Electromagnetic Induction

Similar documents
ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

Electricity & Optics

Lecture 10 Induction and Inductance Ch. 30

Chapter 21 Magnetic Induction Lecture 12

AP Physics C - E & M

Magnetic flux. where θ is the angle between the magnetic field and the area vector. The unit of magnetic flux is the weber. 1 Wb = 1 T m 2.

Electromagnetic Induction and Faraday s Law

LECTURE 17. Reminder Magnetic Flux

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

PHYS 202 Notes, Week 6

Electromagnetic Induction Practice Problems Homework PSI AP Physics B

Induction and Inductance

Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1

Chapter 23: Magnetic Flux and Faraday s Law of Induction

AP Physics C Unit 11: Electromagnetic Induction. Part 1 - Faraday s Law and Lenz s Law

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger

Electromagnetic Induction (Chapters 31-32)

Induction and inductance

Chapter 30. Induction and Inductance

Last time. Ampere's Law Faraday s law

October 23. Physics 272. Fall Prof. Philip von Doetinchem

Chapter 23 Magnetic Flux and Faraday s Law of Induction

FARADAY S AND LENZ LAW B O O K P G

Faraday s Law; Inductance

Electromagnetic Induction

Recap (1) Maxwell s Equations describe the electric field E and magnetic field B generated by stationary charge density ρ and current density J:

Physics 2020 Exam 2 Constants and Formulae

PHY101: Major Concepts in Physics I

Our goal for today. 1. To go over the pictorial approach to Lenz s law.

Chapter 12. Magnetism and Electromagnetism

Physics 9 Wednesday, April 2, 2014

Faraday's Law ds B B G G ΦB B ds Φ ε = d B dt

Physics 122 Class #29 (4/30/15) Announcements. Faraday's Law Flux Solenoids Generators

Demo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions

Chapters 34,36: Electromagnetic Induction. PHY2061: Chapter

AP Physics Electromagnetic Wrap Up

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law

Faraday s Law of Electromagnetic Induction

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

General Physics (PHY 2140)

Induction and Inductance

Slide 1 / 26. Inductance by Bryan Pflueger

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS

AP Physics 2 Electromagnetic Induction Multiple Choice

Physics 6B Summer 2007 Final

Magnetism. and its applications

Can a Magnetic Field Produce a Current?

FXA 2008 Φ = BA. Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux :

Can a Magnetic Field Produce a Current?

Chapter 5. Electromagnetic Induction

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s)

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law

Chapter 22. Induction

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

Chapter 5: Electromagnetic Induction

LECTURE 23 INDUCED EMF. Instructor: Kazumi Tolich

PHYSICS 1B. Today s lecture: Motional emf. and. Lenz s Law. Electricity & Magnetism

Last Homework. Reading: Chap. 33 and Chap. 33. Suggested exercises: 33.1, 33.3, 33.5, 33.7, 33.9, 33.11, 33.13, 33.15,

Physics 1402: Lecture 19 Today s Agenda

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS

AAST/AEDT. Electromagnetic Induction. If the permanent magnet is at rest, then - there is no current in a coil.

PHYS102 Previous Exam Problems. Induction

Chapter 30. Induction and Inductance

General Physics II. Electromagnetic Induction and Electromagnetic Waves

iclicker: which statements are correct?

Physics 30 Lesson 22 The Generator Effect

Chapter 30 Inductance and Electromagnetic Oscillations

Inductance, RL Circuits, LC Circuits, RLC Circuits

Electromagnetic Induction & Inductors

Concept Questions with Answers. Concept Questions with Answers W11D2. Concept Questions Review

ElectroMagnetic Induction

Inductance, RL and RLC Circuits

C. Incorrect! Use the formula for magnetic flux. This is the product of magnetic field, times area, times the angle between them.

Induction_P1. 1. [1 mark]

Lenz s Law (Section 22.5)

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Electromagnetic Induction. Bo Zhou Faculty of Science, Hokudai

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Lecture 29: MON 03 NOV

CHAPTER 7 ELECTRODYNAMICS

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 182. Assignment 4

Faraday s Law. Lecture 17. Chapter 33. Physics II. Course website:

Faraday s Law. Lecture 17. Chapter 33. Physics II. Course website:

Physics 4. Magnetic Induction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

PHYS 1444 Section 003 Lecture #18

PHYS 1442 Section 004 Lecture #14

3/31/2014. Resistors in series. Resistors in parallel. Ohm s Law. Review for Test 2. Electric Power (cont d) V IR. R constant I

Handout 10: Inductance. Self-Inductance and inductors

Homework due next Tuesday 11:59 PM Next Sunday: no in-person office hour (try a skype office hour 7:45 8:15?)

a. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire

Electromagnetism 03/12/2010. Electromagnetism Canada s Triumph Accelerator. Putting it All Together. Hydrogen Minus. Initial Acceleration

21 MAGNETIC FORCES AND MAGNETIC FIELDS

Chapter 30. Inductance

Electromagnetic Induction

Lecture 33. PHYC 161 Fall 2016

Transcription:

Electromagnetic Induction PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html

previously: electric currents generate magnetic field. If a current is flowing through a wire, one can determine the direction of the field with the (second) right-hand rule: and the field strength with the equation: B=μ 0 I/(2πR) For a solenoid or a loop (which is a solenoid with one turn): B=μ 0 IN/(2R) (at the center of the loop) If the solenoid is long: B=μ 0 In (at the center of the solenoid) PHY232 - Remco Zegers Electromagnetic Inductions 2

now: The reverse is true also: a magnetic field can generate an electrical current This effect is called induction: In the presence of a changing magnetic field, and electromotive force (voltage) is produced. demo: coil and galvanometer Apparently, by moving the magnet closer to the loop, a current is produced. If the magnet is held stationary, there is no current. PHY232 - Remco Zegers Electromagnetic Inductions 3

a definition: magnetic flux A magnetic field with strength B passes through a loop with area A The angle between the B-field lines and the normal to the loop is θ Then the magnetic flux Φ B is defined as: Units: Tm 2 or Weber (W) lon-capa uses Wb PHY232 - Remco Zegers Electromagnetic Inductions 4

example: magnetic flux A rectangular-shaped loop is put perpendicular to a magnetic field with a strength of 1.2 T. The sides of the loop are 2 cm and 3 cm respectively. What is the magnetic flux? B=1.2 T, A=0.02x0.03=6x10-4 m 2, θ=0. Φ B =1.2 x 6x10-4 x 1 = 7.2x10-4 Tm Is it possible to put this loop such that the magnetic flux becomes 0? a) yes b) no answer: yes if the angle θ is zero PHY232 - Remco Zegers Electromagnetic Inductions 5

Faraday s law: By changing the magnetic flux ΔΦ B in a time-period Δt a potential difference V (electromagnetic force ε) is produced Warning: the minus sign is never used in calculations. It is an indicator for Lenz s law which we will see in a bit. PHY232 - Remco Zegers Electromagnetic Inductions 6

changing the magnetic flux changing the magnetic flux can be done in 3 ways: change the magnetic field change the area changing the angle PHY232 - Remco Zegers Electromagnetic Inductions 7

example a rectangular loop (A=1m 2 ) is moved into a B-field (B=1 T) perpendicular to the loop, in a time period of 1 s. How large is the induced voltage? x x x x x x x x x x x x The field is changing: V=AΔB/Δt=1x1/1=1 V While in the field (not moving) the area is reduced to 0.25m 2 in 2 s. What is the induced voltage? The area is changing by 0.75m 2 : V=BΔA/Δt=1x0.75/2=0.375 V This new coil in the same field is rotated by 45 o in 2 s. What is the induced voltage? The angle is changing (cos0 0 =1 to cos45 0 =1/2 2) : V=BA Δ(cosθ)/Δt=1x0.25x0.29/2=0.037 V PHY232 - Remco Zegers Electromagnetic Inductions 8

Faraday s law for multiple loops If, instead of a single loop, there are multiple loops (N), the the induced voltage is multiplied by that number: resistor R N S demo: loops. If an induced voltage is put over a resistor with value R or the loops have a resistance, a current I=V/R will flow PHY232 - Remco Zegers Electromagnetic Inductions 9

lon-capa You should now try problems 2,3,4 & 7 from lon-capa set 6. PHY232 - Remco Zegers Electromagnetic Inductions 10

first magnitude, now the direction So far we haven t worried about the direction of the current (or rather, which are the high and low voltage sides) going through a loop when the flux changes N S direction of I? resistor R PHY232 - Remco Zegers Electromagnetic Inductions 11

Lenz s Law The direction of the voltage is always to oppose the change in magnetic flux when a magnet approaches the loop, with north pointing towards the loop, a current is induced. As a results a B-field is made by the loop (B center =μ 0 I/(2R)), so that the field opposes the incoming field made by the magnet. demo: magic loops Use right-hand rule: to make a field that is pointing up, the current must go counter clockwise The loop is trying to push the magnet away PHY232 - Remco Zegers Electromagnetic Inductions 12

Lenz s law II In the reverse situation where the magnet is pulled away from the loop, the coil will make a B-field that attracts the magnet (clockwise). It opposes the removal of the B-field. B magnet B induced B magnet B induced v v magnet approaching the coil magnet moving away from the coil PHY232 - Remco Zegers Electromagnetic Inductions 13

left-hand rules There are several variations of left hand-rules available to apply Lenz s law on different systems. If you know them, feel free to use it. However, they can be confusing and I will refrain from applying them. PHY232 - Remco Zegers Electromagnetic Inductions 14

