Observation of Feshbach resonances in ultracold

Similar documents
Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules

Ultracold atoms and molecules

Confining ultracold atoms on a ring in reduced dimensions

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

A study of the BEC-BCS crossover region with Lithium 6

Ultracold Fermi Gases with unbalanced spin populations

Ytterbium quantum gases in Florence

NanoKelvin Quantum Engineering

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Why ultracold molecules?

Development of a compact Yb optical lattice clock

Evidence for Efimov Quantum states

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Laser Cooling of Thulium Atoms

YbRb A Candidate for an Ultracold Paramagnetic Molecule

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Direct Cooling of Molecules

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

From laser cooling to BEC First experiments of superfluid hydrodynamics

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

Experiments with an Ultracold Three-Component Fermi Gas

A new experimental apparatus for quantum atom optics

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

COPYRIGHTED MATERIAL. Index

Cold fermions, Feshbach resonance, and molecular condensates (II)

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Fluids with dipolar coupling

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Introduction to cold atoms and Bose-Einstein condensation (II)

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Les Houches 2009: Metastable Helium Atom Laser

Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

PHYS598 AQG Introduction to the course

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998

Bose-Einstein Condensate: A New state of matter

The Search for the Electron Electric Dipole Moment at JILA

Vortices and other topological defects in ultracold atomic gases

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Raman-Induced Oscillation Between an Atomic and Molecular Gas

(Noise) correlations in optical lattices

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

1. Cold Collision Basics

Time Reversal and the electron electric dipole moment. Ben Sauer

Trapping, transport and polarisation of ultracold lithium

arxiv:quant-ph/ v2 5 Feb 2001

1. Introduction. 2. New approaches

A Mixture of Bose and Fermi Superfluids. C. Salomon

INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang

Status of the Search for an EDM of 225 Ra

Ultracold molecules - a new frontier for quantum & chemical physics

Design and realization of exotic quantum phases in atomic gases

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Quantum Computation with Neutral Atoms Lectures 14-15

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

A Chromium BEC in strong RF fields

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

All-optical formation of a Bose-Einstein condensate for applications in scanning electron microscopy

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Measurement of the electron EDM using Cold YbF Molecules:

Manipulating Rydberg atoms and molecules in the gas phase and near chip surfaces

Axion detection by atomic/molecular transitions

Bose-Einstein condensates & tests of quantum mechanics

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Optical Lattice Clock with Neutral Mercury

Cooperative Phenomena

BEC and superfluidity in ultracold Fermi gases

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

Physics and Chemistry with Diatomic Molecules Near Absolute Zero. Tanya Zelevinsky & ZLab Columbia University, New York

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt

High stability laser source for cold atoms applications

LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS

EDM Measurements using Polar Molecules

Matter wave interferometry beyond classical limits

What are we going to talk about: BEC and Nonlinear Atom Optics

Reference for most of this talk:

A Mixture of Bose and Fermi Superfluids. C. Salomon

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Swinburne Research Bank

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M.

Quantum superpositions and correlations in coupled atomic-molecular BECs

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

DISTRIBUTION A: Distribution approved for public release.

Bose-Bose mixtures in confined dimensions

A few issues on molecular condensates

MANY ELECTRON ATOMS Chapter 15

The heteronuclear Efimov scenario in an ultracold Bose-Fermi mixture

Experimental Atomic Physics Research in the Budker Group

From Optical Pumping to Quantum Gases

Atom Quantum Sensors on ground and in space

Transcription:

Observation of Feshbach resonances in ultracold Rb and 133 Cs mixtures at high magnetic field Rubidium Caesium Hung-Wen, Cho

Motivation Bialkali molecules in the ground state have a large permanent electric dipole moment ex. RbCs d=1.25 Debye V int = d 2 1 3cos2 + 4 2 a r r 3 M (r r ) Quantum computation with trapped polar molecules Dipole-dipole interaction Contact interaction 52 Cr BEC_PRL, 101, 080401 (2008) Ultracold chemistry and precision measurement Molecules clocks Electric dipole moment (EDM) measurement Nature 473, 493 (2011), Phys. Rev. A 84, 042504 (2011) PRL, 88, 067901 (2002)

