Neutrinos as Probes of new Physics

Similar documents
Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Status and prospects of neutrino oscillations

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

Neutrinos as a Unique Probe: cm

Neutrino Physics part2

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov


Neutrinos: status, models, string theory expectations

Future Reactor Expts. The Challenge. DoubleChooz. In France. Stanley Wojcicki. Far Detector m ~50 events/day

Sterile Neutrinos as Dark Matter. Manfred Lindner

Overview of cosmological constraints on neutrino mass, number, and types

Neutrino masses respecting string constraints

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

- Future Prospects in Oscillation Physics -

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Neutrino Anomalies & CEνNS

Particle Physics WS 2012/13 ( )

Updating the Status of Neutrino Physics

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Neutrinos and Astrophysics

NEUTRINO PROPERTIES PROBED BY LEPTON NUMBER VIOLATING PROCESSES AT LOW AND HIGH ENERGIES *

1 Neutrinos. 1.1 Introduction

University College London. Frank Deppisch. University College London

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Particle Physics: Neutrinos part II

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst.

Neutrino Oscillations And Sterile Neutrinos

R. D. McKeown. Jefferson Lab College of William and Mary

Updated three-neutrino oscillation parameters from global fits

On Minimal Models with Light Sterile Neutrinos

The NOνA Experiment and the Future of Neutrino Oscillations

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

Neutrino oscillation phenomenology

Neutrino Physics: Lecture 12

The future of neutrino physics (at accelerators)

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Status of neutrino mass-mixing parameters and implications for single and double beta decay searches

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

Frontiers in Neutrino Physics

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Neutrinos and Fundamental Symmetries: L, CP, and CP T

NEUTRINOS II The Sequel

The Standard Model of particle physics and beyond

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

A Novel and Simple Discrete Symmetry for Non-zero θ 13

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Is the Neutrino its Own Antiparticle?

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

A model of the basic interactions between elementary particles is defined by the following three ingredients:

Is the Neutrino its Own Antiparticle?

Long & Very Long Baseline Neutrino Oscillation Studies at Intense Proton Sources. Jeff Nelson College of William & Mary

Neutrino physics. Evgeny Akhmedov. Max-Planck-Institut für Kernphysik, Heidelberg & Kurchatov Institute, Moscow

Neutrino Oscillations

Overview of Reactor Neutrino

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrinos Lecture Introduction

Sterile Neutrinos in July 2010

NEUTRINOS. Concha Gonzalez-Garcia. San Feliu, June (Stony Brook-USA and IFIC-Valencia)

Chart of Elementary Particles

Relic Supernova νʻs. Stanley Wojcicki

Other Physics with Geo-Neutrino Detectors

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti

Heavy Sterile Neutrinos at CEPC

Grand Unification Theories

Neutrino Phenomenology. Boris Kayser ISAPP July, 2011 Part 1

Neutrino Masses and Conformal Electro-Weak Symmetry Breaking

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Higgs Bosons Phenomenology in the Higgs Triplet Model

Overview of mass hierarchy, CP violation and leptogenesis.

The Standard Model and beyond

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory --

Beyond Standard Model Effects in Flavour Physics: p.1

Neutrino Oscillation and CP violation

Marco Drewes, Université catholique de Louvain. The Other Neutrinos IAP Meeting. Université libre de Bruxelles

Neutrino Physics: Lecture 1

Cosmic Neutrinos. Chris Quigg Fermilab. XXXV SLAC Summer Institute Dark Matter 10 August 2007

Neutrino Masses and Mixing

Comparisons and Combinations of Oscillation Measurements

arxiv: v1 [hep-ph] 6 Mar 2014

Particle Physics WS 2012/13 ( )

Proton Decay and GUTs. Hitoshi Murayama (Berkeley) Durham July 20, 2005

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006

The Yang and Yin of Neutrinos

Chapter 2 Neutrino Oscillation

Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration

New Results for ν µ ν e oscillations in MINOS

Investigating Beyond Standard Model

The Nature and Magnitude of Neutrino Mass

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

The Leptonic CP Phases

Transcription:

Neutrinos as Probes of new Physics Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg

The Birth of the Neutrino energy-momentum conservation: postulate new particle invisible, since Q=0 spin ½,... W. Pauli: Letter to DPG meeting in Tübingen happy 80 th birthday" Electron undetectable! 2

