New Perspectives on van der Waals London Dispersion Interactions of Materials: Wetting, Graded Interfaces and Carbon Nanotubes

Similar documents
New perspectives on van der Waals London interactions of materials. From planar interfaces

van der Waals London dispersion interactions for optically anisotropic cylinders: Metallic and semiconducting single-wall carbon nanotubes

Optical Properties and van der Waals-London Dispersion Interactions in Inorganic and Biomolecular Assemblies

VAN DER WAALS AND STRUCTURAL FORCES: STABILITY OF THIN LIQUID-CRYSTALLINE FILMS. Andreja [arlah 1

Optical properties of a near-σ11 a axis tilt grain boundary in α-al 2 O 3

Ceramic Processing Research

MECHANICS OF CARBON NANOTUBE BASED COMPOSITES WITH MOLECULAR DYNAMICS AND MORI TANAKA METHODS. Vinu Unnithan and J. N. Reddy

Self-consistent inhomogeneous dielectric response profiles from a nonlocal continuous Lifshitz formulation of van der Waals interactions

Supporting Information

Surface Characteristics of a Polyimide Film Treated with a Dielectric Barrier Discharge Plasma

Supplementary Figure 1 Comparison between normalized and unnormalized reflectivity of

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles

Urbach tail extension of Tauc-Lorentz model dielectric function

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled

L8: The Mechanics of Adhesion used by the Gecko

Surface interactions part 1: Van der Waals Forces

SHG Spectroscopy. Clean surfaces Oxidation SOI wafer

Interfacial forces and friction on the nanometer scale: A tutorial

INTERMOLECULAR AND SURFACE FORCES

Scanning Tunneling Microscopy

Water-methanol separation with carbon nanotubes and electric fields

Lecture 12: Biomaterials Characterization in Aqueous Environments

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique

Bulk electronic structure of SrTiO 3 : Experiment and theory

NEM Relays Using 2-Dimensional Nanomaterials for Low Energy Contacts

1.1 FEATURES OF SPECTROSCOPIC ELLIPSOMETRY

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

Near-perfect modulator for polarization state of light

QMC in the Apuan Alps IV Vallico Sotto, 28th July 2008

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching

Depletion forces induced by spherical depletion agents

Supporting Information

The electronic structure of materials 1

Supplemental Information:

EXCITONS, PLASMONS, AND EXCITONIC COMPLEXES UNDER STRONG CONFINEMENT IN QUASI-1D SEMICONDUCTORS. Theory and Perspectives

UNDERSTANDING. Journal

Steric stabilization i the role of polymers

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

175-IJN Article No SPIN IN CARBON NANOTUBE-BASED OSCILLATORS

Supporting Information. Structure and electronic properties of a continuous random network model of amorphous zeolitic imidazolate framework (a-zif)

PY5020 Nanoscience Scanning probe microscopy

Unusual Optical Properties of Aligned Carbon Nanotube Mats in Infrared Energy Region

dewetting driving forces dewetting mechanism? dewetting dynamics? final equilibrium state: drops with θ = θ Y

I-V characteristics model for Carbon Nanotube Field Effect Transistors

Intermolecular Forces in Density Functional Theory

SUPPLEMENTARY INFORMATION

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap

Supporting Online Material for

Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Magnetic ordering in two-dimensional. nanoparticle assemblies

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Supplementary Figure 1(a) The trajectory of the levitated pyrolytic graphite test sample (blue curve) and

New Perspective on structure and bonding in water using XAS and XRS

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

CO Adsorption Site Preference on Platinum: Charge Is the Essence

Surface Free Energy Effects in Sputter-Deposited WN x Films

Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants

Optical SHG and RAS of molecular adsorption at Si(001) step edges

Shear Flow of a Nematic Liquid Crystal near a Charged Surface

Supporting Information for

Optical Properties of Copper Phthalocyanine(CuPc)Thin Films

Dependence of equivalent thermal conductivity coefficients of single-wall carbon nanotubes on their chirality

Free energy sampling for electrochemical systems

! Importance of Particle Adhesion! History of Particle Adhesion! Method of measurement of Adhesion! Adhesion Induced Deformation

