arxiv: v1 [math.mg] 25 Apr 2016

Similar documents
arxiv: v1 [math.mg] 6 Dec 2016

Practice Final Solutions

Exercises for Multivariable Differential Calculus XM521

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

MA 351 Fall 2007 Exam #1 Review Solutions 1

The Development of the Two-Circle-Roller in a Numerical Way

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Problem Set 5 Math 213, Fall 2016

SOLUTIONS TO SECOND PRACTICE EXAM Math 21a, Spring 2003

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

MATH Final Review

Affine surface area and convex bodies of elliptic type

1 First and second variational formulas for area

MATHS 267 Answers to Stokes Practice Dr. Jones

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Tangent and Normal Vectors

14. Rotational Kinematics and Moment of Inertia

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

Ma 1c Practical - Solutions to Homework Set 7

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

Deviation Measures and Normals of Convex Bodies

Math 20C Homework 2 Partial Solutions

Final Review Worksheet

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

MATH 52 FINAL EXAM SOLUTIONS

MATH 332: Vector Analysis Summer 2005 Homework

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

Print Your Name: Your Section:

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w.

HOMEWORK 8 SOLUTIONS

MEASURE OF PLANES INTERSECTING A CONVEX BODY

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Review problems for the final exam Calculus III Fall 2003

On Spatial Involute Gearing

Final exam (practice 1) UCLA: Math 32B, Spring 2018

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Lecture Notes Introduction to Vector Analysis MATH 332

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

THE ISODIAMETRIC PROBLEM AND OTHER INEQUALITIES IN THE CONSTANT CURVATURE 2-SPACES

FFTs in Graphics and Vision. Homogenous Polynomials and Irreducible Representations

MATH H53 : Final exam

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Hyperbolic Geometry on Geometric Surfaces

arxiv: v1 [math.dg] 11 Nov 2007

Solutions for the Practice Final - Math 23B, 2016

A test for a conjunction

UNIVERSITY OF DUBLIN

Exact Solutions of the Einstein Equations

APPM 2350, Summer 2018: Exam 1 June 15, 2018

MAC Calculus II Spring Homework #6 Some Solutions.

Questions Q1. The function f is defined by. (a) Show that (5) The function g is defined by. (b) Differentiate g(x) to show that g '(x) = (3)

Math 233. Practice Problems Chapter 15. i j k

Mathematics of Physics and Engineering II: Homework problems

Vectors, dot product, and cross product

Squircular Calculations

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Page Points Score Total: 210. No more than 200 points may be earned on the exam.

Length of parallel curves and rotation index

On Spatial Involute Gearing

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Calculus Vector Principia Mathematica. Lynne Ryan Associate Professor Mathematics Blue Ridge Community College

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

MTHE 227 Problem Set 2 Solutions

Volumes of Solids of Revolution Lecture #6 a

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

Solutions to Homework 1

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8).

Supporting Information

One side of each sheet is blank and may be used as scratch paper.

16.2 Line Integrals. Lukas Geyer. M273, Fall Montana State University. Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall / 21

C4 "International A-level" (150 minute) papers: June 2014 and Specimen 1. C4 INTERNATIONAL A LEVEL PAPER JUNE 2014

Isometric elastic deformations

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter.

Major Ideas in Calc 3 / Exam Review Topics

Surfaces in the Euclidean 3-Space

Vector Calculus lecture notes

Figure 25:Differentials of surface.

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

27. Folds (I) I Main Topics A What is a fold? B Curvature of a plane curve C Curvature of a surface 10/10/18 GG303 1

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor

Exam 1 Review SOLUTIONS

arxiv: v1 [math.dg] 28 Jun 2008

arxiv: v3 [math.mg] 3 Nov 2017

Final exam (practice 1) UCLA: Math 32B, Spring 2018

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Lecture 10 - Moment of Inertia

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Parametric Equations and Polar Coordinates

Euler Characteristic of Two-Dimensional Manifolds

Multivariable Calculus Notes. Faraad Armwood. Fall: Chapter 1: Vectors, Dot Product, Cross Product, Planes, Cylindrical & Spherical Coordinates

Review Sheet for the Final

Green s Theorem. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Green s Theorem

Transcription:

The mean width of the oloid and integral geometric applications of it Uwe Bäsel arxiv:64.745v math.mg] 5 Apr 6 Abstract The oloid is the convex hull of two circles with equal radius in perpendicular planes so that the center of each circle lies on the other circle. We calculate the mean width of the oloid in two ways, first via the integral of mean curvature, and then directly. Using this result, the surface area and the volume of the parallel body are obtained. Furthermore, we derive the expectations of the mean width, the surface area and the volume of the intersections of a fixed oloid and a moving ball, as well as of a fixed and a moving oloid. Mathematics Subject Classification: 5A5, 5A5, 5A, 6D5 Keywords: Oloid, convex hull, integral of mean curvature, mean width, Steiner formula, parallel body, intrinsic volumes, principal kinematic formula Introduction The oloid Ω r is the convex hull of two circles k A, k B with equal radius r in perpendicular planes so that the center of each circle lies on the other circle see Figures and ). Dirnböck & Stachel 4, p. 7] calculated the surface area and the volume of the oloid see also 4], 5], and Equations 5), 6), 7) and 8) of the present paper). The surface Ω r is part of a developable surface 4], ], 4], 5]. Figure : The circles k A and k B with r Figure : The oloid Ω Finch 5] calculated surface areas, volumes and mean widths of the convex hulls of three different configurations of two orthogonal disks with equal radius. The mean width b of every convex hull is determined twice: ) using the integral M of the mean curvature and the relation

b M/π), ) calculating b directly. According to 4, pp. 5-6], the circles with r can be defined by k A : { x, y, z) R : x + y + /) z }, k B : { x, y, z) R : y /) + z x } ) see Fig. ). A parametrization of the surface Ω, p. 65, Eq. )] is with x, y, z) T ωm, t) ω m, t), ω m, t), ±ω m, t)) T, m, π t π, ) ω m, t) m) sin t, ω m, t) m ) + m ) + m ) ω m, t) m +. To the authors knowledge, the mean width of the oloid is not aready known. In Section we calculate the mean width of Ω r using the integral of mean curvature, and in Section 4 we calculate it directly. With the help of this result we derive the volume, the surface area and the mean width of the parallel body of Ω r in Section 5. Using the principal kinematic formula of integral geometry, the expectations of the mean width, the surface area and the volume of the intersections of a fixed oloid and a moving ball, as well as of a fixed and a moving oloid are calculated in Section 6. Preliminaries In the following, we work in the real vector space R with its standard scalar product a, b a b and its vector product a b for two vectors a a, a, a ) T, b b, b, b ) T. We denote the partial derivatives ω m, ω t of ω ωm, t) see )) by ω m, ω t, and so on. Using ), for the coefficients g E, g F g, g G of the first fundamental form see e. g. 6, pp. 87-88], translation: p. 68) we find g ω m, ω m, g ω m, ω t tant/), g ω t, ω t m 4m + ) cos t 4m ) +, ) + ) g detg jk ) g g g g g g g m ) ] ) + ). Now, we able to calculate the surface area of the oloid Ω : / SΩ ) ds dsm, t) gm, t) dm dt Ω Ω t π/ m / / m) + ] 4 gm, t) dm dt 4 dm dt ) + ) t m / t m + ) + ) dt. 5), ) 4)

Mathematica evaluates this integral to SΩ ) π 4π. 6) Now, we calculate the volume of Ω, and start with / V Ω ) z dx dy ω m, t) ω m, t), ω m, t)) t π/ m m, t) dm dt / 4 ω m, t) ω m, t), ω m, t)) t m m, t) dm dt. From ) it follows that So we have Mathematica finds where ω m, t), ω m, t) m, t) V Ω ) 4 ω m, t) m ω m, t) m / t / ω m, t) t ω m, t) t + m). m + + m) dm dt m + dt. 7) ) V Ω ) Kk) F π/, k) K / ) + E / )], 8) is the complete elliptic integral of the first kind, and Ek) Eπ/, k) dx k sin x, 9) k sin x dx ) is the complete elliptic integral of the second kind. A numerical integration integration of 7) and evaluation of 8) with Mathematica yields the decimal expansion see also ]). V Ω ).548468447485669759 The integral of mean curvature The surface Ω of the oloid Ω is piecewise continuously differentiable. We denote by H the mean curvature in one point of Ω. The circles k A and k B see )) produce two edges ε and ε, respectively, that are smooth curves. Let α αt) denote the angle between the two unit normal vectors in every point of ε. Applying the general formula for the integral M of the mean curvature see, pp. 76-77, Eqs..5),.7)]; cp. the formula for the mean width in 5, p. ]) to Ω gives MΩ ) H ds + Ω α ds ε j Hm, t) dsm, t) + Ω αt) dt ε ) j