New Physics: Neutrino Sources Sun Cosmology Atmosphere Astronomy: Supernovae GRBs UHE ν s Reactors Accelerators Earth β-sources 3

Physics Beyond the Standard Model QED QCD SM" U(1) em SU(3) C SU(3) C x SU(2) L x U(1) Y" Success story of d=4 renormalizable " QFTs" Theoretical reasons for BSM: SM does not exist without cutoff (triviality) Higgs-doublett = only simplest extension Gauge hierarchy problem Gauge unification, charge quantization Strong CP problem Unification with gravity Why: 3 generations, which representations Many parameters (9+? masses, 4+? mixings) TOE solving all problems does not (yet) exist solve some problems increasing levels of speculation: 1) new fields 2) extend gauge group 3) new concepts (SUSY,...) 4) wild speculations Experimental BSM facts: Electro weak scale << Planck scale Gauge couplings almost unify Neutrinos have masses & large mixings Baryon asymetry of the Universe Dark Matter, Dark Energy, few > 2σ hints? BSM from a neutrino perspective neutrino masses discovered" M. Lindner Recontres de Blois, June 2011 4

Fermion Masses in the Standard Model QM relativistic QM: Schrödinger Dirac eqn." Ψ = (Ψ 1,Ψ 2,Ψ 3,Ψ 4 ) = Ψ L + Ψ R = L + R ; L/R = P L/R Ψ Fermion Mass terms: _" _" mψψ = m(l R + R L)" " mass term = L-R bridge" SM: L = doublet under SU(2) L ; R = singlet of SU(2) L" no explicit (Dirac) mass terms allowed in SM!" solution: Higgs mechanism: glφr gvlr = M L R" _" _" _" Majorana mass terms for uncharged fields: M R c R" _" 5

New Physics: Neutrino Mass Terms 1) Simplest possibility: add 3 right handed neutrino fields ν L g N ν R x <φ> = v ν R x ν R Majorana L / c c like quarks and charged leptons Dirac mass terms (including NMS mixing) New ingredients: 1) Majorana mass (explicit) 2) lepton number violation 6x6 block mass matrix see-saw M R : 3 heavy + 3 light ν s NEW ingredients, 9 parameters SM+ M. Lindner Recontres de Blois, June 2011 6

2) Maybe 3+N right handed neutrino fields (6+N) x (6+N) mass matrix how many of the 6+N eigenvalues are light (also for N=0) 3) new: scalar tripelts (3 L ) ν L ν 3" L or fermionic 1 L or 3 L x x left-handed Majorana mass term: ν L 1,3" ν L x x _ M L LL c 4) Both ν R and new singlets / triplets: see-saw type II, III m ν =M L - m D M R -1 m D T M. Lindner Recontres de Blois, June 2011 7

5) Higher dimensional operators: d=5, _ M L LL c 6) Radiative neutrino mass generation 7-N) SUSY, extra dimensions, M. Lindner Recontres de Blois, June 2011 8

Other effective Operators Beyond the SM effects beyond 3 flavours Non Standard Interactions = NSIs effective 4f opersators integrating out heavy physics (c.f. G F M W ) ν α ν β f f Grossman, Bergmann+Grossman, Ota+Sato, Honda et al., Friedland+Lunardini, Blennlow +Ohlsson+Skrotzki, Huber+Valle, Huber+Schwetz+Valle, Campanelli+Romanino, Bueno et al., Barranco+Miranda+Rashba, Kopp+ML+Ota, M. Lindner Recontres de Blois, June 2011 9

3 Light Neutrinos (...assumed) Mass & mixing parameters: m 1, Δm 2 21, Δm2 31, sign(δm2 31 ) diag(e iα, e iβ,1) questions: Dirac / Majorana ν e ν µ ν τ mass scale: m 1 mass ordering: sgn(δm 2 31 ) how small is θ 13, θ 23 maximal? leptonic CP violation 3 flavour unitarity? why 3 generations, why d=4, normal inverted hierarchical or degenerate M. Lindner Recontres de Blois, June 2011 10

Suggestive Seesaw Features QFT: natural value of mass operators scale of symmetry m D ~ electro-weak scale M R ~ L violation scale? embedding (GUTs, ) See-saw mechanism (type I) m ν =m D M R -1 m D T m h =M R Numerical hints: For m 3 ~ (Δm 2 atm )1/2, m D ~ leptons M R ~ 10 11-10 16 GeV ν s are Majorana particles, m ν probes ~ GUT scale physics! smallness of m ν high scale of L, / symmetries of m D,M R M. Lindner Recontres de Blois, June 2011 11

