Vortices in Classical Systems

Similar documents
Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Anomalous magnetization peak effect in spiralgrown Bi2Sr2CaCu2Oy crystals

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Vortices in superconductors& low temperature STM

Quantum theory of vortices and quasiparticles in d-wave superconductors

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning.

High-Temperature Superconductors: Playgrounds for Broken Symmetries

Got Mott? Nanoscale Explorations of Electronic Transitions

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

Inhomogeneous spin and charge densities in d-wave superconductors

Quantum theory of vortices in d-wave superconductors

Heterogeneous vortex dynamics in high temperature superconductors

Magnetic relaxation of superconducting YBCO samples in weak magnetic fields

Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems

Superconductivity at Future Hadron Colliders

Superconductivity and Superfluidity

What's so unusual about high temperature superconductors? UBC 2005

Quantum dynamics in many body systems

Dual vortex theory of doped antiferromagnets

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Order and quantum phase transitions in the cuprate superconductors

Detecting boson-vortex duality in the cuprate superconductors

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Nuclear Magnetic Resonance to measure spin susceptibilities. NMR page 1 - M2 CFP Electronic properties of solids (F. Bert)

Scanning Tunnelling Microscopy Observations of Superconductivity

Electronic Noise Due to Thermal Stripe Switching

Vortex lattice pinning in high-temperature superconductors.

Vortex Checkerboard. Chapter Low-T c and Cuprate Vortex Phenomenology

Vortices in the cuprate superconductors

Nanoscale magnetic imaging with single spins in diamond

Vortex matter in HTS Grain Boundary Josephson Junctions: Intrinsic and Extrinsic d-wave Effects

Configuration-induced vortex motion in type II superconducting films with periodic magnetic dot arrays

Demonstration Some simple theoretical models Materials How to make superconductors Some applications

Introduction to Nanomechanics: Magnetic resonance imaging with nanomechanics

LECTURE 3: Refrigeration

Quantum Phase Slip Junctions

smaller mfp coh L type II

Materials Aspects aud. Application of Superconductivity

Scanning Tunneling Microscopy

Criteria for the validity of Amontons Coulomb s law; Study of friction using dynamics of driven vortices of superconductor

What s so super about superconductivity?

REPORT DOCUMENTATION PAGE

Tuning order in cuprate superconductors

Magnetic imaging and dissipation force microscopy of vortices on superconducting Nb films

Estimating the magnetic penetration depth using constant-height magnetic force microscopy images of vortices

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Metal-coated carbon nanotube tips for Magnetic Force Microscopy

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren

672 Advanced Solid State Physics. Scanning Tunneling Microscopy

Neutron scattering from quantum materials

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

Vortex States in a Non-Abelian Magnetic Field

Terahertz sensing and imaging based on carbon nanotubes:

Vortex Liquid Crystals in Anisotropic Type II Superconductors

Impurity states and marginal stability of unconventional superconductors

SUPPLEMENTARY INFORMATION

Enhanced pinning in high-temperature superconducting cuprate single crystals at low DC magnetic field

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

Superconductivity. Dirk van Delft and Peter Kes, "The discovery of superconductivity", Physics Today 63(9), 38, 2010.

UNIVERSITÀ DEGLI STUDI DI GENOVA

Magnetic Resonance Force Microscopy. Christian Degen Department of Physics, ETH Zurich, Switzerland

Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides

Techniques for inferring M at small scales

Tunneling Spectra of Hole-Doped YBa 2 Cu 3 O 6+δ

Supercondcting Qubits

Strongly Correlated Systems:

Superconducting Single-photon Detectors

MO-IMAGING OF GRANULAR AND STRUCTURED HIGH-T C SUPERCONDUCTORS

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

SUPERCONDUCTIVITY IN ACCELERATORS PART II : MIXED STATE

Andreev bound states in anisotropic superconductor junctions

SAMANTHA GORHAM FRANK H. MORRELL CAMPUS ADVISOR: Prof. TREVOR A. TYSON (NJIT)

Using SQUID VSM Superconducting Magnets at Low Fields

Effect of swift heavy ion irradiation on surface resistance of DyBa 2 Cu 3 O 7 δ thin films at microwave frequencies

Nitride HFETs applications: Conductance DLTS

SHANGHAI JIAO TONG UNIVERSITY LECTURE

Principles of Electron Tunneling Spectroscopy

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

How spin, charge and superconducting orders intertwine in the cuprates

QS School Summary

Superconducting Pinning by Magnetic Domains in a Ferromagnet-Superconductor Bilayer

Visualization of atomic-scale phenomena in superconductors

Batch production of YBCO disks for levitation applications.