Introduction Helium buffer-gas 7 Li, Rb Microwave cavity trap Cryogenic sources Trapping and sympathetic cooling Coherently controlled molecule array Photostop Magnetic decelerator Stark decelerator Bringing molecules to rest Associate ultracold atoms RbCs YbCs

MMQA_MicroKelvin Molecules in a Quantum Array Professor EA Hinds (Physics ICL) Dr MR Tarbutt (Physics ICL) Professor JM Hutson (Chemistry Durham) Dr SL Cornish (Physics Durham) Dr D Carty (Physics & Chemistry Durham) Dr E Wrede (Chemistry Durham) Helium buffer-gas cooling YbF, T:3K d=10 17 cm -3 LiH, CaF, SO, OH Stark decelerator (Electric) E LiH brought to rest removed 50% of Ekin of CaF x Sympathetic cooling 7 Li and Rb Li in magnetic trap (300µK), overlap with LiH from Stark decelerator (50mK) ->5mK after 0.6s try cool Li using rf evaporation RbCs, CsYb Mixture Zeeman decelerator (Magnetic) PhotoStop Theory not to scale Molecules Excimer laser Skimmer 20-30 mm Peak current: up to 1000 A Frequency chirp: 40 khz - D.C. Full current into plane Full current out of plane 2 m y z

Outline Observation of Feshbach resonances in ultracold Rb and 133 Cs mixtures at high magnetic field Bose-Einstein condensations (BECs) - Rb BEC in a combined magnetic and optical trap - 133 Cs BEC in a crossed dipole trap - A quantum degenerate Bose mixture of Rb and 133 Cs Feshbach molecules - The formation background and method - Rb 133 Cs Feshbach resonance measurement Stimulate Raman adiabatic passage (STIRAP) - a two-photon scheme transfers the Feshbach molecules into the rovibronic ground state Summary

Laser cooling & Feshbach resonance Atoms in which laser cooling has been demonstrated 1 : Alkali metals Alkaline earth metals Noble Gases Lanthanide Others Li Mg He Dy Cr Na Ca Ne Er Ag K Sr Ar Tm Cd Rb Ra Kr Yb Hg Cs Ba Xe Al Fr Feshbach molecules: 6 Li (Innsbruck, Rice, Lab kaslter-brassel, MIT 03-05), 7 Li (Rice 02, 09), 23 Na (MIT 98-99), 39 K(Florence 07), 40 K(JILA 03-04), 85 Rb(JILA 03), Rb(MPI 02-04), 133 Cs (Stanford, Innsbruck 04, 09), 52 Cr (Stuttgart 05) 6 Li 23 Na (MIT 04) 6 Li 40 K (Innsbruch 08) 6 Li Rb (Tubingen, British Columbia(Canada) 08) 7 Li Rb (Tubingen 09) 39 K Rb (Florence 08) 40 K Rb (Florence 08) 41 K Rb (Florence 08) 85 Rb Rb (JILA 06) Rb 133 Cs (Innsbruck, Durham 09 11) 1 (Steele, J. Vac. Sci. Technol. B 28, C6F1 (2010))

