANGEMETAL:RESOLUTIONBY HIDDENFERMILIQUIDTHEORY PhilipWAnderson,PhilipACasey,PhysicsDept,PrincetonUniversity ABSTRACT Thestrangemetalphaseofoptimally andover dopedcuprates exhibitsanumberofanomaloustransportproperties unsaturatinglinear Tresistivity,distinctrelaxationtimesforHall angleandresistivity,temperature dependentanisotropic relaxationtimes,andacharacteristiccrossoverfromsupposed FermiLiquidtolinear Tbehavior.Allreceivenaturalexplanations andquantitativefitsintermsofthehiddenfermiliquidtheory. INTRODUCTION Fromtheveryfirstobservationsofthepropertiesofthecuprate high Tc superconductorsitwasseenthatthepropertiesofthe normal metalabovetcwereunusual.thereareactuallytwounusualregimes:at lowerdoping,theredevelopsa pseudogap regimewhichismost plausiblydescribed i, ii asastatewithbcspairingbutwithout superconductingorder.(atstilllowerdopingsvariouscomplexphases withinhomogeneitiesand/oralternativeorderingsshowupalso,butwe willconsideronlyhomogeneous,translationallysymmetricphases.) Nearoptimalandabove(andalsoforTabovethepseudogapregime) thereisnoevidenceofpairinginthenormalstatebutinsteada characteristic strange metallicbehaviorextendingtoveryhigh temperaturesandenergies.mostobviousisthenotorious lineart resistivity,sometimesextrapolatingatt=0to0orlessandpersistingin itslinearityoftentowellabovethemottlimit.acleanercharacterization, ifavailable,isthe Drude like tailofthemid infraredconductivity.this fallsoffasanon integerpoweroffrequencyconsiderablylessthanthe ω 2 ofthedrudetheory. iii Veryearlyaheuristicforthe strange behaviorwasdevelopedasthe marginalfermiliquid theory iv andthat isoftenusedasadescriptiveterm,butthisheuristicdoesnotdescribe theinfraredresultcorrectly,noranyofthefurtherregularities. ThisauthoracknowledgessupportfromanNSERCPGS DFellowship.

Oftenathirdregimeispostulated,thatthestatereturnstothesimple Fermiliquidwhenoverdopedbeyondthesuperconductingdome,andfor lowert,acrossoverlinebeingdrawnupandtotheright,startingatthe edgeofthedome.wewillseethatthisismerelyacrossoverinthe transportproperties,andthatfundamentalpropertiesliketheoneparticlegreen sfunctionremainanomalousaccordingtoourtheory.no transitiontoatruefermiliquidhasbeenobserved,inouropinion. AstrikinganomalyofthestrangephaseistheT dependenthalleffect.it isbestdescribedasthereexistingarelaxationrateforthelarmor precession1/τhdistinctfromthatfortheresistivityandmoreresembling thatforafermiliquid. v Thepurposeoftherestofthispaperistoshowhowallofthese anomaliesfollowfromthetheoryofthesimplestpossiblemodel,the HubbardmodelwithastronginteractionUandnothingelse. THEHIDDENFERMILIQUID ThehiddenFermiliquid(HFL,hereafter)theory vi dependsonthe assumptionthatthehubbardon siteinteractionuissufficientlystrong thatitmustberenormalizedtoinfinitybythegros Ricecanonical transformation,leavingbehindasuperexchangeinteractionandthe kineticenergyprojectedonthelowerhubbardband.thatis,the effectivehamiltonianis H = " J ij S i # S j + P[ " t ij c * i,$ c j,$ ]P i, j P = '(1% n i& n i( ) i i, j,$ [1]. This t JHamiltonian isnotsimplyaconvenientalternativetothe Hubbardmodel,itreflectsthephysicalfactthatthelow energystateslive withinasubspacewhichisovercompletelydescribedbyasinglefull bandofelectronstates,becauseanti boundstates(doublons)havebeen ejectedoutofthetopoftheband.noconvergentperturbativeroute existstoconnectthelowstatestotheoriginalbandofthehubbard model,sincetheyexistwithinhilbertspacesofdifferentdimensionality.