Atomic and molecular interaction forces in biology

Supplementary Figure 1. Potential energy, volume, and molecular distribution of the

Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering

Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes

Numerical study of the effect of structure and geometry on van der Waals forces

Water models in classical simulations

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions

Water structure near single and multi-layer nanoscopic hydrophobic plates of varying separation and interaction potentials

Carbon Nanomaterials

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Quasi index matching for minimum reflectance at a dielectric-conductor interface for obliquely incident p- and s-polarized light

Report on 7th US-Japan Joint Seminar on Nanoscale Transport Phenomena Science and Engineering

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( )

Strong light matter coupling in two-dimensional atomic crystals

The Anisotropic Dielectric Function for Copper Phthalocyanine Thin Films

Molecular dynamics study of the lifetime of nanobubbles on the substrate

Scanning Probe Microscopy (SPM)

CHEM1100 Summary Notes Module 2

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf

Supporting Information. Anisotropic Electron-Phonon Interactions in Angle- Resolved Raman Study of Strained Black

Scanning Force Microscopy II

Determining Carbon Nanotube Properties from Raman. Scattering Measurements

Continuum modeling of van der Waals interactions between. carbon nanotube walls

Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility

SELF-ASSEMBLY AND NANOTECHNOLOGY A Force Balance Approach

Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes

Coupling the Level-Set Method with Variational Implicit Solvent Modeling of Molecular Solvation

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Special Properties of Au Nanoparticles

Recap (so far) Low-Dimensional & Boundary Effects

Supplementary Figure 1

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

Transcription:

New Perspectives on van der Waals London Dispersion Interactions of Materials: Wetting, Graded Interfaces and Carbon Nanotubes R. H. French 1,2, R. Rajter 3 1. DuPont Company, Central Research & Development, Wilmington, DE U.S.A. 2. University of Pennsylvania, Materials Science Department, Philadelphia, PA, U.S.A. 3. Mass. Inst. Of Tech., Materials Science Department, Cambridge, MA, USA http://www.lrsm.upenn.edu/~frenchrh/index.htm

Acknowledgements 2 Spectroscopy G. L. Tan (UPenn) M. K. Yang (DuPont) M. F. Lemon (DuPont) D. J. Jones (DuPont) SrTiO 3 K. van Benthem (ORNL) M. Ruhle (MPI-Stuttgart) C. Elsasser (MPI-Stuttgart) Manfred Rühle (MPI-Stuttgart) Polystyrene K. I. Winey (UPenn) W. Qiu (DuPont) SiO 2 : Amorphous & Quartz G. L. Tan (UPenn) Carbon Nanotubes R. Rajter (MIT) W. C. Carter (MIT) Y. M. Chiang (MIT) W. Y. Ching (Univ. Missouri Kansas City) L. K. Denoyer (Deconvolution.com) V. A. Parsegian (NIH) R. Podgornik (Slovenia) VuGraph 2

Dispersion Contribution to Surface Free Energy 3 London Dispersion Energy Thermodynamic Free Energy Arising From London Dispersion Interaction Dispersive Component Of Surface Free Energy Diiodomethane Non-polar & A # 121 = arccos $ ' 1! % A123 " (! liq.! sol.! sol.-liq. Polystyrene Electrodynamic & Polar Interactions Water Partially Polar ã= ã Disp. + ã Polar Polystyrene R. H. French, K. I. Winey, M. K. Yang, W. Qiu, Aust. J. Chem.,60, 251-63, (2007). VuGraph 3

vdw-ld Interactions: Outline 4 Optically Isotropic, Plane Parallel Morphology Polystyrene SrTiO 3 : Σ5 And Σ13 Grain Boundaries Optically Anisotropic, Plane Parallel Morphology [6,5,s] and [9,3,m] Carbon Nanotubes: Plates Of Close Packed CNTs Optically And Morphologically Anisotropic [6,5,s] and [9,3,m] Carbon Nanotubes Cylinder Cylinder Interactions Cylinder Substrate Interactions Conclusions VuGraph 4