Laser cooling & Feshbach resonance Atoms in which laser cooling has been demonstrated 1 : Alkali metals Alkaline earth metals Noble Gases Lanthanide Others Li Mg He Dy Cr Na Ca Ne Er Ag K Sr Ar Tm Cd Rb Ra Kr Yb Hg Cs Ba Xe Al Fr Feshbach molecules: 6 Li (Innsbruck, Rice, Lab kaslter-brassel, MIT 03-05), 7 Li (Rice 02, 09), 23 Na (MIT 98-99), 39 K(Florence 07), 40 K(JILA 03-04), 85 Rb(JILA 03), Rb(MPI 02-04), 133 Cs (Stanford, Innsbruck 04, 09), 52 Cr (Stuttgart 05) 6 Li 23 Na (MIT 04) 6 Li 40 K (Innsbruch 08) 6 Li Rb (Tubingen, British Columbia(Canada) 08) 7 Li Rb (Tubingen 09) 39 K Rb (Florence 08) 40 K Rb (Florence 08) 41 K Rb (Florence 08) 85 Rb Rb (JILA 06) Rb 133 Cs (Innsbruck, Durham 09 11) 1 (Steele, J. Vac. Sci. Technol. B 28, C6F1 (2010))

Laser cooling & Feshbach resonance Atoms in which laser cooling has been demonstrated 1 : Alkali metals Alkaline earth metals Noble Gases Lanthanide Others Li Mg He Dy Cr Na Ca Ne Er Ag K Sr Ar Tm Cd Rb Ra Kr Yb Hg Cs Ba Xe Al Fr Feshbach molecules: 6 Li (Innsbruck, Rice, Lab kaslter-brassel, MIT 03-05), 7 Li (Rice 02, 09), 23 Na (MIT 98-99), 39 K(Florence 07), 40 K(JILA 03-04), 85 Rb(JILA 03), Rb(MPI 02-04), 133 Cs (Stanford, Innsbruck 04, 09), 52 Cr (Stuttgart 05) 6 Li 23 Na (MIT 04) 6 Li 40 K (Innsbruch 08) 6 Li Rb (Tubingen, British Columbia(Canada) 08) 7 Li Rb (Tubingen 09) 39 K Rb (Florence 08) 40 K Rb (Florence 08) 41 K Rb (Florence 08) 85 Rb Rb (JILA 06) Rb 133 Cs (Innsbruck, Durham 09 11) 1 (Steele, J. Vac. Sci. Technol. B 28, C6F1 (2010))

Laser cooling & Feshbach resonance Atoms in which laser cooling has been demonstrated 1 : Alkali metals Alkaline earth metals Noble Gases Lanthanide Others Li Mg He Dy Cr Na Ca Ne Er Ag K Sr Ar Tm Cd Rb Ra Kr Yb Hg Cs Ba Xe Al Fr Feshbach molecules: 6 Li (Innsbruck, Rice, Lab kaslter-brassel, MIT 03-05), 7 Li (Rice 02, 09), 23 Na (MIT 98-99), 39 K(Florence 07), 40 K(JILA 03-04), 85 Rb(JILA 03), Rb(MPI 02-04), 133 Cs (Stanford, Innsbruck 04, 09), 52 Cr (Stuttgart 05) 6 Li 23 Na (MIT 04) 6 Li 40 K (Innsbruch 08) 6 Li Rb (Tubingen, British Columbia(Canada) 08) 7 Li Rb (Tubingen 09) 39 K Rb (Florence 08) 40 K Rb (Florence 08) 41 K Rb (Florence 08) 85 Rb Rb (JILA 06) Rb 133 Cs (Innsbruck, Durham 09 11) RbCs is one of the stability of quantum gases of alkali-metal dimers ex. XY+XY X2+Y2 XY+XY X+XY2 or X2Y+Y PRA, 81, 060703(R) (2010) 1 (Steele, J. Vac. Sci. Technol. B 28, C6F1 (2010))

Cooling Process Atoms collected in MOT Load magnetic quadrupole trap RF Evaporation in quadrupole trap Optical dipole trap loaded by reducing field gradient Levitated dipole trap and Final evaporation Reduce the beam intensity to lower the trap depth Apply a magnetic gradient to tilt the trap

Review Pyramid MOT Cold Atom Source 40ls -1 Ion Pump 55ls -1 Ion Pump Pyramid Chamber Two-species MOT Vacuum System - Cold-atomic beams source is created by Pyramid MOT. - >9x10 8 Rb & 4x10 8 133 Cs can be obtained by science MOT. - The optical potential is produced by two laser beams with waists of 70 µm and wavelength 1550nm from a 30 Watt IPG ELR-30-LP-SF