2nd Look Questions Quarks & charged leptons hierarchical masses neutrinos? log (m/gev) d u e ν 1 c s µ degenerate ~1eV ν 2 ν 3 hierarchical 0.05eV, 0.005eV ~0.005eV t b τ Quarks and charged leptons: m D ~ H n ; n = 0,1,2 H > 20...200 Neutrinos: m ν ~ H n H < ~10 See-saw: m ν = -m DT M R -1 m D 1. 2. 3. generation H ~10 >20? >20» less hierarchy in m D or corr. hierarchy in M R? theoretically not connected!» other version of see-saw? type II, III,?» Dirac masses? M. Lindner Recontres de Blois, June 2011 12

Overview of Neutrino Mass Knowledge neutrino mass scale <23 ev ν oscillations were observed finite mass splittings finite mass SN1987A <~0.2 ev <2.2 ev tritium endpoint Mainz & Troitsk 0νββ if neutrino is Majorana < ~0.3 ev cosmology ~ degenerate ~ 0.2 ev KATRIN? ~ 0.05 ev hierarchical different types of masses / different systematics M. Lindner Recontres de Blois, June 2011 13

Four Methods of Mass Determination kinematical lepton number violation Majorana nature astrophysics & cosmology oscillations 14

Kinematical Mass Determination Future: KATRIN 0.25 ev c.f. comological bounds 15

Four Methods of Mass Determination kinematical lepton number violation Majorana nature astrophysics & cosmology oscillations 16

Double Beta Decay: Mass Parabolas S odd-odd even-even Q 76 Zn β - 76 Ga β + 76 Rb β - 76 Br 76 Kr EC 76 Ge 76 As β - β + 76 Se normal β-decay energetically forbidden for 76 Ge double beta decay allowed even-even nuclei 30 31 32 33 34 35 36 37 Z 17

0νββ Decay Kinematics 2νββ decay of 76 Ge observed: τ =1.5 10 21 y 0νββ decay 2νββ decay Majorana ν 0νββ decay warning: other lepton number violating processes may exist signal at known Q-value 2νββ background (resulution) nuclear backgrounds use different nuclei 18

Relating Rates / Lifetimes to Neutrino Masses rate of 0νββ phase space nuclear matrix elements effectivemajorana neutrino mass 1/τ = G(Q,Z) M nucl 2 <m ee > 2 nuclear matrix elements: virtual excitations of intermediate states Fäßler et al., p p 0νββ 0 + 1 + 2 - k k k e 1 e 2 ν n n E k E i 0 + 0 + progress in TH errors reduced uncertainties 19

Neutrino-less Double β-decay ν Majorana ν 0ν2β decay - < 0.35 ev? Heidelberg-Moscow experiment free parameters: m 1, sign(δm 2 31 ), CP-phases Φ 2, Φ 3 20

Claim of part of the original Heidelberg-Moscow experiment cosmology tension aims of new experiments: test HM claim (Δm 312 ) 1/2 ~ 0.05eV + errors reach 0.01eV CUORE GERDA phases I, II, (III) Recent WMAP 5year data Comments: m 1 [ev] cosmology: limitation by systematical errors ~another factor 5? 0νββ nuclear matrix elements ~factor 1.3-2 theoretical uncertainty in m ee Δm 2 > 0 allows complete cancellation 0νββ signal not guaranteed 0νββ signal from *some other* new BSM lepton number violating operator very promising interplay of neutrino mass determinations, cosmology, LHC, LVF experiments and theory 21

GERDA filled, commissioning with non-enriched strings start of data taking with enriched Ge now!" M. Lindner Kolloquium Dresden, 21.6.2011 22

Four Methods of Mass Determination kinematical lepton number violation Majorana nature cosmology & astrophysics oscillations 23

Summary of Neutrinos & Cosmology Dark Matter ~ 22% & Dark Energy 73% mass of all neutrinos: 0.001 < Ω ν < 0.02 baryonic matter Ω Β ~ 0.04 Neutrino mass contribution: possibly as big as all baryonic matter >> visible matter much more COLD dark matter & dark energy neutrinos are still an important hot dark matter component Comological impact of neutrinos: - hot component in structure formation: 330ν/cm 3 x mass - Big Bang Nuklueosynthesis - Baryon asymmetry Leptogenesis -... 33 24

