Using the MMTSB Tool Set

Similar documents
MMTSB Toolset. Michael Feig MMTSB/CTBP 2006 Summer Workshop. MMTSB/CTBP Summer Workshop Michael Feig, 2006.

April, The energy functions include:

Molecular modeling with InsightII

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target.

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description. Version Document Published by the wwpdb

NMR, X-ray Diffraction, Protein Structure, and RasMol

User Guide for LeDock

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE

Computational Analysis of Small Proteins using the WebAmber Interface. By Eddie Gorr Gustavus Adolphus College

Continuous Constant ph Molecular Dynamics

Portal. User Guide Version 1.0. Contributors

Introduction to Comparative Protein Modeling. Chapter 4 Part I

LysinebasedTrypsinActSite. A computer application for modeling Chymotrypsin

Computational Structural Biology and Molecular Simulation. Introduction to VMD Molecular Visualization and Analysis

Physiochemical Properties of Residues

Secondary and sidechain structures

Supporting information to: Time-resolved observation of protein allosteric communication. Sebastian Buchenberg, Florian Sittel and Gerhard Stock 1

What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces: Electronic Supplementary

Figure 1. Molecules geometries of 5021 and Each neutral group in CHARMM topology was grouped in dash circle.

Tutorial I: IQ MOL and Basic DFT and MP2 Calculations 1 / 30

1. Protein Data Bank (PDB) 1. Protein Data Bank (PDB)

Protein Structure Prediction and Display

Hands-on Course in Computational Structural Biology and Molecular Simulation BIOP590C/MCB590C. Course Details

MULTIDOCK V1.0. Richard M. Jackson Biomolecular Modelling Laboratory Imperial Cancer Research Fund 44 Lincoln s Inn Fields London WC2A 3PX

Protein Structure Prediction

THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION

Section III - Designing Models for 3D Printing

NMR-Structure determination with the program CNS

Supporting Online Material for

Analysis of MD trajectories in GROMACS David van der Spoel

Get familiar with PDBsum and the PDB Extract atomic coordinates from protein data files Compute bond angles and dihedral angles

Build_model v User Guide

FORSCHUNGSZENTRUM JÜLICH GmbH Zentralinstitut für Angewandte Mathematik D Jülich, Tel. (02461)

Part 7 Bonds and Structural Supports

Bonds and Structural Supports

Preparing a PDB File

Computer simulations of protein folding with a small number of distance restraints

Force Fields for Classical Molecular Dynamics simulations of Biomolecules. Emad Tajkhorshid

Statistically Based Reduced Representation of Amino Acid Side Chains

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?

A Brief Guide to All Atom/Coarse Grain Simulations 1.1

Protein Structures: Experiments and Modeling. Patrice Koehl

Potential Energy (hyper)surface

Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190

The TEN Package. User Guide

Full wwpdb X-ray Structure Validation Report i

Applications of Molecular Dynamics

2008 Biowerkzeug Ltd.

Oxygen Binding in Hemocyanin

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two

Exam I Answer Key: Summer 2006, Semester C

SwissSidechain - Documentation

PROTEIN'STRUCTURE'DETERMINATION'

Protein Bioinformatics Computer lab #1 Friday, April 11, 2008 Sean Prigge and Ingo Ruczinski

Useful background reading

ANALYZE. A Program for Cluster Analysis and Characterization of Conformational Ensembles of Polypeptides

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Dock Ligands from a 2D Molecule Sketch

Protein structure analysis. Risto Laakso 10th January 2005

VMD: Visual Molecular Dynamics. Our Microscope is Made of...

Ramachandran Plot. 4ysz Phi (degrees) Plot statistics

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Molecular Visualization. Introduction

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Protein structures and comparisons ndrew Torda Bioinformatik, Mai 2008

Molecular Modeling Lecture 7. Homology modeling insertions/deletions manual realignment

1 Introduction. command intended for command prompt

Electronic Supplementary Information

Protein Structure and Visualisation. Introduction to PDB and PyMOL

WRF Modeling System Overview

Prediction and refinement of NMR structures from sparse experimental data

Force Fields for Classical Molecular Dynamics simulations of Biomolecules. Emad Tajkhorshid

Lysozyme pka example - Software. APBS! >!Examples! >!pka calculations! >! Lysozyme pka example. Background

Assignment 1: Molecular Mechanics (PART 1 25 points)

The Molecular Dynamics Method

DATE A DAtabase of TIM Barrel Enzymes

Packing of Secondary Structures

Tridip Sheet, Raja Banerjee*

The Schrödinger KNIME extensions

How is molecular dynamics being used in life sciences? Davide Branduardi

Procheck output. Bond angles (Procheck) Structure verification and validation Bond lengths (Procheck) Introduction to Bioinformatics.