Review Pyramid MOT Cold Atom Source 40ls -1 Ion Pump 55ls -1 Ion Pump Pyramid Chamber Two-species MOT Vacuum System - Cold-atomic beams source is created by Pyramid MOT. - >9x10 8 Rb & 4x10 8 133 Cs can be obtained by science MOT. - The optical potential is produced by two laser beams with waists of 70 µm and wavelength 1550nm from a 30 Watt IPG ELR-30-LP-SF

Review Pyramid MOT Cold Atom Source 40ls -1 Ion Pump 55ls -1 Ion Pump Pyramid Chamber Two-species MOT Vacuum System - Cold-atomic beams source is created by Pyramid MOT. - >9x10 8 Rb & 4x10 8 133 Cs can be obtained by science MOT. - The optical potential is produced by two laser beams with waists of 70 µm and wavelength 1550nm from a 30 Watt Cloud Centre (Pixels) 350 1.6 y=y0+a*exp(-x/ta y0 331.6(2) A 16.6(5) 345 xc 15.3(1) 1.4 w 38.7(2) tau 193(23) 340 335 330 325 320 315 ODNumber (x10 6 ) 1.2 1.0 0.8 0.6 0.4 ODNumber IPG ELR-30-LP-SF 0 10 20 30 40 50 60 70 80 90 HoldTime (ms) 0.2 100 150 200 250 300 350 400 Modulation Frequency (Hz)

Rb BEC in a levitated crossed dipole trap Atoms are transferred into 1,+1> from 1,-1> by adiabatic rapid passage. A 26 x 26 mm square coil of 3 turns are driven to create an RF Filed at 1.5 MHz. A bias field of 22.4 G is then switched on to cross the RF Zeeman resonance at 2.1 G. J. Phys. B: At. Mol. Phys. 17 (1984) 4169-4178

Rb BEC in a levitated crossed dipole trap Atoms are transferred into 1,+1> from 1,-1> by adiabatic rapid passage. A 26 x 26 mm square coil of 3 turns are driven to create an RF Filed at 1.5 MHz. A bias field of 22.4 G is then switched on to cross the RF Zeeman resonance at 2.1 G. J. Phys. B: At. Mol. Phys. 17 (1984) 4169-4178 Carsten Klempt Thesis

Rb BEC in a levitated crossed dipole trap Atoms are transferred into 1,+1> from 1,-1> by adiabatic rapid passage. A 26 x 26 mm square coil of 3 turns are driven to create an RF Filed at 1.5 MHz. A bias field of 22.4 G is then switched on to cross the RF Zeeman resonance at 2.1 G. J. Phys. B: At. Mol. Phys. 17 (1984) 4169-4178

Rb BEC in a levitated crossed dipole trap The phase-space density trajectory to BEC of Rb ( 1,+1>) in the cross dipole trap. NBEC = 1 x 10 6 Control the depth of the levitated crossed dipole trap by manipulating the magnetic field gradient. C. Chin, Phys. Rev. A, 78, 011604(R), 2008 Sympathetic cooling of different spin states in the levitated cross dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm. Application of the experiment to sympathetic cooling of 133 Cs. The dipole trap potential corresponds to 100 mw in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G. Eur. Phys. J. D ((DOI: 10.1140/epjd/e2011-10720-5))

Rb BEC in a levitated crossed dipole trap The phase-space density trajectory to BEC of Rb ( 1,+1>) in the cross dipole trap. NBEC = 1 x 10 6 Control the depth of the levitated crossed dipole trap by manipulating the magnetic field gradient. C. Chin, Phys. Rev. A, 78, 011604(R), 2008 Sympathetic cooling of different spin states in the levitated cross dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm. Application of the experiment to sympathetic cooling of 133 Cs. The dipole trap potential corresponds to 100 mw in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G. Eur. Phys. J. D ((DOI: 10.1140/epjd/e2011-10720-5))

