Giant density fluctuations and other out-of-equilibrium properties of active matter. Francesco Ginelli

Similar documents
Lecture 3 summary. C4 Lecture 3 - Jim Libby 1

Multiquadrics method for Couette flow of a yield-stress fluid under imposed torques

4.1 Schrödinger Equation in Spherical Coordinates

EGN 3321 Final Exam Review Spring 2017

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Bethe-Salpeter Equation

4. Runge-Kutta Formula For Differential Equations

International Mathematical Forum, Vol. 9, 2014, no. 13, HIKARI Ltd,

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

P a g e 5 1 of R e p o r t P B 4 / 0 9

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data

Physics 232 Exam I Feb. 13, 2006

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2

The Particle-Hole Map: a computational tool to visualize electronic excitations

Eurasian International Center of Theoretical Physics, Eurasian National University, Astana , Kazakhstan

Chapter Linear Regression

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

Integral Equations and their Relationship to Differential Equations with Initial Conditions

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

X-Ray Notes, Part III

Chapter I Vector Analysis

Reinforcement learning

ME 141. Engineering Mechanics

Chapter 2. Review of Hydrodynamics and Vector Analysis

Physics 201, Lecture 5

Chapter 17. Least Square Regression

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

A L A BA M A L A W R E V IE W

Chapter 5. Long Waves

STOCHASTIC CALCULUS I STOCHASTIC DIFFERENTIAL EQUATION

Nonlocal Boundary Value Problem for Nonlinear Impulsive q k Symmetric Integrodifference Equation

Isotropic Non-Heisenberg Magnet for Spin S=1

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA

EMA5001 Lecture 3 Steady State & Nonsteady State Diffusion - Fick s 2 nd Law & Solutions

-HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF DISCRETE EQUATIONS ON DISCRETE REAL TIME SCALES

Decompression diagram sampler_src (source files and makefiles) bin (binary files) --- sh (sample shells) --- input (sample input files)

= y and Normed Linear Spaces

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as.

Electric Potential. and Equipotentials

dm dt = 1 V The number of moles in any volume is M = CV, where C = concentration in M/L V = liters. dcv v

Convergence tests for the cluster DFT calculations

Ch. 22: Classical Theory of Harmonic Crystal

Generalisation on the Zeros of a Family of Complex Polynomials

Reza Poultangari a a, b, * Mansour Nikkhah-Bahrami

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR

Physics 232 Exam I Feb. 14, 2005

FRACTIONAL MELLIN INTEGRAL TRANSFORM IN (0, 1/a)

Beechwood Music Department Staff

D zone schemes

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

I I M O I S K J H G. b gb g. Chapter 8. Problem Solutions. Semiconductor Physics and Devices: Basic Principles, 3 rd edition Chapter 8

Field due to a collection of N discrete point charges: r is in the direction from

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T.

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

AP Calculus AB Exam Review Sheet B - Session 1

Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues

Advanced Higher Maths: Formulae

ELECTROPHORESIS IN STRUCTURED COLLOIDS

T h e C S E T I P r o j e c t

Collocation Discrete Least Square (CDLS) Method for Elasticity Problems

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f

The Properties of Probability of Normal Chain

DYNAMIC BEHAVIOUR OF THE SOLUTIONS ON A CLASS OF COUPLED VAN DER POL EQUATIONS WITH DELAYS

Physics 232 Exam II Mar. 28, 2005

Describes techniques to fit curves (curve fitting) to discrete data to obtain intermediate estimates.

On the hydrogen wave function in Momentum-space, Clifford algebra and the Generating function of Gegenbauer polynomial

DIFFERENCE EQUATIONS

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes

Motion on a Curve and Curvature

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

K owi g yourself is the begi i g of all wisdo.

Professor Wei Zhu. 1. Sampling from the Normal Population

Rotations.

Suppose we have observed values t 1, t 2, t n of a random variable T.

Dividing Algebraic Fractions

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

( ) ( ) Weibull Distribution: k ti. u u. Suppose t 1, t 2, t n are times to failure of a group of n mechanisms. The likelihood function is

ON TOTAL TIME ON TEST TRANSFORM ORDER ABSTRACT

Mathematical Statistics

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea

The Stability of High Order Max-Type Difference Equation

The formulae in this booklet have been arranged according to the unit in which they are first

Lagrangian & Hamiltonian Mechanics:

The Existence and Uniqueness of Random Solution to Itô Stochastic Integral Equation

H STO RY OF TH E SA NT

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

KINEMATICS OF RIGID BODIES RELATIVE VELOCITY RELATIVE ACCELERATION PROBLEMS

Mark Scheme (Results) January 2008

Handout on. Crystal Symmetries and Energy Bands

THIS PAGE DECLASSIFIED IAW E

Chapter 1 Fundamentals in Elasticity

Transcription:

G desy flucuos d ohe ou-of-equlum popees of cve me Fcesco Gell Isu des Sysèmes Complees, Ps-Ile-de-Fce d SPEC, CEA/Scly Wh: H. Ché S. Rmswmy S. Msh R. Moge

Acve pcles possess el degees of feedom whch llow hem o self popel hemselves y ecg eegy fom he evome d dsspe o move wh pefeed deco. Self popelled pcles hus cy pefeed deco of moo whch c e oeed y ecos wh ey pcles. (A) (B) Vecl sheckg (C) (D) Lel moveme Euope slg Dsspo y fco Dve gul ods o suse

Esemles of ecg cve pcles: spoeous symmey ekg d collecve moo Slgs flock - Pedo emp Rome hks o Cludo Cee Isuo Supeoe d Sà - Rom - Ily STARFLAG

Collecve moo s chcezed y spoeous symmey ekg pheomeo. Symmey ekg my hppe wh locl ecos oly, o glol odeg feld(s) d whou y ovous lede. The symmey oke odeed phse s chcezed y emkle ou-of equlum popees Smple mcoscopc models ppoch Smple mcoscopc dymcs. Pcles e desced y he off-lce poso d deco They hve oly locl ecos.,, N Dve-ovedmped ppomo: hey evolve wh sychoous dscee me sochsc dymcs (whose me sep s of he ode of he elo me) wh cos modulo velocy v 0. No eel felds e pese.