Bioinformatics III Structural Bioinformatics and Genome Analysis Part Protein Secondary Structure Prediction. Sepp Hochreiter

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues

X-Ray structure analysis

Protein Modeling Methods. Knowledge. Protein Modeling Methods. Fold Recognition. Knowledge-based methods. Introduction to Bioinformatics

Molecular Dynamics Flexible Fitting

PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies)

Online Protein Structure Analysis with the Bio3D WebApp

TOPOLOGY FILE TUTORIAL

Supplemental Information for: Characterizing the Membrane-Bound State of Cytochrome P450 3A4: Structure, Depth of Insertion and Orientation

Structure of the HIV-1 Capsid Assembly by a hybrid approach

Course in Applied Structural Bioinformatics: Amber Tutorial

The Force Field Toolkit (fftk)

Protein Modeling. Generating, Evaluating and Refining Protein Homology Models

Computational Molecular Modeling

Basics of protein structure

Supplemental Materials for. Structural Diversity of Protein Segments Follows a Power-law Distribution

Molecular modeling. A fragment sequence of 24 residues encompassing the region of interest of WT-

Transcription:

Using the MMTSB Tool Set MMTSB NIH Research Resource PSC Workshop 2003

Architecture of MMTSB Tool Set

MMTSB Tool Set Package o Available from: (free for academic use) http://mmtsb.scripps.edu/software/mmtsbtoolset.html o Includes: Perl packages (.pm) Perl utilities (.pl) External programs (MONSSTER, rebuild, etc.) o Needs: Perl Version 5.004 or newer Compilers (FORTRAN 77, C++)

Supported Platforms o Linux (PC, Alpha) o SGI Irix o DEC OSF/1 o IBM AIX o Sun Solaris o MacOS X o UNIX + Perl + GNU compilers o Windows?

Package Installation o Download Tool Set Package (Register!) o Unpack > cd /usr/local/mmtsb > gunzip mmtsb.tar.gz > tar xvf mmtsb.tar o Run install.sh >./install.sh o Set environment setenv MMTSBDIR /usr/local/mmtsb set path = ( $path $MMTSBDIR/perl $MMTSBDIR/bin )

External Programs: CHARMM/Amber o CHARMM (c29b, c30a, or newer) http://www.scripps.edu/brooks/charmm_docs/charmm.html setenv CHARMMEXEC /usr/local/bin/charmm.exe setenv CHARMMDATA /usr/local/data/charmm o Amber (Version 7) http://www.amber.ucsf.edu/amber/ setenv AMBERHOME /usr/local/amber7 setenv SANDEREXEC /usr/local/bin/sander.exe

Other External Programs o SCWRL Version 2.95 (Dunbrack) http://www.fccc.edu/research/labs/dunbrack/scwrl/ > cp scwrl $MMTSBDIR/bin o DSSP (Kabsch & Sander) http://www.cmbi.kun.nl/gv/dssp/ > cp dsspcmbi $MMTSBDIR/bin

Using the MMTSB Tool Set Command-line oriented utilities > mincharmm.pl 1vii.pdb with options: > mincharmm.pl par minsteps=100,nocut 1vii.pdb Use MMTSB Packages in new Perl scripts #!/usr/bin/perl use Molecule; my $mol = &Molecule::new(); $mol->readpdb( 1vii.pdb );

Input / Output Input usually expected from file name or std input > mincharmm.pl 1vii.pdb > cat 1vii.pdb mincharmm.pl Output usually written to standard output > mincharmm.pl 1vii.pdb > 1vii.min.pdb - can be used for standard input/output > cat 1vii.pdb lsqfit.pl 1vii.min.pdb > mincharmm.pl log 1vii.pdb Command pipes > mincharmm.pl 1vii.pdb mdcharmm.pl

All Atom Structure Representation: PDB Formats PDB CHARMM22 CHARMM19 Amber ILE Cd CD1 CD CD CD1 HIS prot Nd HIS HSD HIS HID HIS prot Ne HIS HSE HSD HIE N-terminus 1H/2H/3H HT1/HT2/HT3 HT1/HT2/HT3 H1/H2/H3 C-terminus O/OXT OT1/OT2 OT1/OT2 O/OXT Hydrogens 1HB/2HB HB1/HB2 - HB2/HB3 CYS S-S CYS CYS CYS CYX