Optically Isotropic Plane Parallel Morphology Hamaker Constants and Coefficients London Dispersion Energies With Effects Of Retardation Arbitrary Numbers Of Layers (Add-A-Layer)

Origin of The vdw-london Dispersion Interaction London Dispersion Interactions Of the Van der Waals Interaction Thermodynamic Free Energy s s Mat. 1. p p Mat. 2. p p Arises From Oscillating Dipoles Interatomic Bonds of Elect. Struc. Attractive Force: Nonwetting Positive Hamaker Constant PS PS Air Disp. Force Water Disp. Force PS PS 6 A 123 71 zj 8 zj J cv => London Disp. Spectra A - Hamaker Constant Interaction Scaling Constant E London Dispersion F disp - Dispersion Force A( l) = " 12! l 2 Repulsive Force: Wetting Negative Hamaker Constant PS Water Air zj = zeptojoule = 10-21 Joules -16 zj VuGraph 6

VUV Reflectance and Interband Transitions VUV Reflectance Linear Response Function! ( E) 2E = $ " % & {# ( E )} P ln ' de' 2 2 E' $ E 0 Obeys Kramers Kronig Dispersion Refl. (%) 15 10 7 n PS 5 Reflectance of PS 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Energy (ev) 4 Interband Transition Strength Complex Optical Property Related To Dielectric Function ε 2 E J cv = i (! 2 1 + i! 8" M. L. Bortz, R. H. French, Appl. Phys. Lett., 55, 19, 1955-7, Nov. 8, (1989). R. H. French, Phys. Scripta, 41, 4, 404-8, (1990). M. L. Bortz, R. H. French,, Appl. Spect., 43, 8, 1498-1501, (1989). 2 ) * Im[Jcv] Re[Jcv] (ev^2) 2 ) Re[Jcv] Im[Jcv] (ev^2) 2 ) 3 2 1 0 10 8 6 4 2 0 Interband Transition Strength: Re [Jcv] of PS Interband Transition Strength: Im [Jcv] of PS 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Energy (ev) VuGraph 7

8 Electronic Structure Of Polystyrene Hierarchy Of Interband Transitions Aromatic p p* Nonbonding: n s* Saturated: s s* band Transition Strength - Re[Jcv] (ev ) 2 3.5 2.5 2 1.5 R. H. French, K. I. Winey, M. K. Yang, W. Qiu, Aust. J. Chem.,60, 251-63, (2007). 4 3 1.5 E1: Aromatic pi - pi* E1' E1 PS E2 n E3' E3: C-C sigm VuGraph 8

" ( i! ) London Dispersion Spectra 9 Using Lifshitz Theory, QED Acquire Exp. Spectra Calc. London Disp. Spectrum Kramers Kronig Transform 2!#"(!) #"( i " ) = 1+ % d! 2 2 $! + " Then Hamaker Constant Calc d by Spectral Differences of London Disp. Spectra & 0 Im[Jcv] (ev^2) Im[Jcv] (ev^2) 3.5 3 2.5 2 1.5 1.5 0 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 PS Water PS Water R. H. French, J. Am. Ceram. Soc., 83, 2117-46 (2000). File #14 : PSTY6T Im[Jcv] (ev^2) / Energy (ev) #568,POLYSTYRENE,ALTHOR,,300,NO,SAMBOX ROUGHBK R. H. French, K. I. Winey, M. K. Yang, W. Qiu, Aust. J. Chem.,60, 251-63, (2007). VuGraph 9 1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Energy (ev) Overlay X-Zoom CURSOR Res= 1

10 Optically Isotropic, Plane Parallel: vdw-ld Formalism Example: A 123 Non-retarded G(l): Thermodynamic Free Energy Δ Are Spectral Difference Function Between Half Space Material L or R And Interlayer Material m Also Implemented: Add-A-Layer: Up To 99 Layers Graded Interfaces Full Effects Of Retardatio Δ Represent The Optical Contrast VuGraph 10

Gecko Hamaker: Open Source Hamaker Program 11 Full Spectral, Retarded Hamaker, Coefficients http://geckoproj.sourceforge.net/ VuGraph 11