ItisassumedthatinthestrangemetalregionJistooweak,becauseof competitionwithkineticenergy vii orthermalfluctuations,tocausepair condensationandananomalousself energy,andthereforeitsmajor effectcanbelumpedinwiththatofphononsasarenormalizationofthe kineticenergy.itwillalsocontributeelectron electronscatteringbutwe donotexpectittobeaslargeasthatduetotheprojection.thereforethe problemreducestotheeffectofgutzwillerprojectiononthe renormalizedkineticenergy,representedbyasimplefermigas,thatis, tothesecondterminh,soweconsiderthehamiltonian H P = P# t ij c i" *c j" P = # t ij c ˆ i" * ˆ i, j," ˆ c i" = c i" (1$ n i,$" ) i, j," c j" [2] whereweintroducetheprojectivequasiparticleoperatorsc hatandc* hat,whichautomaticallyenforcetheprojection. TheHFLAnsatzisthattheprojectedHamiltonian[2]operatinginthe unprojectedhilbertspaceofmany electronwavefunctionsgivesonethe low energyspectrumofafermiliquid essentially,thatithasasharp Fermisurfacewiththeusualanalyticitypropertiesoftheself energiesof thequasiparticlescandc*.theansatzcanbethoughtofastheresultofa Shankar style viii renormalizationbutcanreallybejustifiedonlyby demonstratingitsself consistency,andbytestingtowhatextentitagrees withexperiment;inbothrespectsitseemssofartohavepassedmuster. ButthequasiparticlesinthisHilbertspacearenotthetruequasiparticles ofthephysicalsystem:thesearetheprojectedquasiparticleswhichwe designatewith hats.weshallhereafterinventthename pseudoparticle todescribetheobjectscandc*whichobeyfermiliquid rulesbecausetheyoperateinthefullhilbertspace. ThepseudoparticleshaverenormalizedFermivelocitieswhichcanbe estimatedwiththegutzwillerapproximation v F,ren = v F,0 g t with g t = 2x /(1+ x), x being the [3] doping percentage. Theycanbeexpectedtohaveratherlargeelectron electronscattering proportionalto(k kf) 2.Intheonecaseinwhichwehaveaccurate information,optimally dopedbissco ix,thecoefficientis

2 2! 3! 1 # ee = CvF ( k! k F ), C = 3.6" 10 ( mev) [4] Straightforwardphasespaceconsiderationswould,asobservedby Drew, x suggestthatthecoefficientshouldbeoftheorder1/w,wbeing thebandwidth,butinthehalleffectcaseofinteresttohimheobserved thatitwasconsiderablylarger,andwealsofindthis:wisoforderafew hundredmevratherthanafewthousand.alittlethoughtpersuadesus thatthisshouldbethecase.thegutzwillerprojectionslowsthe coherentfermivelocityforanelectronwithspinnearthefermisurface, butitdoesnotmuchaffecttheincoherentmotionsofbareholes,which arejustasrapidasintheunprojectedstate forinstance,thesecond momentoftheoverallspectrumisunaffected. xi Thequasiparticlesare broadenedbytheseincoherentmotionsproportionatelytothissecond moment,roughly,soonemightexpectthatthebroadeningwouldbe proportionaltog 2 oraboutanorderofmagnitudelargerthanthenaïve estimate.thusourhiddenfermiliquidwilltendnottobeaverygood one,inthesensethatthecoherenceofitspseudoparticleslastsonlyout to200 300mevfromtheFermisurface.Weshouldalsonotethatthere isnoreasontoexpectthisscatteringmechanismtobeanisotropic. Letusnowconsiderthetransportpropertiesofsuchasystem:firstthe resistivity.aspwadiscussedinmybookandinrelatedpapers xii,thisis complicatedbybeingatwo stepprocess.themomentumisdeliveredto thesystemviaacceleratingthetruequasiparticles,iebydisplacingtheir Fermisurface.Butthescatteringwhichtransfersmomentumtothe latticeisthet 2 umklappscatteringofthepseudoparticleswhichwehave justbeendiscussing.gutzwillerprojectionisperfectlytranslationinvariant,sothattheprocessofdecayoftruequasiparticlesinto pseudoparticlesismomentum conservingandcannotleadtoresisivity byitself.itacts,instead,asabottleneck,anecessarystepwhichmust takeplacebeforethetruescatteringeventscanoperate.(aspwanoted inref7,thisisactuallythesamephysicswhichisinvolvedinphonon drag,butithinkthe bottleneck descriptionisclearer.)itistheslower ofthetwoprocesseswhichwillcontroltherate:theydonotadd accordingtomatthiessen srulebutaccordingtoitsinverse. Inpreviouswork(ref7)PWAcalculatedthedissipationduetothe quasiparticledecayprocessbyapproximatingthetwo particlegreen s