Be careful The induced magnetic field is not always pointing opposite to the field produced by the external magnet. x x x x x x x x x x x x If the loop is stationary in a field, whose strength is reducing, it wants to counteract that reduction by producing a field pointing into the page as well: current clockwise PHY232 - Remco Zegers Electromagnetic Inductions 15

demo magnet through cooled pipe when the magnet passes through the tube, a current is induced such that the B-field produced by the current loop opposes the B-field of the magnet opposing fields: repulsive force this force opposes the gravitational force and slow down the magnet cooling: resistance lower current higher, B-field higher, opposing force stronger B induced B magnet PHY232 - Remco Zegers Electromagnetic Inductions 16 S N v magnet can be used to generate electric energy (and store it e.g. in a capacitor): demo: torch light S N I

question x x x x A B x x x x x x x x A rectangular loop moves in, and then out, of a constant magnet field pointing perpendicular (into the screen) to the loop. Upon entering the field (A), a. current will go through the loop. a) clockwise b) counter clockwise The loop will try to make a B-field that oppose the one present, so out of the screen. Use second right-hand rule: counterclockwise. When entering the field, the loop feels a magnetic force to the a) left b) right Method 1: Use first right hand rule with current and B-field that is present: left Method 2: The force should oppose whatever is happening, in this case, it should oppose the motion of the loop, so point to the left to slow it down. PHY232 - Remco Zegers Electromagnetic Inductions 17

quiz (extra credit) We saw that if a magnet gets dropped through a pipe made of conducting material, it fall is slowed due to the opposing induced magnetic force. If the pipe was cooled, the velocity of the magnet was even further reduced because current could flow more easily through the pipe and hence create a stronger induced field. What would happen if, instead of cooling, we heat up the pipe? a) the magnet will not be slowed down at all and fall with acceleration of 9.81 m/s 2 b) the magnet will be slowed down but not as much as when the pipe was at room temperature or when cooled c) the magnet with fall with an acceleration of more than 9.81 m/s 2 d) the magnet will be slowed down just as much as when the pipe was at room temperature, but not as much as when the pipe was cooled down. PHY232 - Remco Zegers Electromagnetic Inductions 18

lon-capa you should now try question 5 of lon-capa 6 (you just did half of that problem). PHY232 - Remco Zegers Electromagnetic Inductions 19

Eddy current+demo Magnetic damping occurs when a flat strip of conducting material pivots in/out of a magnetic field current loops run to counteract the B-field At the bottom of the plate, a force is directed the opposes the direction of motion I I x x x x x x x x x x v v x x x x x x x x x x strong opposing force weak opposing force no opposing force x x x x x x x x x x B-field into the page v PHY232 - Remco Zegers Electromagnetic Inductions 20

applications of eddy currents brakes: apply magnets to a brake disk. The induced current will produce a force counteracting the motion metal detectors: The induced current in metals produces a field that is detected. PHY232 - Remco Zegers Electromagnetic Inductions 21

A moving bar B-field into the page x x x x x x x x x x R x x x x x x x V x d x x x x x x x x x x x x Two metal rods (green) placed parallel at a distance d are connected via a resistor R. A blue metal bar is placed over the rods, as shown in the figure and is then pulled to the right with a velocity v. a) what is the induced voltage? b) in what direction does the current flow? And how large is it? c) what is the induced force (magnitude and direction) on the bar? What can we say about the force that is used to pull the blue bar? PHY232 - Remco Zegers Electromagnetic Inductions 22

answer B-field into the page x x x x x x x x x x R x x x x x x x V x d x x x x x x x x x x x x a) induced voltage? B: constant, cosθ=1 ΔA/Δt=v x d so ΔΦ B /Δt=Bvd=induced voltage B) Direction and magnitude of current? The induced field must come out of the page (i.e. oppose existing field). Use 2 nd right hand rule: counter-clockwise I=V/R=Bvd/R PHY232 - Remco Zegers Electromagnetic Inductions 23

answer II x x x x I x x x x x x R x x x x x x x V x d x x x x x x x x x x x x Induced force?: Direction? Method I: The force must oppose the movement of the bar, so to the left. Method II: Use first right hand rule for the bar: force points left. Magnitude?: F induced =BIL (see chapter 19) = B x I x d This force must be just as strong as the one pulling the rod, since the velocity is constant. PHY232 - Remco Zegers Electromagnetic Inductions 24

lon-capa Now do problems 1 and 6 from lon-capa 6. PHY232 - Remco Zegers Electromagnetic Inductions 25

