Hydrolysis of Salts Weak Acids and Bases

Similar documents
Upset Tummy? MOM to the Rescue! LeChâtelier s Principle

Solubility Patterns SCIENTIFIC. Double-replacement reactions. Introduction. Concepts. Materials. Safety Precautions. Procedure

Iodine Clock Challenge Rate Laws

Chemiluminescence A Toast to Chemistry Chemiluminescence

Use this dramatic iodine clock reaction to demonstrate the effect of concentration, temperature, and a catalyst on the rate of a chemical reaction.

The Forensic Examiner

What if It s an Acid and a Base? Food Additives

Mole Lab Introduction to The Mole Concept

EXPERIMENT 7 Precipitation and Complex Formation

Experiment 8 - Double Displacement Reactions

Applications of LeChâtelier s Principle AP* Chemistry Big Idea 6, Investigation 13 An Advanced Inquiry Lab

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Identification of an Unknown Compound through Mass Correlations

Designing a Hand Warmer AP* Chemistry Big Idea 5, Investigation 12 An Advanced Inquiry Lab

Nihal İKİZOĞLU 1. TYPE of CHEMICAL REACTIONS. Balance the following chemical equations. 1. Fe + H 2 SO 4 Fe 2 (SO 4 ) 3 + H 2

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic

Building Models of Elements, Compounds and Mixtures Classifying Matter and Physical versus Chemical Changes

Thermodynamics Enthalpy of Reaction and Hess s Law

Separation and Qualitative Determination of Cations

Acids, Bases, Salts, and Buffers

Reactions in Aqueous Solutions Chang & Goldsby modified by Dr. Hahn

A Visual Introduction to Ionic and Net Ionic Equations

Topic 1 (Review) What does (aq) mean? -- dissolved in water. Solution: a homogeneous mixture; solutes dissolved in solvents

CHM112 Lab Hydrolysis and Buffers Grading Rubric

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

Solubility Reactions. objectives

CIE Chemistry A-Level Practicals for Papers 3 and 5

5. Pb(IO 3) BaCO 3 8. (NH 4) 2SO 3

Exploring Equilibrium

Colorful Electrolysis Chemical Demonstration Kit

AQA Chemistry A-level

SECTION 19.1 ACID BASE THEORIES

Kinetics of Crystal Violet Fading AP* Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab

Chemistry 1B Experiment 17 89

Objective: Determine the general properties of ionic compounds and compare those properties to the properties of a covalent compound.

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders

Lab #14: Qualitative Analysis of Cations and Anions

UNIT IV PPT #3 Ka and Kb KEY.notebook. November 23, WHAT IS Ka? UNIT IV. CALCULATIONS USING Ka. WHAT IS Ka? Nov 10 9:42 PM.

Measuring Enthalpy Changes

SCHOOL YEAR CH- 13 IONS IN AQUEOUS SOLUTIONS AND COLLIGATIVE PROPERTIES SUBJECT: CHEMISTRY GRADE : 11 TEST A

Examples of Strong Acids: Strong Acid Formula Common Source Hydrochloric Acid HCl Stomach Acid

CHM-201 General Chemistry and Laboratory I Laboratory 4. Introduction to Chemical Reactions (based in part on Small Scale Chemistry methodology as

Lab- Properties of Acids and Bases. Name. PSI Chemistry

Precipitation and Solubility

CH 4 AP. Reactions in Aqueous Solutions

Core practical 6: Investigating chlorination of 2-methylpropan-2-ol

Classifying Chemical Reactions: Lab Directions

Chapter 4. Reactions in Aqueous Solution

insoluble partial very soluble (< 0.1 g/100ml) solubility (> 1 g/100ml) Factors Affecting Solubility in Water

Chapter 6. Types of Chemical Reactions and Solution Stoichiometry

U N I T T E S T P R A C T I C E

EXPERIMENT A5: TYPES OF REACTIONS. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

CHM 130LL: Double Replacement Reactions

Chemical Names and Formulas

Properties of Acids and Bases

What Do You Think? Investigate GOALS

X Unit 15 HW Solutions Acids & Bases. Name:

Chemistry 1B Experiment 11 49

Macroscopic, particle and symbolic representations of aqueous reactions

CSUS Department of Chemistry Experiment 3 Chem.1A

Solubility Rules and Net Ionic Equations

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion.