functionwhichappearsintheresponsefunctionbythesimpleproductof twoone particlefunctions,sinceitshouldbeagoodapproximationfor thequasiparticlestodecayindependently.inref4andrelatedpapers xiii wehaveshownthattheformofthesingle particlegreen sfunctionat absolutezeroisthesimpleexpression " G(r,t) = G 0 (r,t)g * (t) 1 % # & $ g' G * (t) = t ( p ; p = (1( x) 2 /4 [5] Herethe1appliesontheholeside,thegontheelectron.(ForfiniteT, presumably,thejumpsingularityofthecoefficientbecomesafermi function.)g0isthepseudoparticlegreen sfunction.inreference[4]we showedhowtogeneralize[5]tofinitetemperature.g0followsthe conventionalrules,whileaswepointedoutthere,thepowerlawing* wasshownbyyuval xiv tofollowthegeneralruleofbeingantiperiodicin imaginarytimebybecoming # "T & G *(t,t) = % ( $ sinh"tt ' p ) e *"ptt fortt >>1 [6] Thisisthesourceoftheubiquitous linear T decay.notethatthe relaxationrateisisotropic,butthemeanfreepathandthereforethe conductivitywillhavetheanisotropyofthefermivelocity,sincethe Fermimomentumisfairlyisotropic. AthighfrequenciesandhightemperaturestheT 2,ω 2 decayimpliedby [4]maybeassumedtobemorerapidthan[6]anddissipativeprocesses willbedominatedbythepowerlawdecayofquasiparticlesinto pseudoparticles.themoststraightforwardsituationistheinfrared conductivitywhichhaslongbeenknowntoobeyafrequencypowerlaw xv, " ir (#) $(i#) %1+2 p,[7] whichcaneasilybederivedfrom[5]. Timusk xvi hasexperimentallyestimatedthedependenceofthepower2p ondoping,whichweshowinfigure1;theagreementastomagnitudeis good,thedependenceondopingabitslow.butourpredictioniswithin thescatterofthedata.

AsfarasDCresistivityisconcerned,[6]accountsfortheobservedlinear dependenceontnearoptimaldoping.thetrendwithdopingisin agreementwiththeexpected(1 x) 2 dependenceofp,thoughinorderto bequantitativeonewouldneedanestimateofthecarrierdensitywhich ishardtocomeby. Inthesameregimeweseethestrikingphenomenonfirstobservedby Ong xvii ofaqualitativedifferencebetweentherelaxationtimeτas estimatedfromthedcconductivityusingσ=ne 2 τ/m,asopposedtousing thehallangleformulaθh=ωcτh.thelattershowsaconventionalfermi liquidtemperaturedependence T 2,whiletheresistivityislinearinTas wehavejustbeendescribing.inthehfltheorythisdifferenceisvery natural:thehallangleobservedisthatoftheunderlyingpseudoparticles ofthehfl.thelarmorprecessionwhichiscausedbythemagneticfield doesnotchangerelativeoccupanciesandthereforedoesnotdisturbthe equilibriumbetweenquasiparticlesandpseudoparticles:effectively,the magneticfieldcommuteswithgutzwillerprojection.thusthehalleffect andothermagneticresponses suchasthedehaas vanalfveneffect willbeidenticallythoseofthehfl,withnobottleneckcausedbythe decayofthequasiparticles.wehaveestimatedthemagnitudeofthehall angleandfoundthatitisreasonablyaccountedforbyourestimatesof Drew sw. Theonlyeffectofthestronginteractionwillbequantitative.AsI remarkedabove,thet 2 relaxationratewillbeunexpectedlylarge.we haveasyetbeenunabletogetadirectcomparisonbetweenthe relaxationratesasmeasuredfromarpesdataandthosemeasuredvia thehalleffect,becausethesamplesarenotcomparable;butthegeneral observationofdrew,thatthet 2 ratesarehigh,seemstobeborneout.a moreaccuratenumericalfitwouldinvolveaverycompletestudyofthe FermisurfacecurvatureandtheanisotropyoftheFermivelocity. Thefinaltopictotakeupistheresistivityintheregioncompletely beyondthe dome whichisnormallydesignatedas thefermi Liquid. xviii Indeed,theresistivityatlowtemperaturesseemstoobeythe T 2 law;butweseenoreasontosupposethattheeffectsofthestrong interactiondieoutsosuddenly.actually,theresistivityinthisregion seemstobenicelyexplainedintermsofthebottleneckeffect,alongwith theanisotropyofthehflconductivityduetotheanisotropyofvf.