All Atom Structure Representation: Multiple Chains, Ligands Multiple chains Chain IDs are used to separate chains CHARMM segment IDs are generated automatically HETATM records (solvent, ligands, cofactors) Read into single chain (+) but written out as HETATM Explicit solvent Recognized if residue name TIP3/OH2 and ATOM rec. Disulfides SSBOND entry recognized and kept

Parallel Execution Parallelism within CHARMM/Amber: parallel molecular dynamics / minimization tightly coupled, based on MPI setenv CHARMMEXEC mpirun n 8 /usr/local/bin/charmm.exe setenv SANDEREXEC mpirun n 8 /usr/local/bin/sander.exe Parallelism within MMTSB Tool Set ensemble computing, replica exchange simulations TCP/IP socket-based server/client architecture

MMTSB Parallel Options: Shared Memory Server Client 1 Client 2 Client 3 > ensrun.pl cpus 4 > aarex.pl temp 4:300:350 use 4 CPUs for 4 clients + server on SMP architecture Client 4

MMTSB Parallel Options: Distributed Environment Node 1 Node 2 Server Client 1 Client 2 Client 3 > ensrun.pl cpus 4 hosts hlist > ensrun.pl cpus 4 mp hosts hlist Host file: node1 1 /tmp/mmtsb node2 2 /tmp/mmtsb node3 1 /tmp/mmtsb Node 3 Client 4 uses 4 CPUs on 3 nodes requires rsh to work with.rhosts

MMTSB Parallel Options: PSC Environment Jobs are placed on each node with prun Environment variable RMS_RANK contains rank for more than one node: > prun N all ensrun.pl jobenv RMS_RANK saveid id.file node 0 starts server and writes id.file all nodes wait for id.file and connect as clients

-help option Help/Documentation > dihed.pl help usage: dihed.pl [options] [refpdb [cmppdb]] options: [-l min:max[...]] [-list phi psi chi1 omega] Online manual pages with examples http://mmtsb.scripps.edu/cgi-bin/tooldoc Tutorials (in progress) http://mmtsb.scripps.edu/software/tutorial/protmodel.html Email support: mmtsb@scripps.edu Mailing List: available soon

Utility Functions PDB format and structure manipulation convpdb.pl complete.pl Structure analysis lsqfit.pl, rms.pl dihed.pl contacts.pl rgyr.pl genseq.pl -dssp

Conversion between PDB Formats convpdb.pl Generate specific PDB format > convpdb.pl out amber 1vii.pdb ATOM 1 N MET 1 1.177-10.035-3.493 1.00 0.00 ATOM 2 H1 MET 1 1.833-10.061-2.687 1.00 0.00 ATOM 3 H2 MET 1 1.719-9.981-4.379 1.00 0.00 ATOM 4 H3 MET 1 0.596-10.897-3.495 1.00 0.00 ATOM 5 CA MET 1 0.292-8.839-3.377 1.00 0.00 ATOM 6 HA MET 1 0.900-7.946-3.376 1.00 0.00 ATOM 7 CB MET 1-0.674-8.793-4.565 1.00 0.00 ATOM 8 HB2 MET 1-1.656-8.393-4.233 1.00 0.00 ATOM 9 HB3 MET 1-0.821-9.818-4.967 1.00 0.00 > convpdb.pl segnames out charmm22 1vii.pdb ATOM 1 N MET 1 1.177-10.035-3.493 1.00 0.00 PRO0 ATOM 2 HT1 MET 1 1.833-10.061-2.687 1.00 0.00 PRO0 ATOM 3 HT2 MET 1 1.719-9.981-4.379 1.00 0.00 PRO0 ATOM 4 HT3 MET 1 0.596-10.897-3.495 1.00 0.00 PRO0 ATOM 5 CA MET 1 0.292-8.839-3.377 1.00 0.00 PRO0

Manipulation of PDB Files convpdb.pl Renumber residues > convpdb.pl renumber 5 1vii.pdb ATOM 1 N MET 5 1.177-10.035-3.493 1.00 0.00 ATOM 2 HT1 MET 5 1.833-10.061-2.687 1.00 0.00 ATOM 3 HT2 MET 5 1.719-9.981-4.379 1.00 0.00 ATOM 4 HT3 MET 5 0.596-10.897-3.495 1.00 0.00 ATOM 5 CA MET 5 0.292-8.839-3.377 1.00 0.00 Center structure at coordinate origin > convpdb.pl center 1vii.pdb ATOM 1 N MET 1 0.437-10.341-5.602 1.00 0.00 ATOM 2 HT1 MET 1 1.093-10.367-4.796 1.00 0.00 ATOM 3 HT2 MET 1 0.979-10.287-6.488 1.00 0.00 ATOM 4 HT3 MET 1-0.144-11.203-5.604 1.00 0.00 ATOM 5 CA MET 1-0.448-9.145-5.486 1.00 0.00