In this activity, you will observe and predict products for some simple

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry

Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria

Core practical 15: Analyse organic and inorganic unknowns

11. Introduction to Acids, Bases, ph, and Buffers

The solvent is the dissolving agent -- i.e., the most abundant component of the solution

HEATS OF REACTION EXPERIMENT

15 Acids, Bases, and Salts. Lemons and limes are examples of foods that contain acidic solutions.

Chemical Reactions: Introduction to Reaction Types

Types of Chemical Reactions and Equations

Practice Examination #8B

Chapter 6, Lesson 9: Neutralizing Acids and Bases

Equilibrium Demonstrations The Good, the Bad, and the Ugly Models and Simulations

Chem 2115 Experiment #10. Acids, Bases, Salts, and Buffers

Acid-Base Character of Salt Solutions. Cations. Cations are potentially acidic, but some have no effect on ph.

We CAN have molecular solutions (ex. sugar in water) but we will be only working with ionic solutions for this unit.

Santa Monica College Chemistry 11

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry

Kinetics of Crystal Violet Fading AP* Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab

#12. Acids and Bases.

AP Chemistry Unit #4. Types of Chemical Reactions & Solution Stoichiometry

Chemistry Semester One Exam Review

AP Chemistry. Reactions in Solution

Chemical Change. Section 9.1. Chapter 9. Electrolytes and Solution Conductivity. Goal 1. Electrical Conductivity

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6.

EXPERIMENT 4 THE N-BOTTLE PROBLEM

EXPERIMENT 10: Precipitation Reactions

Stresses Applied to Chemical Equilibrium

Acids Bases and Salts Acid

D O UBLE DISPL Ac EMENT REACTIONS

Acids, Bases and ph Chapter 19

CHEMICAL REACTIONS IN SOLUTION AND NET IONIC EQUATIONS

AP Chemistry Unit 2 Test (Chapters 3 and 4)

Chemistry 12 Solubility Equilibrium I. Name: Date: Block: 1. Solutions Vocab & Calculations 2. Predicting Solubility 3.

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS

Toxins 4/27/2010. Acids and Bases Lab. IV-17 to IV-22

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

Aqueous Balance: Equilibrium

Transcription:

elearning 2009 Introduction Hydrolysis of Salts Weak Acids and Bases Publication No. 9117 Show the effects of hydrolysis of salts on the acidbase properties of a solution with this colorful demonstration that can be done on an overhead projector. Concepts Acids and bases ph Salt hydrolysis Background Acidic and basic properties of aqueous solutions depend on the concentrations of hydrogen ions [H + ] and hydroxide ions [OH ]. Water (the solvent in an aqueous solution) dissociates to a small extent into hydrogen ions (H + ) and hydroxide ions (OH ) according to Equation 1. H 2 O H + + OH Equation 1 When the concentration of H + is equal to the concentration of OH, the solution is neutral (ph = 7). When H + ions exceed OH ions, the solution is acidic (ph < 7). When OH ions exceed H + ions, the solution is basic (ph > 7). For example, an aqueous solution of HCl or H 2 SO has a greater concentration of H + ions and is therefore acidic. An aqueous solution of NaOH or NH OH has a greater concentration of OH ions and is therefore basic. Salts, on the other hand, may undergo hydrolysis in water to form acidic, basic, or neutral solutions. Hydrolysis of a salt is the reaction of the salt with water or its ions. A salt is an ionic compound containing a cation other than H + and an anion other than OH (or O 2 ). The broad range of cations and anions that combine to form salts (such as NaNO 2, NH I, CuSO, or NaBr) makes it more difficult to predict whether the resulting salt solution will be acidic, basic, or neutral. In a dilute salt solution, a soluble salt dissociates completely into its ions. Thus, a water solution labeled NaBr actually contains Na + ions and Br ions (Equation 2). NaBr(s) Na + + Br Equation 2 The acidbase properties of a salt such as NaBr are determined by the behavior of its ions. To decide whether a water solution of NaBr is acidic, basic, or neutral, the effect of the Na + and Br ions on the ph of water must be considered. Some ions have no effect on the ph of water, some ions are acidic because they produce H + ions in water, and others are basic because they produce OH ions in water. In this demonstration, five salts will be tested. The salts will be dissolved in water, the ph of the resulting solutions will be measured, and chemical equations will be written. Materials Aluminum chloride, AlCl O, 1 g Beaker, 250-mL Ammonium chloride, NH Cl, 1 g Graduated cylinder, 25-mL Potassium carbonate, K 2 1.5H 2 O, 1 g Hot plate or Bunsen burner Sodium bicarbonate, NaH, 1 g Marking pen Sodium chloride, NaCl, 1 g Overhead projector Sodium phosphate, tribasic, Na PO 12H 2 O, 1 g Overhead transparency sheet Sodium phosphate, dibasic, Na 2 HPO 7H 2 O, 1 g Petri dishes (tops or bottoms), 5 Sodium phosphate, monobasic, NaH 2 PO H 2 O, 1 g Spatulas, 5 Universal indicator solution, 5 ml Stirrers, 5 Water, boiled, distilled or deionized Universal indicator color chart Flinn Scientific Teaching Chemistry elearning Video Series 9117 011509

Safety Precautions Aluminum chloride, ammonium chloride, potassium carbonate and sodium phosphate are slightly toxic by ingestion and are body tissue irritants. Do not substitute anhydrous aluminum chloride due to its violent reaction with water. Universal indicator solution is an alcohol-based flammable liquid. Wear chemical splash goggles, chemical-resistant gloves, and a chemical-resistant apron. Please review current Material Safety Data Sheets for additional safety, handling, and disposal information. Preparation 1. Place approximately 150 ml of distilled or deionized water in a beaker. 2. Using a hot plate or Bunsen burner, boil the water for about 1015 minutes to remove any dissolved carbon dioxide. (Note: The ph of the water should be near 7.) Cover the beaker and allow the water to cool.. Rinse five Petri dishes with distilled water to ensure that they are not contaminated. Procedure 1. Place five Petri dishes on an overhead transparency sheet on the overhead projector (or on the demonstration table). Label the transparency with the formulas of the five salts to be used. 2. Add 1520 ml of boiled distilled or deionized water to each Petri dish (enough to fill the dishes half way).. Add 15 drops of universal indicator solution to each Petri dish to achieve a neutral green color. (Note: If the solution in any of the dishes is not green after adding the indicator, rinse out the dish with DI water and start again as there must have been some contamination.). Using a different spatula for each solid, add about 1 gram of salt to each Petri dish in the following order: Petri Dish Salt Solution Color ph 1 Aluminum chloride Red 2 Ammonium chloride Orange-yellow 5 Sodium chloride Green 7 Sodium bicarbonate Blue 9 5 Sodium phosphate Purple 12 5. Stir to dissolve each solid using a separate wood stirrer for each. 6. Note the ph of each solution by comparing the solution color to the universal indicator color card. Disposal Please consult your current Flinn Scientific Catalog/Reference Manual for general guidelines and specific procedures governing the disposal of laboratory waste. Each of the salts may be disposed of down the drain or in the solid waste disposal according to Flinn Suggested Disposal Methods #26a or #26b. Tips The Hydrolysis of Salts Acidic, Basic or Neutral? Demonstration Kit (Flinn Catalog No. AP6187) contains enough chemicals to perform the demonstration at least seven times with five salts. The quantities provided in the kit are as follows 10 grams (7 g needed) of each of the five salts (aluminum chloride, ammonium chloride, sodium bicarbonate, sodium chloride, and sodium phosphate, tribasic), 5 ml of universal indicator solution, 5 reusable Petri dishes, 5 wood stirrers, and a universal indicator ph card. In the video, Kathleen Dombrink uses seven salts. In addition to four of the previously listed chemical salts, she also uses potassium carbonate K 2, sodium phosphate monobasic NaH 2 PO, and sodium phosphate, dibasic Na 2 HPO. The video procedure also varies by using beakers and putting them on a light box instead of in Petri dishes on an overhead projector. After reading the discussion, decide if you wish to first perform the demonstration and then discuss the observations. Or you may wish to first have students look at and evaluate the cations and anions of the salts and make predictions as to the acidic or basic nature of the salt solutions. Then perform the demonstration to test their predictions. An overhead transparency of the universal indicator color card, the Universal Indicator Overhead Color Chart (Flinn Catalog No. AP567), is available for use on the overhead projector. 2