Nernst effect in high T c superconductors


Superconductivity. Superconductivity. Superconductivity was first observed by HK Onnes in 1911 in mercury at T ~ 4.2 K (Fig. 1).

Baruch Rosenstein Nat. Chiao Tung University

Superconductivity and Quantum Coherence

epl draft M. L. Teague 1,A.D.Beyer 1,M.S.Grinolds 1,S.I.Lee 2 and N.-C. YEH 1 Korea

Sequential vortex hopping in an array of artificial pinning centers

arxiv:cond-mat/ v2 [cond-mat.supr-con] 15 May 2000

University of Antwerp Condensed Matter Theory Group Vortices in superconductors IV. Hybrid systems

Magnetic Force Microscopy practical

(a) (b) H=0 H=1kOe H=2kOe H=4kOe H=6kOe H=8kOe. (c) H=0 H=2kOe H=4kOe H=8kOe. H=0 H=2kOe H=4kOe H=8kOe. (d) Figure 1 (A. R. Bhangale et al.

Quantum phase transitions in Mott insulators and d-wave superconductors

Superconductivity - Overview

Supplementary Information for Enhanced critical current density. in the pressure-induced magnetic state of the high-temperature. superconductor FeSe

Transcription:

Vortices in Classical Systems

4 He-II vortices: Vortices in Quantum Systems STM of NbSe 2 vortices: G. A. Williams, R. E. Packard, Hess PRL (1989). Phys. Rev. Lett. 33, 280 (1974) Pan, Hudson, Davis, RSI (1999) Hall probe image of YBCO film at T = 40 K: Checkerboards in Bi 2 Sr 2 CaCu 2 O 8+x vortices: Gauss s 3.8 0 Hoffman et al, Science (2002) 20 um B applied = 1 Gauss

Single Vortex Manipulation in Superconducting Nb Vortices in Nb Film Cooled to 5.3K in 100G Eric Straver Jenny Hoffman Dan Rugar Kathryn Moler Δf=2.01Hz 1μm Stanford University Funded by Packard and AFOSR

Goals Part I: eliminate i uncontrolled vortex motion bigger magnets efficient power lines quieter sensors & circuits Part II: controlled single-vortex manipulation model for soft condensed matter vortex entanglement t vortex ratchet automaton Luttinger liquid FermiLab

Part I: eliminate uncontrolled vortex motion

Motivation: eliminate uncontrolled vortex motion 40 30 H c2 H* (where vortices move) Field (T) 20 YBCO 10 0 0 30 60 90 120 Temperature (K) Larbalestier, Nature 414, 368 (2001)

Motivation: eliminate uncontrolled vortex motion 40 30 H c2 H* (where vortices move) Field (T) 20 YBCO 10 0 0 30 60 90 120 Temperature (K) Larbalestier, Nature 414, 368 (2001) e- e- e- e-

Motivation: eliminate uncontrolled vortex motion 40 30 H c2 H* (where vortices move) Field (T) 20 YBCO 10 0 0 30 60 90 120 Temperature (K) Larbalestier, Nature 414, 368 (2001) Apply current I: Cooper pairs flow without dissipation e- e- e- e-

Motivation: eliminate uncontrolled vortex motion 40 30 H c2 H* (where vortices move) Field (T) 20 YBCO 10 0 0 30 60 90 120 Temperature (K) Larbalestier, Nature 414, 368 (2001) Apply current I: Cooper pairs flow without dissipation Normal electrons in vortex core cause dissipation when moved e- e- e- e- e e- ē- e- e-

Vortex Pinning Measurements: Bulk Transport 10 GB, B = 0 Tesla 4 GB, B = 1 Tesla intra-grain (upper scale) grain boundary Redwing et al, APL 75, 3171 (1999). Hogg et al, APL 78, 1433 (2001).