Speed of Light Plays a Role Transit Time Important Higher Energy Bonds Induced Dipoles De-Phase Contribution Drops Nonwetting Attractive Dispersion Force Wetting Retarded Hamaker Coefficients PS Repulsive Dispersion Force PS Water Force Water Retardation Length PS Air Can Exceed 300 nm Depending On Details Of System Hamaker Coefficient (Zeptojoules) Hamaker Coefficient (Zeptojoules) 9 8 7 6 5 4 3 2 1 0 0 5 10 15 20 25 30 35 40 45 50 Distance (nm) 0-2 -4-6 -8-10 -12-14 -16 PS Water PS Non-Wetting Wetting PS Water Air Non-Retarded Non-Retarded -18 0 5 10 15 20 25 30 35 40 45 50 Distance (nm) 12 VuGraph 12

Compare Energies From Hamaker Const. & Contact Angles Use Hamaker Constants => Surface Energy Fowkes Method Using Non-polar & Polar Liquids 13 1 PS 2 Air Force 1 " Mat.1 = # EMat.1 = 2 ÞInterface Energy A 24! 1v1. 2 d o 1 PS Diiodomethane Non-polar ã= ã Disp. + ã Polar 1 PS 3 Water 1 PS Polystyrene Force 1 " Mat.1 Mat.3 = # EMat.1 Mat.3 = 2 A 24! 1v3. 2 d o Experimental Uncertainties Polar Components Retract Into Free Surface Surface Energy Of Polystyrene (mj/m 2 ) Full Spectral Hamaker Polymer Handbook Fowkes Method Dispersive Component 34.7 32.5-33.9 40.6 43.2 Polar Component 6.8 8.2 0-1.8 Surface Free Energy 37.5-40.7 41.2-43.8 R. H. French, K. I. Winey, M. K. Yang, W. Qiu, Aust. J. Chem.,60, 251-63, (2007). VuGraph 13

14 Gradient Properties in Grain Boundaries of SrTiO 3 2.6 600 Index of Refraction [n] 2.4 2.2 2 1.8 1.6 1.4 1.2!13!5 Oscillator Strength Sum Rule (electrons/nm ) 3 500 400 300 200 100 Bulk!5!13 1-12 -8-4 0 4 8 Distance (nm) 0 0 10 20 30 40 50 60 70 80 Energy (ev) Index of Refraction S5 Grain Boundary = 1.56 ns13 Grain Boundary = 1.29 n=2.37 for bulk SrTiO 3, Spectroscopic Ellipsometry. 1 Valence Electron Density Variations From Oscillator Strength Sum Rule Units of Electrons Per nm 3 for bulk SrTiO 3 S5 and ns13 GB K. van Benthem, C. Elsässer, R. H. French, J. Appl. Phys, 90, 12, 6156-64, (2001), K. v an Benthem, et al., Phys. Rev. Lett., 93, 227201, (2004), K. v an Benthem, et al., Phys. Rev. B, 74, 205110, DuPont Co. Central Research, Univ. of Pennsylvania, Materials Science, R. H. French 2007 (2006). August 15, 2007 VuGraph 14

A Graded Interface Approach 15 The Sharp Interfaces of a 1 2 1 Type Model Have Unrealistic Infinite Property Gradients Are These Sharp Interface Results Applicable To Grain Boundaries? Nanoscale Approach To Apply Bulk Continuum Dispersion Theory Use Graded Interface Model Interfaces With Finite Property Gradients [ 1 gradient 2 gradient 1 ] Define Finest Length Scale For Gradients Use A Characteristic Interatomic Bond Length For SrTiO 3 Use d o = 0.19525 The Ti-O Bond Length in SrTiO 3 Finest Scale Property Gradients Are Interatomic K. v an Benthem, G. Tan, R. H. French, L. K. Denoy er, R. Podgornik, V. A. Parsegian, Phys. Rev. B, 74, (2006). R. Podgornik, R. H. French, V.A. Parsegian, J. Chem. Phys., 124, 044709, (2006) VuGraph 15