Rb BEC in a levitated crossed dipole trap The phase-space density trajectory to BEC of Rb ( 1,+1>) in the cross dipole trap. NBEC = 1 x 10 6 Control the depth of the levitated crossed dipole trap by manipulating the magnetic field gradient. C. Chin, Phys. Rev. A, 78, 011604(R), 2008 Sympathetic cooling of different spin states in the levitated cross dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm. Application of the experiment to sympathetic cooling of 133 Cs. The dipole trap potential corresponds to 100 mw in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G. Eur. Phys. J. D ((DOI: 10.1140/epjd/e2011-10720-5))

Rb BEC in a levitated crossed dipole trap The phase-space density trajectory to BEC of Rb ( 1,+1>) in the cross dipole trap. NBEC = 1 x 10 6 Control the depth of the levitated crossed dipole trap by manipulating the magnetic field gradient. C. Chin, Phys. Rev. A, 78, 011604(R), 2008 Sympathetic cooling of different spin states in the levitated cross dipole trap by a tilting potential. The inset shows the vertical cross-section through the potential minimum for a beam power of 0.45 W and a magnetic field gradient of 13 G/cm. Application of the experiment to sympathetic cooling of 133 Cs. The dipole trap potential corresponds to 100 mw in each beam, a magnetic field gradient of 38 G/cm and a bias field of 22.4 G. Cs Rb Eur. Phys. J. D ((DOI: 10.1140/epjd/e2011-10720-5))

hn 2 i,l 3 = n l C ~ 133 Cs BEC in the mcross-dipole a4 trap El = n R = 8 a2 1+k 2 a 2,k = m R Ṅ N = 1 L 2 hni L 3 hn 2 i,l 3 = n l C ~ m a4 a(b) (a 0 ) 4000 2000 0-2000 a(b) Cs aa s-basis -4000 0 200 400 600 800 1000 B (G) 3,-3> 3,+3> Rb a~100a0

hn 2 i,l 3 = n l C ~ 133 Cs BEC in the mcross-dipole a4 trap El = n R = 8 a2 1+k 2 a 2,k = m R Ṅ N = 1 L 2 hni L 3 hn 2 i,l 3 = n l C ~ m a4 a(b) (a 0 ) 4000 2000 0-2000 a(b) Cs aa s-basis -4000 0 200 400 600 800 1000 B (G) 3,-3> 3,+3> Phys. Rev. Lett. 91,123201-1, 2003 Rb a~100a0

133 Cs BEC in the cross-dipole trap γ = 2.5(2)

133 Cs BEC in the cross-dipole trap γ = 2.5(2) γ = 5.6(3)

133 Cs BEC in the cross-dipole trap To avoid the interspecies loss and optimise the transfer of 133 Cs, lower RF frequency or a resonant light to remove all Rb. The resulting loading is highly efficient with ~50% of 133 Cs transferred into dipole trap. This is double the atoms number loaded compared to Rb absence case. γ = 2.5(2) γ = 5.6(3)

133 Cs BEC in the cross-dipole trap To avoid the interspecies loss and optimise the transfer of 133 Cs, lower RF frequency or a resonant light to remove all Rb. The resulting loading is highly efficient with ~50% of 133 Cs transferred into dipole trap. This is double the atoms number loaded compared to Rb absence case. NBEC of 133 Cs = 8 x 10 4 γ = 2.5(2) γ = 5.6(3)

133 Cs BEC in the cross-dipole trap To avoid the interspecies loss and optimise the transfer of 133 Cs, lower RF frequency or a resonant light to remove all Rb. The resulting loading is highly efficient with ~50% of 133 Cs transferred into dipole trap. This is double the atoms number loaded compared to Rb absence case. NBEC of 133 Cs = 8 x 10 4 γ = 2.5(2) γ = 5.6(3)