Discussion Results from this demonstration show that aluminum chloride and ammonium chloride form acidic solutions in water (ph < 7); sodium chloride forms a neutral solution (ph = 7); sodium bicarbonate and sodium phosphate form basic solutions (ph > 7). Hydrolysis refers to the reaction of a substance with water or its ions. The chemical equations for the reactions are shown below. The equation for the dissociation of the salts are shown first followed by the net equations that produce either H + (if acidic), OH (if basic), or neither (if neutral). Note: Spectator ions are omitted from the net equations. Aluminum chloride AlCl O(s) Al(H 2 O) + 6 + Cl Al(H 2 O) + 6 H + + Al(H 2 O) 5 (OH) 2+ Acidic Ammonium chloride NH Cl(s) NH + + Cl NH + H + + NH (g) Acidic Sodium chloride NaCl(s) Na + + Cl Na + + Cl No further reaction Neutral Sodium bicarbonate NaH (s) Na + + HCO HCO O(l) H 2 + OH Basic Sodium phosphate Na PO (s) Na + + PO PO O(l) HPO 2 + OH Basic While acidic or basic properties of salt solutions can be measured in the laboratory, the acidic or basic nature of a salt can also be predicted by considering the properties of its ions. In general, as shown in Table 1, neutral anions are those derived from strong acids and neutral cations are those derived from strong bases. Acidic cations include all cations except those of the alkali metals and the heavier alkaline earths. Acidic anions include the HSO and H 2 PO anions. Basic anions include any anion derived from a weak acid; there are no common basic cations. Table 1. AcidBase Properties of Common Ions in Aqueous Solution Neutral Basic Acidic Cl NO C 2 H O 2 CN HSO Br ClO F NO 2 H 2 PO Anion I SO 2 CO 2 HCO S 2 HS PO HPO 2 Li + Ca 2+ Mg 2+ Al + Cation Na + Ba 2+ none NH + K + The information provided in Table 1 can be used to predict the acidic or basic nature of the salt; this can then be confirmed by experiment. The five salts tested in this demonstration are listed below. The acidic or basic nature of the cation and of the anion are given, together with a prediction of whether the salt solution will be acidic, basic, or neutral. Salt Cation Anion Solution of Salt AlCl O Al + (acidic) Cl (neutral) Acidic NH Cl NH + (acidic) Cl (neutral) Acidic NaCl Na + (neutral) Cl (neutral) Neutral NaH Na + (neutral) HCO (basic) Basic Na PO 12H 2 O Na + (neutral) PO (basic) Basic transition metal ions