16 Hamaker Coefficients: S5 & ns13 SrTiO 3 GBs Compare 3 Layer, Gradient Model Using Quadroid Gradient Graded Interface Approach Doesn t Change Findings Small Reduction in E disp. Limiting Behavior Correct For 0 nm Core Width Dispersion Interaction Approaches 0 K. van Benthem, et al., Phys. Rev. Lett., 93, 227201, (2004). K. van Benthem, et al., Phys. Rev. B, 74, 205110, (2006). VuGraph 16

vdw-l Dispersion Energies Of GBs 17 GB Stabilization Energy Due To Dispersion Abrupt Model Results ΔE ( nσ13) = 169 73 = 96 mj/m 2 ΔE ( nσ5) = 169 24 = 145 mj/m 2 Quadroid Graded Interface Model ΔE ( nσ5) = 119 14 = 69 mj/m 2 ΔE ( nσ13) = 119 50 = 105 mj/m 2 Interface SrTiO 3 vac. SrTiO 3 d o =0.195 nm SrTiO 3 n! 13 SrTiO 3 d o =0.195 nm SrTiO 3! 5 SrTiO 3 d o =0.195 nm SiO 2 vac. SiO 2 d o =0.165 nm Abrupt Gradient A 121 NR (zj) E London (mj.m -2 ) Double-Quadratic Gradient a A 121 R (zj) 243.9 169 171.2 (L=0.9 nm) 105.5 73 72.5 (L=0.9 nm) 35.0 24 20.7 (L=0.6 nm) E London (mj.m -2 ) 119 50 14 68.2 66 50.3 49 London Dispersion Stabilization Energies For These Atomically Abrupt Grain Boundaries Are Appreciable Compare To Chemical Energies Σ3 GB = 520 mj/m 2 Surface Energy ~ 1100/mJ/m 2 VuGraph 17

Optically Anisotropic Plane Parallel Morphology Hamaker Constants and Coefficients vdw-ld Normal Forces And vdw-ld Torques

19 Metallic and Semiconducting SWCNTs [9,3 Metallic] [6,5 Semiconducting] Diameter To Atomic Cores 0.423 nm 0.373 nm Build CNT s By Rolling Graphene Shift With m,n Chirality Graphite Interlayer Spacing Is 0.167 nm Used to Define Cylinder Diamters Much Interest In Manipulating CNTs London Dispersion Interactions: Universal, Long Range Can Dispersion Interaction Be Used For SWCNT Processing? Focus On Aqueous Dispersions DuPont Co. Central Research, Univ. of Pennsylvania, Materials Science, VuGraph 19 R. H. French 2007 August 15, 2007

ab initio Band Structures Of [6,5,s] & [9,3,m] SWCNT 20 ab initio Band Structures and Optical Properties To Calculate Dielectric Function ε To Calculate London Dispersion Spectra R. F. Rajter, R. H. French, W. Y. Ching, W. C. Carter, Y. M. Chiang, J. Appl. Phys., 101, 054303, p. 1-5, (2007). R. Rajter, R. Podgornik, V. A Parsegian, R. H. French, W. Y. Ching, to be published, Phys. Rev. B., 75, (2007). VuGraph 20

21 Uniaxial Optical Properties Of [6,5,s] & [9,3,m] SWCNT Radial Directions Have Similar Properties Axial Directions Very Different Due To Metallic Axial Property Of [9,3,m] [9,3,m] Max of 933 at 0.04 ev VuGraph 21

" ( i! ) London Disp. Spectra Of [6,5,s] & [9,3,m] CNTs 22 LDS Crossings => Complex Behavior e.g. Surficial Films Of Water On Ice Water Max of 78 at 0 ev [9,3,m] Peaks of 333 at 0 ev VuGraph 22

Optically Anisotropic vdw-ld Formalism 23 A (0) Is Rotation Independent Part: f(l) A (2) Is Rotation Dependent Part: f(θ) Of vdw-ld Interaction Example: A 123 Non-retarded Uniaxial Optical Properties Δ Is Optical Contrast With Interlayer Medium γ Is Optical Anisotropy Of Material Torques Due To γ In Addition To Normal Forces Still To Do: Opt. Anisotropic Add-A-Layer VuGraph 23

vdw-ld Spectra On Log Axes 24 LDS Crossings Yield Repulsive And Attractive Dispersion Contributions Due To The Δ Spectral Difference Functions, The Optical Contrast Among Component Materials VuGraph 24