Vcsek model ( movg sps ) Vcsek e l, PRL (995) Scly locl eco ge: Algme ccodg o locl ode pmee eghohood (vege deco of he eghos) Dsplceme wh cos modulo velocy, oke Glle vce v 0 R ( η)o ~ ~ ~ f < v 0 R R ( η) s oo y dom, del coeled gle(s) ( η)o v ufomly dsued (sold) gle lyg oud v wh mplude η

Compeo ewee desy d ose leds o ode Sog ose: dsodeed se Low ose: log ge ode (Mem-Wge heoem does o hold) Low desy ccl le: l η c ~ d d ~ l η pes uech o odeed phse (cose-ged desy feld) L6384, /8 (3M pcles)

G ume flucuos chceze he odeed phse he low ose egme Defe volumes of cesg le sze l Mesue he vege ( me) ume of pcles he volume d s ms flucuos l d A equlum ~ / Vcsek model (d, d3) 0.8 d d3 (veclly escled)

A hydodymc ppoch Toe & Tu, PRL (995), PRE (998) We hydodymc-lke Lgev equos fo desy c(, ) d v(, ) velocy felds (slow vles). Allow fo volo of Glle vce Solve y lezo oud desy homogeeous, odeed se c(,) c 0 δc, v(,) v 0 δv, Check ole ems y DRG lyss ( ) ( ) Compue ume desy sucue fco ( dveges lge wvelegh!!!) S ( q 0) d ( DRG esul) ~ 4 5 d3 (coecue) ~ 3 30 0.7666...

Iclude emc symmey Dve ovedmped dymcs: sychoous lgohm Fe eco ge, o eel felds ( ) ( ) T R R κ η η ~ ~ Acve emc o suse, d [ ] [ ] [ ] δ ~ f < κ ±D 0 Scl ode pmee: lges egevlue of he glol emc eso N

Some umecl esuls: d uech o odeed phse Sog ose: dsode Low ose: qus log ge ode (Mem-Wge heoem holds)

Eve lge g ume flucuos he odeed phse ~ V. Ny, S. Rmswmy & N. Meo, Scece (007)

Nemc coseg Devos fom ege Pood s lw: sho dsce cusp L ~ C() g ( ) c L ( ) ep L() ( ) ( ) ( ) S k kl 0.4

( ) ( ) N f s, Devg mesoscopc descpo y dec cose gg ( ) ( ) ( ) N f s,, ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( )( ) ( ) 444 4 3 444 4 44 4 3 44 4 0 0,, T N s T N s N s s f v f f f κ (y Io clculus) [ ] ( ) 0 0 4 v v T κ Defe ememeg Desy evoluo

Mulplcve ose eme ( ) ( ) ( ) N s f, κ ω ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) [ ] δ δ δ δ δ ω ω ' ' ' ',, 0 0 0 y y y y v f f v f f v N s s N s s ζ 0 ~ v T T s ose em Wh coelos ove he cose gg scle s I hs he sme coelos s (see D.S. De, J. Phys A (996))

0 0 A A I R θ θ θ Cose ged emc eso evoluo Epd oo m fo smll ose Gde epso s fo desy Epd he omlzo em up o secod ode (fo suffcly lge ol desy) ( ) ( ) T η η θ θ R R ~ ~ ( ) ( ) ( ) N f s,,

Cose ged Lgev equos [ ] ( ) [ ] ( ) ξ ( ) Ξ 3 4 g Γ [ ] [ ] [ ] δ wh: Γ [ ] Γ [ ] Γ [ ] Γ [ ] ( ) Ξ 3 4 g Γ ( ) ( ) K, η σ g

[ ] ( ) [ ] ( ) ξ [ ] ( ) [ ] ( ) ξ ( ) Ξ 3 4 g Γ Mulplcve Nose Ou of equlum cue em (co e deved fom coec symmey Fck fee eegy em) Voles flucuo dsspo Algme Cose ged Lgev equos

A pedgogcl check: ck o Bow pcles - p p κ w w w.p. w.p. p - p Sce [ ] [ ] [ ] ( ) q ( p ) [ ] wh δ [ q(, ) ] [ (, )] ( ') ( ) ( )[ ] q v0δ δ y p p / Bow pcles!! δ

Compso wh mcoscopc ehvo: Coseg Mcoscopc cve emcs Lgev equos Deemsc veso of mesoscopc dymcs

Compso wh mcoscopc ehvo: Segego Mcoscopc dymcs Lgev dymcs mulplcve ose Lgev dymcs ddve ose

Segego ohe self popelled pcles models Vcsek model, s ose s sed owds he odedsodeed so Odeed, splly homogeeous Bd egme Dsodeed phse Wekly ecg soly oecs

Pol pcles wh emc ecos (wh F. Peu, M. Be)

Coclusos Esemles of cve pcle hve geue o-equlum feues Cpued y smple models G ume desy flucuos, supedffuso, Segego pheome wh o-shp efces Coec ose coelos e eeded Lgev descpo