Four Methods of Mass Determination kinematical lepton number violation Majorana nature astrophysics & cosmology oscillations 25

Neutrino Oscillations ν µ ν µ Wahrscheinlichkeit P ν µ ν e" sin 2 (2θ) L osc = 4π E/Δm 2 P(ν µ ν e ) = sin 2 (2θ) sin 2 (Δm 2 x L/4E) P(ν µ ν µ ) = 1 - P(ν µ ν e ) Distanz L 26

Atmospheric Oscillations @SuperK 27

KamLAND tests solar Oscillations 26 reactors at L~180km; 80GW th = 7% of World reactor power! KamLAND flux ~1/L 2 + oscillations?" Kamioka Contribution from overseas Korea 2.46% Other countries 0.7% tests solar oscillations with reactor anti-ν s 28

Solar ν s: NC, CC, ES Rates from SNO SK ES 68% CL SNO NC 68% CL SNO CC 68% CL SNO ES 68% CL SSM 68%CL Φ CC = Φ e Φ ES = Φ e + 1/6 Φ µτ Φ NC = Φ e + Φ µ + Φ τ Clear proof of flavour conversion Independent of SSM test of SSM! No conversion and conversion to sterile ν s excluded by many sigma ~ no L/E dependence 29

Status of Neutrino Oscillations solar: GALLEX/GNO SK, SNO Reactors: KAMLAND improved result Beams: K2K MINOS OPERA described by ~ two independent 2x2 oscillations surprise: large mixings! Δm 2 21 = (7.9+0.3) * 10-5 ev 2 tan 2 θ 12 = 0.39 + 0.05 Δm 2 31 = (2.4+0.3) *10-3 ev 2 tan 2 θ 23 = 1.0 + 0.3 sin 2 2θ 13 < 0.16 Chooz atmospheric: Superkamiokande LSND? MiniBooNE - LSND not confirmed! 3+2 scenarios? new anomaly - upturn at low E? 30

Future Precision Oscillation Physics Precise measurements 3f oscillation formulae = x Majorana- CP-phases θ 23 S 13 3 flavour effects θ 12 CP phase δ Aims: improved precision of the leading 2x2 oscillations detection of generic 3-neutrino effects: θ 13, CP violation Complication: Matter effects effective parameters in matter expansion in small quantities θ 13 and a = Δm 2 sol / Δm2 atm Burguet-Castell et al., Akhmedov et al. 31

Future Precision with Reactor Experiments identical detectors many errors cancel - - - 3 flavour effect no degeneracies no correlations no matter effects E=4MeV 2km 4km 40km 80km Double Chooz Daya Bay Reno Angra clean & precise θ 13 measurments 32

Double Chooz sin 2 2θ 13 sensitivity Now - Chooz < 0.20 Double Chooz < 0.02 Triple Chooz? < 0.008 33

Double Chooz and Triple Chooz FD only sin 2 2θ 13 sensitivity Chooz limit < 0.20 Double Chooz < 0.02 Triple Chooz? < 0.008 Double Chooz! very soon operational addition of ND improving Chooz bound! 2-3 months of data 2 nd FD very promising, " especially if hints for finite sin 2 θ 13 correct " 34

Other coming Oscillation Experiments RENO in Korea Daya Bay components + NOvA construction started T2K neutrino beamline started operation luminosity M. Lindner Kolloquium Dresden, 21.6.2011 35

T2K Status 1 st T2K run (Jan.-June 2010) ~50 kw average 3.23 10 19 protons for analysis 2 nd run since mid Nov. ramp up to 115 kw Aim 150 kw 10 7 s by July 2011 10 1 st run after analysis: sensitivity to sin 2 2θ 13 0.05 @ 90%CL potential for reactor F(sin 2 2θ 13 ) / beam interplay F(sin 2 2θ 13, CP phase δ) 36 36

T2K Evidence Expected Signal in DC Last week: ~ 2.5σ evidence for finite θ 13" exciting for Double Chooz (data taking since March)" 37

θ 13 Now and in the Future MINOS OPERA Double Chooz T2K NOνA Reactor II NUE+FPD proton driver? β-beams ν factory range unknown CP phase synergies w. reactor GLoBES" 38

Conclusion Neutrinos test & constrain new physics in many ways! important information potential for surprises 39