Dispersion Torques From Optical Anisotropy 47 vdw-ld Torques: Hamaker Coefficient versus Angle 25 Hamaker Coefficient (zj) 46.5 46 45.5 A121 [ 9,3,m] Aniso Substrates Parallel 45 0 15 30 45 60 75 90 angle (degrees) Optical Anisotropy γ Produces Torques To Align The Axial Axes Of The Metallic CNT s VuGraph 25

Optically Anisotropic And Morphologically Anisotropic (Solid Cylinders)

Optically & Morpholigically Anisotropic vdw-ld Formalism 27 Example: A123, Optically Uniaxial, Cylinder-Cylinder In The Far Limit Isotropic Interlayer Medium m Also Implemented: Optically Anisotropic Cylinder Substrate Near and Far Limits: Cyl. Cyl., Cyl. Sub. Transition Region Between Near And Far Limits Still To Do: Add-A-Layer Coated Cylinders Multi-wall CNTs Hollow Cylinders VuGraph 27

Hamaker Coefficients Versus distance 28 Near Limit Far Limit Near Limit Is < 2 Diameters, And Far Limit Is > 2 Diameters Semiconducting CNT s Hamaker Coefficient Larger Than Metallic Far Limit Hamaker Coeff.s Larger Than Near Limit Due To Δ parallel VuGraph 28

Versus Angle 29 Hamaker Torques Small In Near Limit, Larger In Far Limit Large Torques Arise For Metallic CNT s Arise From Large Differences In Δ parallel and Δ perpendicular, or γ VuGraph 29

vdw-ld Torques Of Metallic CNT s 30 Hamaker Coefficient (zj) 160 140 120 100 80 60 40 Parallel vdw-ld Torques: Hamaker Coefficient versus Angle A121 Polystyrene H 2O A121 Alumina H 2O A121 [9,3,m] Aniso Substrates A121 [9,3,m] Aniso Cylinders 20 0 0 15 30 45 60 75 90 angle (degrees) Optical And Morphological Anisotropy Both Essential For Dispersion Torques VuGraph 30

Three Major Cases: Optical, Morphological Anisotropy Morphology: Plane Parallel Plane Parallel Cylinder Optically: Isotropic Uniaxial Uniaxial 31 VuGraph 31

Conclusions Long Range Interactions In Nanoscale Science Electrodynamics: vdw-l Dispersion, Debye, Keesom Electrostatics Polar Interactions Polystyrene/Water Interface Energy From Both vdw-ld and Polar Interactions SrTiO 3 Grain Boundary Dispersion Energies Due To Reduced Physical, Electron Density, Index of Refr. ~ 5 to 10% of Chemical GB Energy New Non-Plane Parallel Hamaker Development Carbon Nanotubes ab initio Optical Properties From Band Structures CNT Optical Properties Differ Produce Different Hamaker Coefficients Method For CNT Separation By Type Optical & Morphological Anisotropy Produces Strong Dispersion Torques Optical Anisotropy γ And Optical Contrast Δ An Interaction For Alignment Of CNT s Bulk: Polystyrene VUV Reflectance Interfacial: Trans. EELS TEM Probes SrTiO 3 Grain Boundaries 32 ab initio: Carbon LDA Nanotubes Band Structure Surficial: Refl. EELS Surf. Sci. Optical Properties & Electronic Structure: Interband Transition Strength vdw-ld Interaction: Hamaker Coefficients Electrodynamics VuGraph 32

Observation of Aligned Adsorption Of CNTs 33 "Controlled Two-Dimensional Pattern of Spontaneously Aligned Carbon Nanotubes", R.S. McLean, X. Huang, C. Khripin, A. Jagota, M. Zheng, Nanoletters, 6 [1] 55-60 (2006) VuGraph 33

VuGraph 34 34