Vortex Pinning Measurements: Bulk Transport 10 GB, B = 0 Tesla 4 GB, B = 1 Tesla intra-grain (upper scale) grain boundary Redwing et al, APL 75, 3171 (1999). Hogg et al, APL 78, 1433 (2001). What s really going on here? First detectable Voltage = many, many vortices

Examples of Previous Single Vortex Depinning Force Measurements with Transport Current Finnemore and coworkers ongoing work (1988-present) Cabrera and coworkers 1992 + several other groups

Examples of Previous Single Vortex Depinning Force Measurements with Transport Current Finnemore and coworkers ongoing work (1988-present) Cabrera and coworkers 1992 But we d like a more reliable way to know the force at the vortex location; and to detect vortex motion with finer spatial resolution on order ξ ~ 10-20 nm + several other groups

Vortex Pinning Measurements: STM Imaging g reduce field from 3Teslato15Tesla 1.5 estimate pinning force from flux density gradient across twin boundary Maggio-Aprile et al, Nature 390, 487 (1997)

Vortex Pinning Measurements: STM Imaging g reduce field from 3Teslato15Tesla 1.5 estimate pinning force from flux density gradient across twin boundary Maggio-Aprile et al, Nature 390, 487 (1997) But we d like a more versatile way to directly measure pinning forces at arbitrary defects.

Magnetic Force Microscopy Pros and Cons of MFM Force between tip and sample: F = ( m B) Other signals Image cantilever resonant frequency Δff 0 ~ df z /dz better signal-to-noise Vertical force gradient imaging Horizontal force manipulation Tip Geometry Con: Imperfectly known Pro: Up to 20 nm spatial resolution Signal to Noise Con: Not as good as SQUIDs, Hall probes Pro: Good enough to see vortices Con: See atomic forces too Pro: Simultaneous topography Invasiveness Con: Tip exerts force on vortex Pro: Tip exerts force on vortex

Vortex Depinning in Nb T: Decreasing Pinning 5.2K 5.5K 6.0K 6.5K 7.0K 7.5K 4 μm Colormap adjusted separately for each image.

Vortex Pinning vs. Height at T = 5.5 K A z=576nm B z=518nm C z=461nm D z=403nm E z=346nm F z=288nm G z=230nm H z=173nm 2μ m Δ f (Hz) Δ f=0.63hz I -0.8-1.0-1.2-1 0 1 x (μ m) x y Δ f=0.73hz J -0.6-0.8-1.0-1 0 1 x (μ m) Δ f=0.85hz -0.2 K -0.5-0.8-1 0 1 x (μ m) Δ f=0.97hz Δ f=1.22hz 0.4 L 1.0M 0.0-0.4-1 0 1 x (μ m) 0.5 0.0-1 0 1 x (μ m) Δ f=1.50hz N 1.5 1.0 0.5-1 0 1 x (μ m) Δ f=2.02hz 30O 3.0O 2.0 1.0-1 0 1 x (μ m) Δ f=2.79hz P 500nm vortex motion event Important parameters: k spring = 2.1±0.7 N/m f 0 = 71128.28 Hz λ Nb = 90 nm

Model: Monopole Tip Monopole Vortex +M d offset z λ B -M superconductor vortex model vortex as monopole distance λ beneath surface --J. Pearl, J. Appl. Phys. 37, 4139 (1966). df dz z = 2k spr df f = M zφ 2π 0 ( x x 0 ) 2 ( y 2 2 2 ( x x ) + ( y y ) + ( z + λ + d ) 5/ 2 0 0 0 offset ) y 0 ) 2 + 2( z + λ + d offset ) 2 )

Quantifying the Depinning Force at T = 5.5 K 10-4 df/dz (N/m m) z (nm) 100 200 300 400 600 900 B -1.00-1.25 17G vs. z 4G vs. z -1.47-1.63-1.72-1.85-1.93-1.97 10-5 100 200 300 400 600 900 z+λ+d (nm) min