For the unit normal vector one finds n n, n, n ) T ω m ω t ω m ω t sint/), cost/), + cost/) ) T. ) Since Ω is part of a developable surface and the line segments t const, m are part of the generators of Ω see 4], ]), it is not surprising that n does not depend on m. The mean curvature in a point of a surface is defined by H κ + κ ) g g b g b + g b ), where κ, κ are the principal curvatures, b ik are the coefficients of the second fundamental form see e. g. 6, p. 99], translation: p. 79), and g ik, g are given by 4). In our case we have and Hm, t) dsm, t) Hm, t) gm, t) dm dt g g b g b + g b ) dm dt It follows that b L ω mm, n, b M ω mt, n, b N ω tt, n Hm, t) dsm, t) g m, t)b m, t) gm, t) m ) + ). dm dt m ) + ) + m ) ] dm dt and Ω H ds m / π/ 4 dm dt + / t π/ Hm, t) dsm, t) + dt / dm / π/ + dt. + dt Mathematica finds / dt + dt K / ), ) where K is the complete elliptic integral of the first kind 9), hence Ω H ds K / ). 4) A handmade proof for the relation in ) may be found in Section 7. Now we calculate the integral of mean curvature for the edges ε, ε see )). Therefore, we consider ε. The first unit normal vector n nt) in a point t π/, π/], m is given by ), the second is n n t) n, n, n ) T. So one gets αt) nt), n t) ), 4

hence ε α dt / π/ αt) dt / αt) dt / ) dt. We observe that the inverse function of the integrand is equal to the integrand, and hence the graph of the integrand symmetrical with respect to the line ft) t. As solution of ft) t ) we find t π/, hence ε α dt 4 4 4π π 4 dt 4 ) ] t dt 4 ) dt π 4 π dt π ) dt 4 ] dt π t dt dt. 5) Mathematica and we, too, are not able to solve the last integral. It looks similar to Coxeter s integral in 7, pp. 94-]. The NIntegrate-function of Mathematica provides hence I : dt.87785484744955857657, 6) ε α dt 7.948884549948865. From ), 4), 5), with 9) and 6), it follows that the integral M of the mean curvature of Ω r is given by MΩ r ) K / ) ) + π 4I r.76449769654446699 r. For a convex body K, the mean width b is given by the relation bk) MK)/π see, p. 78, Eq..9)]). So we we have proved the following theorem. Theorem. The mean width of the oloid Ω r is bωr ) π K / ) + π 4 ) π I r.967696658876664946 r, where K is the complete elliptic integral of the first kind 9), and I cos x + cos x dx. 5

4 Direct calculation of the mean width Let P {x, y, z) R : ax + by + cz d} be a supporting plane of Ω given in the Hesse normal form. So N a, b, c) T with a, b, c R, a + b + c is the normal unit vector of P and d is the distance of P from the origin. P intersects the plane z in the line and the plane x in the line The equation of L xy in Hesse normal form is L xy {x, y) R : ax + by d}, L yz {y, z) R : by + cz d}. ax a + b + by a + b d a + b, therefore, the distance d of L xy from the center, /, ) of k A is d a a + b + b a + b ) d b/ + d a + b a + b see e. g., p. 7]). Since L xy is tangent to k A, we have b/ + d a + b d a + b b. Analogously one finds that the distance d of L yz from the center, /, ) of k B is d b/ d a + b, hence d a + b + b. It follows that the distance p between the support plane P and the origin is { a p max + b b, a + b + b }. Now we use spherical coordinates ϕ π/ and ϑ π/ as coordinates of the unit normal vector N: a cos ϕ sin ϑ, b sin ϕ sin ϑ, c cos ϑ. So we have and can write p as pϕ, ϑ) max a + b b sin ϕ ) sin ϑ, a + b + b sin ϕ sin ϑ + sin ϕ sin ϑ + cos ϑ, { ) sin ϕ sin ϑ, } sin ϕ sin ϑ + sin ϕ sin ϑ + cos ϑ. 6