Cs BEC window Optimising the magnetic field: BEC window

Toward Dual BEC 1) The calculated polarisabilities in atomic unit are ~ 572 a0 3 for 133 Cs and ~ 425 a0 3 for Rb at 1550 nm. Phys. Rev. A, 73, 022505, 2006. 2) A strong interspecies loss after loading into the levitated dipole trap. -τcs= 0.8(1) s, τrb= 4(1) & 70(10) s. -τrb= 0.9(2) s, τcs= 2(1) & 10(3) s. lower 3 body loss by reduce the peak density - change to a larger beam waist - decompress trap Ṅ N = L n2,l 3 = n l C m a 4 Rb 133 Cs 133 Cs Rb Eur. Phys. J. D (DOI: 10.1140/epjd/e2011-20015-6) Phys. Rev. A 84 011603(R) (2011)

Toward Dual BEC 1) The calculated polarisabilities in atomic unit are ~ 572 a0 3 for 133 Cs and ~ 425 a0 3 for Rb at 1550 nm. Phys. Rev. A, 73, 022505, 2006. 2) A strong interspecies loss after loading into the levitated dipole trap. -τcs= 0.8(1) s, τrb= 4(1) & 70(10) s. -τrb= 0.9(2) s, τcs= 2(1) & 10(3) s. lower 3 body loss by reduce the peak density - change to a larger beam waist - decompress trap Immiscible quantum degenerate mixture: the relative strength of the atomic interactions = g RbCs g Rb g Cs > 1,g ij =2 2 a ij ( m i + m j ) m i m j Phys.Rev. A, 65, 063614, 2002 Ṅ N = L n2,l 3 = n l C m a 4 Rb-> 133 Cs-> Rb In our case, B = 22.4 G, arb = 100a0 and acs = 280a0, the observation of immiscibility require arbcs > 165a0. arbcs = 650a0 (J. Hustson, private communication 2011) 133 Cs 133 Cs Rb Eur. Phys. J. D (DOI: 10.1140/epjd/e2011-20015-6) Phys. Rev. A 84 011603(R) (2011)

stochastic projected Gross-Pitaevskii equation NTUE L. K. Liu and Prof. S. C. Gou Rb-> 133 Cs-> @ i @t = P{ i h Ĥi GP i + i k B T µ i ĤGP i i+ dŵi dt } Ĥ i GP = h2 2m i r 2 + V i (r)+g ii i 2 + g 12 3 i 2 I. K. Liu, paper in preparation

stochastic projected Gross-Pitaevskii equation NTUE L. K. Liu and Prof. S. C. Gou Rb-> 133 Cs-> @ i @t = P{ i h Ĥi GP i + i k B T µ i ĤGP i i+ dŵi dt } Ĥ i GP = h2 2m i r 2 + V i (r)+g ii i 2 + g 12 3 i 2 I. K. Liu, paper in preparation

stochastic projected Gross-Pitaevskii equation NTUE L. K. Liu and Prof. S. C. Gou Rb-> 133 Cs-> @ i @t = P{ i h Ĥi GP i + i k B T µ i ĤGP i i+ dŵi dt } Ĥ i GP = h2 2m i r 2 + V i (r)+g ii i 2 + g 12 3 i 2 I. K. Liu, paper in preparation

Outline Bose-Einstein condensations (BECs) - Rb BEC in a combined magnetic and optical trap - 133 Cs BEC in a crossed dipole trap - A quantum degenerate Bose mixture of Rb and 133 Cs Feshbach molecules - The formation background and method - Rb 133 Cs Feshbach resonance measurement Stimulate Raman adiabatic passage (STIRAP) - a two-photon scheme transfers the Feshbach molecules into the rovibronic ground state Summary

Feshbach resonances Feshbach resonances: C. Chin, Rev. Mod. Phys. 82, 1225-1286 (2010) F. Ferlaino et al., arxiv: 0809.3920 (2009)