Quantifying the Depinning Force at T = 5.5 K 10-4 df/dz (N/m m) z (nm) 100 200 300 400 600 900 B -2.77-2.95-3.00-3.03-2.97-3.00-3.00-2.95 17G vs. z 4G vs. z 17G vs. z+λ+d λ min 4G vs. z+λ+d 10-5 min 100 200 300 400 600 900 z+λ+d (nm) min df z /dz ~ (z+λ+d) -3

Quantifying the Depinning Force at T = 5.5 K 10-4 df/dz (N/m m) z (nm) 100 200 300 400 600 900 B -2.77-2.95-3.00-3.03 z (nm) 100 200 300 400 500 600-2.97 17G vs. z -3.00 40-3.00 4G vs. z 30-2.95 17G vs. z+λ+d λ min 20 4G vs. z+λ+d min 10-5 100 200 300 400 600 900 z+λ+d (nm) min F z (pn) 10 4 Gauss 17 Gauss df z /dz ~ (z+λ+d) -3 5 400 500 600 700 800 900 z+λ+d min (nm)

Quantifying the Depinning Force at T = 5.5 K 10-4 df/dz (N/m m) z (nm) 100 200 300 400 600 900 B -2.77-2.95-3.00-3.03 z (nm) 100 200 300 400 500 600-2.97 17G vs. z -3.00 40-3.00 4G vs. z 30-2.95 17G vs. z+λ+d λ min 20 4G vs. z+λ+d min 10-5 100 200 300 400 600 900 z+λ+d (nm) min df z /dz ~ (z+λ+d) -4 F z (pn) 10 5 4 Gauss 17 Gauss fit bound 400 500 600 700 800 900 z+λ+d min (nm)

Quantifying the Depinning Force at T = 5.5 K 10-4 df/dz (N/m m) z (nm) 100 200 300 400 600 900 B -2.77-2.95-3.00-3.03-2.97-3.00-3.00-2.95 17G vs. z 4G vs. z 17G vs. z+λ+d λ min 4G vs. z+λ+d 10-5 min 100 200 300 400 600 900 z+λ+d (nm) min df z /dz ~ (z+λ+d) -4 F z (pn) z (nm) 100 200 300 400 500 600 40 30 20 10 4 Gauss 17 Gauss fit bound 5 k spring bound 400 500 600 700 800 900 z+λ+d min (nm)

Depinning Forces in Two Datasets at 5.5 K z=576nm z=518nm z=461nm z=403nm z=346nm z=288nm z=230nm z=173nm A B C D E F G H 2μ m Δ f=0.63hz Δ f=0.73hz Δ f=0.85hz Δ f=0.97hz Δ f=1.22hz Δ f=1.50hz Δ f=2.02hz Δ f=2.79hz 12 10 # vortices # vort tices 8 17 Gauss 6 4 Gauss 4 2 0 0 10 20 30 40 50 F z (pn) F lateral,max = 0.38*F z,max F depin ranges from 4 to 12 pn at 5.5 K

Nb Depinning Forces: Quantitative Comparison f p (pn/μ μm) 1000 100 10 1 0.1 001 0.01 Breitwisch (PRB 2000): T = 8.55 K; t = 400 nm c Park (PRL 1992): T c = 7.35 K; t = 20 nm Breitwisch Allen (PRB (PRB 1989): 2000): T c = 8.55 T K; t = 400 nm Park (PRL 1992): T c = 7.35 c = 8.91 K; t = 20 nm K; t = 20 nm Allen (PRB 1989): T Allen (PRB 1989): T c = 8.91 c = 5.86 K; t = 50 nm K; t = 20 nm Stoddart (SST 1995): T c = 9.20 K; t = 700 nm Allen (PRB 1989): T c = 5.86 K; t = 50 nm Stoddart (SST 1995): T c = 9.20 K; t = 700 nm 0.01 0.1 1 - T/T c F depin ranges from 15 pn/μm to 40 pn/μm # vort rtices 12 10 Limits on motion detection from bootstrapping vortex fits: limited by S/N, can be improved r(95%) 60 (nm)80 40 20 0 100200300400500600 z (nm) 8 17 Gauss 6 4 Gauss 4 2 0 0 10 20 30 40 50 F z (pn) z (pn)