Clearly, p pϕ, ϑ) is the support function of Ω in the direction ϕ, ϑ. Hence the width b of Ω r in this direction is given by bϕ, ϑ) pϕ, ϑ) + pπ + ϕ, π ϑ). In order to calculate the mean width b of Ω we have to integrate over all directions, hence over the unit hemisphere. Let ds dsϕ, ϑ) sin ϑ dϑ dϕ denote the surface element of the unit sphere, we have bω ) bϕ, ϑ) dsϕ, ϑ) dsϕ, ϑ) pϕ, ϑ) + pπ + ϕ, π ϑ)] dsϕ, ϑ) dsϕ, ϑ) pϕ, ϑ) dsϕ, ϑ) + pπ + ϕ, π ϑ) dsϕ, ϑ) dsϕ, ϑ) π pϕ, ϑ) dsϕ, ϑ) dsϕ, ϑ) cp., p. 78, Eq..9)]), where the last equal sign follows from the fact that there are two congruent portions of Ω in the half spaces y and y. Due to the symmetry of Ω with respect to the planes z and x we can restrict the spherical coordiates to the intervals ϑ π/ and ϕ π/, respectively, hence bω ) pϕ, ϑ) dsϕ, ϑ) dsϕ, ϑ) 4 π /6 4 π /6 + ϕ + ξϕ) ϕ ϑ ϕπ/6 ϑξϕ) ϑ pϕ, ϑ) sin ϑ dϑ dϕ pϕ, ϑ) sin ϑ dϑ dϕ sin ϑ dϑ dϕ ) sin ϕ sin ϑ + sin ϕ sin ϑ + cos ϑ sin ϑ dϑ dϕ sin ϕ ) sin ϑ dϑ dϕ 7) sin ϕ sin ϑ + sin ϕ sin ϑ + cos ϑ ) ] sin ϑ dϑ dϕ, where ξϕ) + sin ϕ + sin ϕ is the solution of the equation sin ϕ ) sin ϑ sin ϕ sin ϑ + sin ϕ sin ϑ + cos ϑ for ϑ ξϕ). Numerical integration of 7) with Mathematica gives bω ).9676966. 5 The parallel body For a convex body K R n and ϱ >, the set Minkowski sum) K + Bϱ n {x R n : dx, K) ϱ} is the parallel body of K at distance ϱ, where Bϱ n is the n-ball of radius ϱ, Bϱ n {x R n : x ϱ}, 7

and dx, K) is the distance between the point x and K. The volume of the parallel body is given by the Steiner formula n V n K + Bϱ n ) ϱ n j κ n j V j K), 8) where κ k j π k/ Γ + k/) is the volume of the k-dimensional unit ball B k, and V,..., V n are the intrinsic volumes of K., p., pp. -, p. 6] Using the relations in, p. ], where χ denotes the Euler characteristic, the intrinsic volumes of Ω r are V Ω r ) χ, V Ω r ) bω r ) MΩ r) π π K / ) + π 4 ] π I r, V Ω r ) SΩ r) πr, V Ω r ) V Ω r ) E / ) + K / )] ) r with E see )), K see 9)), and I see 6)). Let Ω r, ϱ denote the parallel body of Ω r at distance ϱ. Due to 8), its volume is V Ω r, ϱ ) V Ω r, ϱ ) κ V Ω r ) + κ V Ω r )ϱ + κ V Ω r )ϱ + κ V Ω r )ϱ V Ω r ) + V Ω r )ϱ + πv Ω r )ϱ + 4π V Ω r )ϱ V Ω r ) + SΩ r )ϱ + MΩ r )ϱ + 4π ϱ V Ω )r + SΩ )r ϱ + MΩ )rϱ + 4π ϱ. Applying, p. 8,.7)] allows to calculate the surface area S of Ω r, ϱ : SΩ r, ϱ ) SΩ r ) + MΩ r )ϱ + 4πϱ SΩ )r + MΩ )rϱ + 4πϱ. Clearly, the mean width of Ω r, ϱ is equal to bω r ) + ϱ, hence MΩ r, ϱ ) π bωr ) + ϱ ] π bω r ) + 4πϱ MΩ r ) + 4πϱ MΩ )r + 4πϱ see also, p. 8,.7)]). The results of the following theorem follow immediately. Theorem. The integral M of mean curvature, the surface area S and the volume V of the parallel body Ω r, ϱ are given by MΩ r, ϱ ) MΩ ) r + 4πϱ, SΩ r, ϱ ) 4πr + MΩ ) rϱ + 4πϱ, V Ω r, ϱ ) E / ) + K / )] r + 4πr ϱ + MΩ ) rϱ + 4π ϱ 9) with MΩ ) K / ) + π 4 cos x + cos x dx. 8