Feshbach resonances Position of Last Bound State:

Feshbach resonances Position of Last Bound State:

Feshbach resonances Position of Last Bound State:

Feshbach resonances Position of Last Bound State:

Feshbach resonances Position of Last Bound State:

Cs Feshbach resonances (6 50 G) Optimising the magnetic field: BEC window

Working at High Magnetic Fields Preliminary Data 10000 Cs evaporation at high fields: Cs aa Scattering length, s+d+g basis 5000 Scattering length (a 0 ) 0-5000 -10000 0 200 400 600 800 1000 Magnetic field (G)

Working at High Magnetic Fields Preliminary Data 10000 Cs evaporation at high fields: Cs aa Scattering length, s+d+g basis 5000 Scattering length (a 0 ) 0-5000 -10000 0 200 400 600 800 1000 Magnetic field (G) unitarity limit Few-Body Syst (2011 51: 113-133)

Working at High Magnetic Fields Preliminary Data Cs evaporation at high fields: Loss vs Field Cooling efficiency vs Field 10000 Cs aa Scattering length, s+d+g basis 1.1 Scattering length (a 0 ) 5000 0-5000 Normalised atom number 1.0 0.9 0.8 0.7 0.6 780 790 800 810 820 830 840 Magnetic field (G) 0.54 0.53-10000 0 200 400 600 800 1000 Magnetic field (G) Temperature (µk) 0.52 0.51 0.50 0.49 0.48 0.47 0.46 0.45 780 790 800 810 820 830 840 Magnetic field (G) unitarity limit Few-Body Syst (2011 51: 113-133)

Working at High Magnetic Fields Preliminary Data Cs evaporation at high fields: Loss vs Field Cooling efficiency vs Field 10000 Cs aa Scattering length, s+d+g basis 1.1 Scattering length (a 0 ) 5000 0-5000 Normalised atom number 1.0 0.9 0.8 0.7 0.6 780 790 800 810 820 830 840 Magnetic field (G) 0.54 0.53-10000 0 200 400 600 800 1000 Magnetic field (G) Temperature (µk) 0.52 0.51 0.50 0.49 0.48 0.47 0.46 0.45 780 790 800 810 820 830 840 Magnetic field (G) unitarity limit Few-Body Syst (2011 51: 113-133)

Toward Dual BEC 1) The calculated polarisabilities in atomic unit are ~ 572 a0 3 for 133 Cs and ~ 425 a0 3 for Rb at 1550 nm. Phys. Rev. A, 73, 022505, 2006. 2) A strong interspecies loss after loading into the levitated dipole trap. -τcs= 0.8(1) s, τrb= 4(1) & 70(10) s. -τrb= 0.9(2) s, τcs= 2(1) & 10(3) s. lower 3 body loss by reduce the peak density - change to a larger beam waist - decompress trap Immiscible quantum degenerate mixture: the relative strength of the atomic interactions = g RbCs g Rb g Cs > 1,g ij =2 2 a ij ( m i + m j ) m i m j Phys.Rev. A, 65, 063614, 2002 Ṅ N = L n2,l 3 = n l C m a 4 Rb-> 133 Cs-> Rb In our case, B = 22.4 G, arb = 100a0 and acs = 280a0, the observation of immiscibility require arbcs > 165a0. arbcs = 650a0 (J. Hutson, private communication 2011) 133 Cs 133 Cs Rb Phys. Rev. A 84 011603(R) (2011)

RbCs Feshbach Resonance Preliminary Data RbCs Feshbach resonances

RbCs Feshbach Resonance Preliminary Data RbCs Feshbach resonances

RbCs Feshbach Resonance Preliminary Data RbCs Feshbach resonances Peak densities of Rb and 133 Cs are 1.6(1) x 10 12 cm -3 and 3.1(4) x 10 11 cm -3. The mixture contains 3.0(3) x 10 5 Rb and 2.6(4) x 10 4 133 Cs at 0.32(1) µk - the temperature is well below the p-wave threshold (kb x 56 µk based upon C6, Phys. Revs A 59, 390, 1999) - The presented Feshbach spectrum near 180 G is measured by evolving the mixture at a specific homogeneous magnetic field for 5 sec and each data point corresponds to an average of 3-5 measurements.