Part II: controlled single-vortex manipulation

Motivation: soft condensed matter physics Do vortices split or tilt and do vortices entangle? surface pancake vortex vortex core interlayer Josephson vortex Clem, PRB 43, 7837 (1991) Reichhardt & Hastings, PRL 92, 157002 (2004)

Motivation: Luttinger liquid physics STM: twin boundary in CuO chain plane of YBa 2 Cu 3 O 7-x y pin vortices in twin boundary plane x 0.21nm 100 Å Eric Hudson, et al Vortices are like 1D bosons in Luttinger liquid!! L τ 000 0.00nm z x L x Polkovnikov, PRB 71, 014511 (2005) vortex wandering in z-direction 1D particles moving in time y x

Motivation: vortex ratchet computing Fabricated defects in a superconductor, used to pin vortices Real material parameters for MgB 2 : Maximum speed: simulations show 315 MHz, pair-breaking is in the THz range. Minimum size: λ ~ 100nm Power dissipation: 10-17 Joules / single cell flip NAND gate: Hastings, Reichhardt, Reichhardt, PRL 90, 247004 (2003)

Our Procedure for Single Vortex Manipulation using Magnetic Force Microscopy surveillance height manipulation height

Vortex Manipulation Results A B C D E Δ f=79mhz Δ f=87mhz Δ f=96mhz Δ f=74mhz Δ f=70mhz 2μ m T = 7 7.2 K h = 288 nm 1μm T = 5.53 K h = 86.4 nm Δf=3.21Hz Δf = Hz

Goals Part I: eliminate i uncontrolled vortex motion bigger magnets efficient power lines quieter sensors & circuits Part II: controlled single-vortex manipulation model for soft condensed matter vortex entanglement t vortex ratchet automaton Luttinger liquid FermiLab

Vortex studies in YBCO Future directions Better MFM tips: - model as monopole 20μm 200nm Deng, APL (2004) nanotube on cantilever tip - better AFM spatial resolution, correlate with topography 100 nm Hawley, Science, 1991 STM studies: image with ξ ~ 15 Å resolution, 100 better than λ ~ 150 nm

Spatial Resolution 8μm SQUID 0.5μm Hall Probe MFM STM 0.5 Gauss 1.1 Gauss 100 Gauss 5 Tesla 10μm 550Å

Future: How to Pin Vortices in YBCO? (1) Screw dislocations (2) Chemical inclusions (3) Oxygen dopants (4) Twin boundaries STM: spiral growth patterns 100 nm Hawley, Science, 1991 STM: impurities in Bi 2 Sr 2 CaCu 2 O 8+x Ni 10Å Zn Vacancy(?) Hudson et al, Nature 411, 920 (2001). Pan et al, Nature 403, 746 (2000). Hudson et al, Physica B 329, 1365 (2003). STM: superconducting gap STM: twin boundary in CuO inhomogeneity in Bi 2 Sr 2 CaCu 2 O 8+x chain plane of YBa 2 Cu 3 O 7-x Vortex imaging in Bi 2 Sr 2 CaCu 2 O 8+x 0.21nm 100 Å 20 Δ (mev) Lang et al, Nature 415, 412 (2002). 70 100 Å Eric Hudson, unpublished. 0.00nm 100Å Hoffman, Science (2002).

ummary Manipulate single vortices with nanoscale control Measured directly the depinning i forces in Nb 1μm already applying same technique to YBCO P Δf=3.21Hz Δf = Hz Eric Straver Nick Koshnick Ophir Ausleander # vort tices Next: correlate depinning forces with topography (Moler) STM studies to explore higher fields (Hoffman) 12 10 500nm 8 17 Gauss 6 4 Gauss 4 2 vortex motion event 0 0 10 20 30 40 50 F z (pn)