6 Intersections with an oloid Now, we apply our results and the principal kinematic formula to derive some expectations for the intersections of the oloid Ω r and the three-dimensional ball B r : B r of radius r, and of two oloids Ω r. The principal kinematic formula see, p. ]) for a fixed convex body K and a moving convex body M is for j {,..., n} given by n I j K, M) : V j K ϑm + x)) dλ x) dνϑ) α njk V k K)V n+j k M) ) R n with the notation and SO n SO n group of proper orientation-preserving) rotations, p. ], ϑ proper rotation, ϑ SO n, x translation vector, λ Lebesgue measure on R n, ν unique Haar measure on SO n with νso n ), p. 584], α njk k! κ kn + j k)! κ n+j k j! κ j n! κ n, α njk α njn+j k), α njj α njn, where κ k is the volume of the unit k-ball see 9)). Since the intersection of two convex sets is a convex set, we have I K, M) χk ϑm + x)) dλ x) dνϑ) SO n R n K ϑm + x) dλ x) dνϑ), ) R n SO n where B is the indicator function of the event B. So we see that I K, M) is the measure of the set of rigid motions bringing M into a hitting position with K see, p. 75], 8, p. 6, p. 67]). For n, ) gives I K, M) V K) V M) + V K) V M) + V K) V M) + V K) V M), kj I K, M) V K) V M) + π 4 V K) V M) + V K) V M), I K, M) V K) V M) + V K) V M), I K, M) V K) V M). From ) it follows that ) E V K M)] E V K M)] I K, M) I K, M). 4) is the expected volume of K M. Analogously, we get the expected mean width and the expected surface area: E b K M )] E V K M) ] I K, M) I K, M), 5) E S K M )] E V K M) ] I K, M) I K, M). 6) Clearly, it is possible to reverse the roles of the fixed body and the moving body. 9

Example. As an example we calculate the expected values 5), 6) and 4) for K Ω r and M B r, or, equivalently, for K B r and M Ω r. For the ball B r one easily gets V B r ) χb r ), V B r ) bb r ) 4r, V B r ) SB r) πr, V B r ) V B r ) 4πr 7). Note that these terms also follow from the general formula ) V k B r ) V k B r Vk B) r k k ) κ κ k r k, p. ], where κ k is the volume of the unit k-ball see 9)). Plugging ) and 7) in ) gives and I Ω r, B r ) r 6 I Ω r, B r ) r4 I Ω r, B r ) 4πr5 I Ω r, B r ) 8πr6 9 9π + π + 8E / ) + K / ) ] 4I, π + 6π + 6E / ) + K / ) ] 6I, π + E / ) + K / )], E / ) + K / )], E bωr B r ) ] I Ω r, B r ) I Ω r, B r ) π + 6π / ) / ) + 6E + K 6I 9π + π + 8E / ) + K / ) 4I r, E SΩ r B r ) ] I / ) / )] Ω r, B r ) I Ω r, B r ) 6π π + E + K 9π + π + 8E / ) + K / ) 4I r, E V Ω r B r ) ] I / ) / )] Ω r, B r ) I Ω r, B r ) 6π E + K 9π + π + 8E / ) + K / ) 4I ] r. Example. In the case K Ω r M, we have I Ω r, Ω r ) r I Ω r, Ω r ) r4 π I Ω r, Ω r ) 8πr5 I Ω r, Ω r ) 4r6 9 9π + 8E / ) + K / ) ] 4I, π 4 + E / ) + K / )) π + 6K / ) )] 8I, E / ) + K / )], E / ) + K / )], hence E bωr Ω r ) ] I / ) / )] Ω r, Ω r ) I Ω r, Ω r ) π4 + E + K π + 6K / ) 8I ] π 9π + 8E / ) + K / ) 4I ] r, E SΩ r Ω r ) ] I / ) / )] Ω r, Ω r ) I Ω r, Ω r ) 6π E + K 9π + 8E / ) + K / ) 4I r, E V Ω r Ω r ) ] I / ) / )] Ω r, Ω r ) I Ω r, Ω r ) 4 E + K 9π + 8E / ) + K / ) 4I ] r.