Connecting to the National Standards This laboratory activity relates to the following National Science Education Standards (1996): Unifying Concepts and Processes: Grades K12 Constancy, change, and measurement Content Standards: Grades 58 Content Standard B: Physical Science, properties and changes of properties in matter. Content Standards: Grades 912 Content Standard B: Physical Science, structure and properties of matter, chemical reactions. Answers to Worksheet Results Table Petri Dish Salt Solution Color ph Acid, Base, or Neutral 1 Aluminum chloride Red Acid 2 Ammonium chloride Orange-yellow 5 Acid Sodium chloride Green 7 Neutral Sodium bicarbonate Blue 9 Base 5 Sodium phosphate Purple 12 Base Answers to Discussion Questions 1. Explain what happened to the salts in the water and what caused the acid-base properties of the solutions. The salts underwent hydrolysis, which is the reaction of a salt with water or its ions. The ions determine the acidbase properties of the resulting solutions. Some ions have no effect on the ph of the water, while some produce H + ions, and others produce OH ions. 2. Salt hydrolysis can be described in two chemical equations, the first showing the dissociation of the salt, and the second net equation showing the production of H + or OH ions. Write the two equations for each salt in this demonstration. If neither H + nor OH ions are produced, write no reaction for the second equation. a. AlCl O(s) Al(H 2 O) + 6 + Cl Al(H 2 O) + 6 H + + Al(H 2 O) 5 (OH) 2+ Note to teachers: You may have to tell students that the aluminum forms a complex ion with water. b. NH Cl(s) NH + + Cl NH + O(l) H + + NH (g) c. NaCl(s) Na + + Cl No reaction d. NaH (s) Na + + HCO HCO O(l) H 2 + OH e. Na PO (s) Na + + PO PO O(l) HPO 2 + OH Acknowledgment Flinn Scientific would like to thank John Wass, Western Branch H.S., Chesapeake, VA for bringing this demonstration to our attention to share with other teachers.

Flinn Scientific Teaching Chemistry elearning Video Series A video of the Hydrolysis of Salts activity, presented by Kathleen Dombrink, is available in Weak Acid and Bases, part of the Flinn Scientific Teaching Chemistry elearning Video Series. Materials for Hydrolysis of Salts are available from Flinn Scientific, Inc. Materials required to perform part of this activity are available in the Hydrolysis of Salts Acidic, Basic or Neutral? A Colorful Overhead Demonstration Kit available from Flinn Scientific. Materials may also be purchased separately. Catalog No. Description AP6187 Hydrolysis of Salts Acidic, Basic, or Neutral? A Colorful Overhead Demonstration AP567 Universal Indicator Overhead Color Chart S0097 Sodium Phosphate, Monobasic, 100 g S0222 Sodium Phosphate, Dibasic, 100 g A0225 Aluminum Chloride, AlCl O, 100 g A0266 Ammonium Chloride, NH Cl, 100 g S002 Sodium Bicarbonate, 500 g S0061 Sodium Chloride, 500 g S0101 Sodium Phosphate, Tribasic, 500 g U0009 Univeral Indicator Solution, 5 ml P0157 Potassium Carbonate, 100 g Consult your Flinn Scientific Catalog/Reference Manual for current prices. 5

Results Table Hydrolysis of Salts Worksheet Petri Dish Salt Solution Color ph Acid, Base, or Neutral 1 Aluminum chloride 2 Ammonium chloride Sodium chloride Sodium bicarbonate 5 Sodium phosphate Discussion Questions 1. Explain what happened to the salts in the water and what caused the acidbase properties of the solutions. 2. Salt hydrolysis can be described in two chemical equations, the first showing the dissociation of the salt, and the second net equation showing the production of H + or OH ions. Write the two equations for each salt in this demonstration. If neither H + nor OH ions are produced, write no reaction for the second equation. a. AlCl O(s) b. NH Cl(s) c. NaCl(s) d. NaH (s) e. Na PO (s) 2009 Flinn Scientific, Inc. All Rights Reserved. Reproduction permission is granted only to science teachers who have purchased Weak Acids and Bases in the Flinn Scientific Teaching Chemistry elearning Video Series. No part of this material may be reproduced or transmitted in any form or by any means, electronic or mechanical, including, but not limited to photocopy, recording, or any information storage and retrieval system, without permission in writing from Flinn Scientific, Inc. 9117