RbCs Feshbach Resonance Preliminary Data RbCs Feshbach resonances Position: 181.55(2) G Width: 0.45(7) G Theor. pos.: 181.65 G Position: 197.095(4) G Width: 0.09(1) G Theor. pos.: 197.067 G Theor. pos.: Zero crossing: Pole: 1125.4 G 1116.46 G J. Hutson, private communication (2011)

RbCs Feshbach Resonance RbCs Feshbach resonances Theor. pos.: Zero crossing: Pole: 1125.4 G 1116.46 G Innsbruck Durham J. Hutson, private communication (2011) Phys. Rev. A 79 042718 (2009)

RbCs Feshbach Resonance RbCs Feshbach resonances Theor. pos.: Zero crossing: Pole: 1125.4 G 1116.46 G Innsbruck Durham 10000 Cs aa Scattering length, s+d+g basis 5000 Scattering length (a 0 ) 0-5000 J. Hutson, private communication (2011) -10000 0 200 400 600 800 1000 Magnetic field (G) Phys. Rev. A 79 042718 (2009)

Outline Bose-Einstein condensations (BECs) - Rb BEC in a combined magnetic and optical trap - 133 Cs BEC in a crossed dipole trap - A quantum degenerate Bose mixture of Rb and 133 Cs Feshbach molecules - The formation background and method - Rb 133 Cs Feshbach resonance measurement Stimulate Raman adiabatic passage (STIRAP) - a two-photon scheme transfers the Feshbach molecules into the rovibronic ground state Summary

Stimulate Raman adiabatic passage (STIRAP) Rb: 5P 3/2 Cs: 6S 1/2 5P 1/2 6S 1/2 B 1 Π 5S 1/2 6P 3/2 5S 1/2 6P 1/2 c 3 Σ + Magneto-association Stimulated Raman Adiabatic Passage ~1569nm Feshbach Molecule Free Atoms a 3 Σ + ~980nm 5S 1/2 6S 1/2 X 1 Σ + Deeply Bound Molecule W. C. Stwalley Eur. Phys. J. D 31, 221 (2004) Phys. Chem. Chem. Phys. 13 18926 (2011)

Stimulate Raman adiabatic passage (STIRAP) Rb: Cs: Piezo Zerodur spacer 5P3/2 6S1/2 5P1/2 6S1/2 5S1/2 6P3/2 5S1/2 6P1/2 B1Π Mirrors (99.91 % reflectivity) c3σ+ Magneto-association Stainless steel mount Stimulated Raman Adiabatic Passage ~1569nm Free Atoms Feshbach Molecule a3σ+ 5S1/2 6S1/2 ~980nm X1Σ+ Deeply Bound Molecule FWHM: 270 khz FSR: 750 MHz Finesse: ~ 3000 W. C. Stwalley Eur. Phys. J. D 31, 221 (2004) Phys. Chem. Chem. Phys. 13 18926 (2011)

Summary Bose-Einstein condensations (BECs) Rb BEC in a combined magnetic and optical trap 133 Cs BEC in a crossed dipole trap A quantum degenerate Bose mixture of Rb and 133 Cs Feshbach molecules The formation background and method Rb 133 Cs Feshbach resonance measurement Rubidium Caesium Stimulate Raman adiabatic passage (STIRAP) a two-photon scheme transfers the Feshbach molecules into the rovibronic ground state (1) 3 Π Magneto-association Stimulated Raman Adiabatic Passage ~1569nm Feshbach Molecule Free Atoms a 3 Σ + 6S 1/2 ~980nm X 1 Σ + Deeply Bound Molecule

Thanks