Subselection from PDB Files convpdb.pl Residue subset by number > convpdb.pl sel 10:15 1vii.pdb ATOM 141 N VAL 10-1.787-4.543 8.123 1.00 0.00 ATOM 142 HN VAL 10-2.629-4.094 7.835 1.00 0.00 ATOM 143 CA VAL 10-0.514-3.998 7.587 1.00 0.00 Residue subset by sequence > convpdb.pl selseq VFGMT 1vii.pdb ATOM 141 N VAL 10-1.787-4.543 8.123 1.00 0.00 ATOM 142 HN VAL 10-2.629-4.094 7.835 1.00 0.00 ATOM 143 CA VAL 10-0.514-3.998 7.587 1.00 0.00 NMR model selection > convpdb.pl model 2 1d3z.pdb ATOM 1 N MET A 1 54.015-88.009 9.498 1.00 9.67 ATOM 2 CA MET A 1 52.647-87.443 9.674 1.00 10.38 ATOM 3 C MET A 1 51.877-87.557 8.364 1.00 9.62

Completing All-atom Structures: complete.pl > complete.pl model.pdb ATOM 1 N MET 1 0.774-7.875-4.381 1.00 0.00 ATOM 2 HT1 MET 1-0.029-7.328-4.751 1.00 0.00 ATOM 3 HT2 MET 1 1.233-8.387-5.161 1.00 0.00 ATOM 4 HT3 MET 1 1.460-7.229-3.940 1.00 0.00 ATOM 5 CA MET 1 0.292-8.839-3.377 1.00 0.00 Ca Rebuild backbone Ca sufficient, but rebuilds only what is missing Add side chains Add hydrogen atoms

Superposition of Structures lsqfit.pl Superposition of entire structure > lsqfit.pl 1vii.pdb 1vii.sample.pdb Superposition of subset > lsqfit.pl l 10:15 1vii.pdb 1vii.sample.pdb > lsqfit.pl x 10:15 1vii.pdb 1vii.sample.pdb Superposition with different sequence > lsqfit.pl resnumonly l 10:15 1vii.pdb helix.pdb

Comparison of Different Conformations rms.pl Coordinate RMSD with respect to reference > rms.pl out CA fit 1vii.pdb 1vii.sample.pdb 2.6944 CA > rms.pl l 10:15 fitxl 1vii.pdb 1vii.sample.pdb > rms.pl fitl 10:15 1vii.pdb 1vii.sample.pdb Other possible values: CA, CB, CAB, heavy, all,

Peptide Dihedral Angles: dihed.pl Calculate f/y/w/c 1 dihedral angles > dihed.pl list phi,psi,omega,chi1 1vii.pdb MET1: 0.000 132.907-179.006-95.176 LEU2: -64.308 100.191 178.918-106.206 SER3: -63.139 154.230-179.441 21.582 Calculate dihedral RMSD > dihed.pl 1vii.pdb 1vii.sample.pdb phi: 29.556 ( 88.57 % ), psi: 43.898 ( 80.00 % ), chi1: 61.341 ( 45.16 % ) c 1

Side Chain Contacts: contact.pl List side chain contacts (min. distance < 4.2 Å) > contact.pl list 1vii.pdb 2 7 3.525115 2 10 3.383307 2 11 3.541492 2 15 2.839893 2 34 2.930046 Compare contacts to reference > contact.pl 1vii.pdb 1vii.sample.pdb 15 contacts ( fraction: 0.625000 ), rho: 0.634847

Radius of Gyration: rgyr.pl > rgyr.pl 1vii.pdb 9.389212 > rgyr.pl caonly 1vii.pdb 8.817567 1 c = N r g  i 1 = N r  i i (r i - 2 c)

Secondary Structure Analysis: genseq.pl -dssp > genseq.pl out onesec -dssp 1vii.pdb MLSDEDFKAVFGMTRSAFANLPLWKQQNLKKEKGLF UUUHHHHHUUUUUUHHHHUUUUHHHHHHHHHHUUUU Secondary structure identified from hydrogen bonding: H helical (a) E extended (b) U random coil/undefined