Doing work Since induction can cause a force on an object to counter a change in the field, this force can be used to do work. Example jumping rings: demo current cannot flow current can flow The induced current in the ring produces a B-field opposite from the one produced by the coil: the opposing poles repel and the ring shoots in the air application: magnetic propulsion, for example a train. PHY232 - Remco Zegers Electromagnetic Inductions 26

generating current. The reverse is also true: we can do work and generate currents demo: hand generator By rotating a loop in a field (by hand, wind water, steam ) the flux is constantly changing (because of the changing angle and a voltage is produced. θ=ωt with ω: angular velocity ω=2πf = 2π/T f: rotational frequency T: period of oscillation NBAωsin(ωt) PHY232 - Remco Zegers Electromagnetic Inductions 27

Time varying voltage NBAωsin(ωt) V max C time (s) -V max A B A B C side view of loop Maximum voltage: V=NBA This happens when the change in flux is largest, which is when the loop is just parallel to the field PHY232 - Remco Zegers Electromagnetic Inductions 28

question A current is generated by a hand-generator. If the person turning the generator increased the speed of turning: a) the electrical energy produced by the system remains the same b) the electrical energy produced by the generator increases c) the electrical energy produced by the generator decreased The change of flux per time unit increases and thus the output voltage. Or one can simply use conservation of energy: More energy put into the system, more must come out PHY232 - Remco Zegers Electromagnetic Inductions 29

quiz (extra credit) x x x x x x x x x x A x x x x B x x x x x x x x x x A rectangular loop moves from A to B in a magnetic field of fixed magnitude as shown in the figure (at both A and B, and anywhere in between the same field exists). During the motion: a) a clockwise current will flow through the loop b) a counter clockwise current will flow through the loop c) no current will flow. The flux is constant! PHY232 - Remco Zegers Electromagnetic Inductions 30

Self inductance L I V Before the switch is closed: I=0, and the magnetic field inside the coil is zero as well. Hence, there is no magnetic flux present in the coil After the switch is closed, I is not zero, so a magnetic field is created in the coil, and thus a flux. Therefore, the flux changed from 0 to some value, and a voltage is induced in the coil that opposed the increase of current PHY232 - Remco Zegers Electromagnetic Inductions 31

L Self inductance II I The self-induced current is proportional to the change in flux The flux Φ B is proportional to B. e.g. B center =μ 0 In for a solenoid B is proportional to the current through the coil. So, the self induced emf (voltage) is proportional to change in current L inductance : proportionality constant Units: V/(A/s)=Vs/A usually called Henrys (H) PHY232 - Remco Zegers Electromagnetic Inductions 32

induction of a solenoid flux of a coil: Change of flux with time: induced voltage: Replace N=nxl (l: length of coil): Note: A x l is just the volume of the coil So: PHY232 - Remco Zegers Electromagnetic Inductions 33

example A solenoid with 1000 windings is 10 cm long and has an area of 1cm 2. What is its inductance? L=μ 0 (N/L) 2 (Volume) L=4πx10-7 x (1000/0.1) 2 x (0.0001x0.1)=1.26x10-7 H PHY232 - Remco Zegers Electromagnetic Inductions 34

R L An RL circuit I V A solenoid and a resistor are placed in series. At t=0 the switch is closed. One can now set up Kirchhoff s 2 nd law for this system: If you solve this for I, you will get: The energy stored in the inductor :E=½LI 2 PHY232 - Remco Zegers Electromagnetic Inductions 35

RL Circuit II R L I V energy is stored energy is released When the switch is closed the current only rises slowly because the inductance tries to oppose the flow. Finally, it reaches its maximum value (I=V/R) When the switch is opened, the current only slowly drops, because the inductance opposes the reduction is the time constant (s) PHY232 - Remco Zegers Electromagnetic Inductions 36

question R L I V What is the voltage over an inductor in an RL circuit long after the switched has been closed? a) 0 b) V/R c) L/R d) infinity Answer: Zero! The current is not changing anymore, so the change per unit time is zero and hence the voltage. PHY232 - Remco Zegers Electromagnetic Inductions 37

example R L I V Given R=10 Ohm and L=2x10-2 H and V=20 V. a) what is the time constant? b) what is the maximum current through the system c) how long does it take to get to 75% of that current if the switch is closed at t=0 a) Use given L and R: time constant is 2x10-3 b) maximum current (after waiting for some time): I=V/R=2 A c) 0.75*2=2x(1-e -t/(l/r) ) 0.25=e -t/(l/r) so -1.39=-t/(L/R) and t=1.39 x 2x10-3 =2.78x10-3 PHY232 - Remco Zegers Electromagnetic Inductions 38

lon-capa you should now do questions 8 and 9 of lon-capa set 6. For question 9, note that the voltage over the inductor is constant and the situation thus a little different from the situation of the previous page. You have done this before for a capacitor as well PHY232 - Remco Zegers Electromagnetic Inductions 39