Thetemperaturedependenceoftheresistivity,then,isobtainedby combiningthetwoconductivities. " HFL = ne 2 # /m = e2 h 2 2 k F # h m h = e2 E F W h T 2 [8] Herewehaveignorednumericalfactorsoforder1,realizingthatthey maybesubsumedintheparameterw,theeffectivebandwidthdiscussed underequation[4].conductivitiesare2 dimensional,persingleplane, andtisinenergyunits.theeffectiveconductivitycorrespondingtothe decayprocess[6]is " decay = ne2 v F # = e2 (hk F v F ) mv F ht = e2 h E F T (v F /v F 0 ) [9] HerevF0isthemaximumFermivelocity,whichgivesusanestimateof theoverallbandwidthef;thenwemakeexplicitthedependenceon Fermivelocitywhichwillindeedvaryquitestronglyfromthediagonal directiontothezonecorners(andintherightdirectiontoaccountforthe anisotropyobservedbyhussey xix ). Firstwewouldliketocomparethegeneraltemperaturedependenceof theresistivityimpliedby[8]and[9]withrelativelyearlymeasurements onoverdopedcuprates,wheretherewasnoattempttodisentanglethe anisotropy(refs.18, xx ).Inthiscase,leavingouttheanisotropicFermi velocity,theresistivityistheuniversalexpression " = h T 2 e 2 E F T + W (+" ) res [10] d(ln(" # " res ) /d lnt =1+ W /(T + W ) (somesamplesshowasmallresidualresistancewhichwewouldexpect tobesimplyadditivealamatthiessen srule,playingnoroleinthe bottleneck.)thefitoftheform(10)tothedataisquitesatisfactory.for instance,inref20(the 92version)thereisaplotoftheeffective exponentvst,whichforlowt,wherethedataismostaccurate,follows thesecondequationof(10)accurately.reference18fitsthedataover theentirerangewithat 3/2 powerlaw,whichaccordingto[10]should onlybeapproximate;indeed,wegetasaccurateafit,exceptathight, wherethemeasurementisquestionablebecauseofthermalexpansion.

Fig2showsourfittothedataofref18,andFig3thevaluesofthe parametersin[8]and[9]obtainedfromthefit,asafunctionofdoping. Thex dependenceoftheparameterwisexperimentallyevenstronger thanx 2.Oneaspectwhichwehavenottakenintoaccountisthat[8]is nottheconventionalconductivityofthehflaswouldappeariftheefieldacteddirectlyonit;thethreepseudoparticlesmustrecohereintoa quasiparticletointeractwiththefield.surelythiseffectworksinthe rightdirection. Reference[19]providesanevenmoreexplicitconfirmationofour theory.hussey sequation[3]showsthatheisempiricallydriventothe necessityofaddingconductivities[8]and[9],ratherthanresistivities, butunfortunatelynotinquitethecorrectform[10].hisworkusing angle dependentmagnetoresistancemeasurements xxi hasshown experimentallythatintheoptimal tooverdopedregime,therearetwo scatteringmechanismsforeverymomentumonthefermisurface(not hot and cold spots)withdistincttemperatureandangledependences, andasipointedoutabovethetheoryprovidespreciselythose temperaturedependencesandthecorrectsignandmagnitudeforthe anisotropyofthelineartterm. Inaveryrecentpaper, xxii thesamegrouphaverevisitedthedopingrange ofreference18,butoveraveryrestrictedtemperaturerange.theyhave usedalargemagneticfieldtodestroysuperconductivitywhenpresentso havealowerminimumtemperature.theirfittingfunctionispurely empiricalandhasmoreparameterstoadjustthan[10],andinfactwe canachieveanequallevelofagreementovertheirlimitedtemperature range(seefig4andparametersinfig3). CONCLUSION TheHiddenFermiliquidmethodseemswellonthewaytoprovidinga completeresolutionoftheanomalouspropertiesofthe strangemetal phaseofthecupratesuperconductors.complex seemingastheyare, theseseemtofollowfromtheslightestpossiblegeneralizationofthe conventionalfermiliquidtheoryofmetals,namelytheinclusionofthe projectiveconstraintmadenecessarybytheexistenceofstrongon site electron electroninteractions.thissimplecase,farfrombeingan impenetrablemysteryasitissooftenpicturedtobe,shouldprovidethe