The following table shows numerical approximations for the expectations of the intersections. K M E bk ]/ M) r ]/ E SK M) r E V K M) ]/ r B r B r.966776.459654.55987756 Ω r B r.9696588.74676.8854 Ω r Ω r.858569464.8967.77556 7 Appendix Now we are going to show that the integral J : / dt + is equal to K / ) see )) without the use of Mathematica. With + + sin t ) 4 sin t ) ] sin t we have J / dt / ). sin t/) Now, following the argumentation in ], we put This gives Now let J so the angle t is transformed to hence Taking the differentials gives or hence csc t t π. t sint /) csc t /) sin t/) dt. sint/) sint /) sin ϕ, ϕ arcsin sint/) sint /), t ϕ, t t ϕ π. cos ) t dt sin ) t cos ϕ dϕ, ) ) t sin t dt sin cos ϕ dϕ, ) ) sin t sin t ϕ dt sin cos ϕ dϕ.

Plugging this in gives References J sint /) cos ϕ dϕ sint /) sin ϕ /) sin t /) sin ϕ dϕ π/ sin t /) sin ϕ dϕ / ) sin ϕ K / ). dϕ sin π/) sin ϕ ] Jean-François Alcover: Sequence A5447 in The On-Line Encyclopedia of Integer Sequences ), published electronically at https://oeis.org ] Uwe Bäsel, Hans Dirnböck: The Extended Oloid and Its Contacting Quadrics, J. Geometry Graphics 9 5), 6-77. http://www.heldermann.de/jgg/jgg9/jgg9/jgg9.htm See also: The extended oloid and its inscribed quadrics, arxiv: 5.799v math.mg] 4 Apr 5.) ] Karl Bosch: Mathematik-Taschenbuch,. Aufl., R. Oldenbourg Verlag, München/Wien, 99. 4] Hans Dirnböck, Hellmuth Stachel: The Development of the Oloid, J. Geometry Graphics 997), 5-8. http://www.heldermann-verlag.de/jgg/jgg 5/jgg.pdf 5] Steven R. Finch: Convex Hull of Two Orthogonal Disks, arxiv:.454v math.mg] Mar 6. 6] Erwin Kreyszig: Differentialgeometrie,. Aufl., Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 968. Translation: Introduction to Differential Geometry and Riemannian Geometry, Mathematical Expositions No. 6, University of Toronto Press 968.) 7] Paul J. Nahin: Inside Interesting Integrals, Springer, New York, 5. 8] Luis A. Santaló: Integral Geometry and Geometric Probability, Addison-Wesley, London, 976. 9] Rolf Schneider, Wolfgang Weil: Integralgeometrie, B. G. Teubner, Stuttgart 99. ] Rolf Schneider, Wolgang Weil: Stochastische Geometrie, B. G. Teubner, Stuttgart/Leipzig. ] Rolf Schneider, Wolfgang Weil: Stochastic and Integral Geometry, Springer-Verlag, Berlin/Heidelberg, 8. ] Klaus Voss: Integralgeometrie für Stereologie und Bildrekonstruktion, Springer-Verlag, Berlin/Heidelberg, 7. ] Eric W. Weisstein: Elliptic Integral of the First Kind. From MathWorld A Wolfram Web Ressource, http://mathworld.wolfram.com/ellipticintegralofthefirstkind.html

4] https://de.wikipedia.org/wiki/oloid, retrieved 7.4.6; https://en.wikipedia.org/wiki/oloid, retrieved 7.4.6 5] Oloïde Oloid), http://www.mathcurve.com/surfaces/orthobicycle/orthobicycle.shtml, retrieved.4.6 Author s address: Uwe Bäsel HTWK Leipzig, University of Applied Sciences, Faculty of Mechanical and Energy Engineering, PF 66, 45 Leipzig, Germany e-mail: uwe.baesel@htwk-leipzig.de