canonicalmodelformorecomplexexamplesofstronglyinteracting electronicsystems. Weshouldacknowledgeextensivediscussionoftheexperimentaldata withnpong. i PWAnderson,cond mat/0603726 ii YayuWang,PhDThesis,PrincetonUniversity,Dept.ofPhysics(2004). iii ZSchlesingerandRLCollins,PhysRevLett65,801(1990);DVanderMarel,HJA Molegraaf,etal,Nature425,271(2003);seealsorefs12,14,15 iv CMVarma,PBLittlewood,SSchmitt Rink,EAbrahams,andAERuckenstein, PhysRevLett63,1996(1989) v TRChien,ZZWang,andNPOng,physRevLett67,2088(1991);PWAnderson, PhysRevLett67,2092(1991);seealsoJMHarris,NPOngetal,PhysRevLett75, 1391(1995) vi PWAnderson,PhysRevB78,174505(2008);cond mat/0709.0656 vii PWAnderson,cond mat/0108522 viii RShankar,RevsModPhys66,129(1994) ix PACasey,JDKoraleketal,NaturePhys4,210(2008);cond mat/0707.3137 x ATZheleznyak,VYakovenko,HDennisDrew,PhysRevB57,3089(1998) xi WFBrinkmanandTMRice,PhysRevB2,1502(1970) xii PWAnderson, TheTheoryofSuperconductivityintheHighTcCuprates,Ch6, PrincetonUPress(1997);MOgataandPWAnderson,PhysLett70,3087(1993) xiii PWAnderson,PhysRevB78,175408(2008) xiv GYuvalandPWAnderson,PhysRevB1,1522(1970) xv AElAzrak,NBontemps,etal,JAlloys&Compds195,663(1993) xvi JHwang,TTimusk,GDGu,cond mat/0607653(2006);jphyscondmatt19, 125208(2007) xvii TRChien,ZZWang,andNPOng,PhysRevLett67,2088(1991) xviii butseehtakagi,bbatlogg,etal,physrevlett69,2975(1992) xix NEHussey,cond mat/0804.2984;subtojphyscondmat xx YShimakawa,JDJorgensen,TManako,YKubo,PhysRevB50,16033(1994);T Manako,YKubo,YShimakawa,PhysRevB46,11019(1992) xxi JMAbdel Jawad,NEHussey,etal,NaturePhys2,821(2006) xxii RACooper,NHussey,etal,Science323,603(2009) xxiii PWAnderson,NaturePhysics2,626 630(2006).

Figure 1. Infrared spectrum exponents for Bi2Sr2CaCu2O8+ δ. Data points fromref. 16 withlinearbestfitofref.16(redline) andpredicted value fromref.23(blueline).thepredictedexponentstemsfromσ(ω)=(iω) 2+γ withγ=1+2p,andpisgivenineq.[5].

Figure2.ComparisonofthepolycrystallineLa2 xsrxcuo4resistivity(data points) extracted from Ref. 18 with the bottleneck resistivity form of Eq.[10].Insetslowsthelowtemperatureregionindetail.

Figure3a. Figure3b.

Figure3c. Figure 3. Parameters of the bottleneck resistivity form of Eq.[10] for comparisons in Fig. 2 and Fig. 4. The three parameters are (a) the bandwidth,(b)apre factorforthefirsttermin[10],and(c)theresidual resistivity.

Figure 4. Comparison of the single crystal La2 xsrxcuo4 resistivity (data points) extracted from Ref. 22 with the bottleneck resistivity form of Eq.[10].FunctionalparameterscanbefoundinFig.3.Insetslowsthelow temperature region in detail. The low temperature resistivity data was determined by Hussey, et al. by suppressing superconductivity with a largemagneticfieldandthenextrapolatingthehighfieldresistivitydata tozerofield.