Microwave Dielectric Relaxation of Alcohols in non polar solutions

Similar documents
Microwave Dielectric behaviour of ketones in solution state at a constant temperature

Dielectric relaxation studies of polyvinylpyrrolidone (PVP) and polyvinylbutyral (PVB) in benzene solutions at microwave frequency

Dielectric Relaxation Studies of Binary Mixtures of Ethanol and Chlorobenzene in Benzene Solution from Microwave Absorption Data

DIELECTRIC RELAXATION STUDIES OF 1:1 COMPLEXES COMPLEXES OF ALKYL METHACRYLATE WITH PHENOLS DERIVATIVES

Microwave Dielectric Study of Tetramethylurea and N, N-Dimethylacetamide Binary Mixture in Benzene

IJST. Dielectric Relaxation Studies of 2-Alkoxyethanol with o-anisidine in benzene using frequency domain (X band) technique

Dielectric Relaxation Studies of Binary Mixtures of N-Methylformamide and Tetramethylurea in Benzene Using Microwave Absorption Data

Microwave dielectric relaxation study of poly (methyl methacrylate) and polysulphone in dilute solutions

Dielectric Relaxation Studies of Ternary Liquid Mixtures of Dimethyl Phthalate with Triethylamine in the Microwave Region

DIELECTRIC STUDIES OF BINARY MIXTURES OF ALKOXY ETHANOLS AND ANILINE AT 9.85 GHz MICROWAVE FREQUENCY

journal of August 2006 physics pp

Journal of Chemical and Pharmaceutical Research

Research Article. Dielectric and refractive index studies of phenols in carbon tetrachloride, benzene and acetone through excess parameter

Ultrasonic Investigations on 1-Bromopropane in Chlorobenzene Mixture at K, K, K and K at 2 MHz

ULTRASONIC INVESTIGATIONS IN A LIQUID MIXTURE OF ETHYLENEGLYCOL WITH n-butanol

Determination of stability constants of charge transfer complexes of iodine monochloride and certain ethers in solution at 303 K by ultrasonic method

Dipole Moment Studies of H-Bonded Complexes of Anilines with Alcohol

Studies on Acoustic Parameters of Ternary Mixture of Dimethyl Acetamide in Acetone and Isobutyl Methyl Ketone using Ultrasonic and Viscosity Probes

An investigation on molecular dynamics of binary mixtures of N- methylformamide and Ethanol in microwave region

S Sahoo a * & S K Sit b. Received 13 February 2016; revised 9 September 2016; accepted 29 December 2016

IJBPAS, September, 2012, 1(8): MOLECULAR INTERACTION STUDIES ON SOME BINARY ORGANIC LIQUID MIXTURES AT 303K SUMATHI T* AND GOVINDARAJAN S

Journal of Chemical and Pharmaceutical Research, 2012, 4(1): Research Article

ULTRASONIC AND MOLECULAR INTERACTION STUDIES OF CINNAMALDEHYDE WITH ACETONE IN n-hexane

SITARAM K. CHAVAN * and MADHURI N. HEMADE ABSTRACT INTRODUCTION

Thermo-acoustical molecular interaction studies in ternary liquid mixtures using ultrasonic technique at 303K

Thermo acoustical study of tetrahydrofuran with ethanol using ultrasonic technique at 323K

ULTRASONIC INVESTIGATIONS ON BINARY MIXTURE OF ACETOPHENONE WITH N-BUTANOL AT TEMPERATURES K K

Ultrasonic Study of Molecular Interaction in Binary Mixture at Different Temperatures (303 K 318 K)

Direct acoustic impedance measurements of dimethyl sulphoxide with benzene, carbon tetrachloride and methanol liquid mixtures

SHORT COMMUNICATION. Ultrasonic Studies of Amino Acids in Aqueous Sucrose Solution at Different Temperatures

ULTRASONIC STUDY OF INTERMOLECULAR ASSOCIATION THROUGH HYDROGEN BONDING IN TERNARY LIQUID MIXTURES

Ultrasonic study of n-alkanols in toluene with nitrobenzene

STUDY OF THERMOACOUSTICAL PARAMETERS OF BINARY LIQUID MIXTURES OF METHYL BENZOATE WITH 1-NONANOL AT DIFFERENT TEMPERATURES

Ultrasonic studies of N, N-Dimethylacetamide and N-Methylacetamide with Alkoxyethanols in Carbon tetrachloride at different temperatures

Ultrasonic Study of Molecular Interactions in Binary Liquid Mixtures and Acoustic Parameters of Dimethylsulphoxide with Ethanol at 303K

Analysis of O H N and N O H intermolecular interaction involving nitro in substituted 5-nitro salicylaldehyde and aniline

Ultrasonic velocity and viscosity studies of tramacip and parvodex in binary mixtures of alcohol + water

International Journal of Advance Engineering and Research Development. Ultrasonic investigations of p-cresol with dimethyl formamide

Ultrasonic Velocity Determination in Binary Liquid Mixtures

Ultrasonic Studies of Molecular Interactions in Organic Binary Liquid Mixtures

D ielectric relaxation of some polar molecules and their binary m ixtures in non polar solvents

MOLECULAR INTERACTION STUDIES IN THE TERNARY LIQUID MIXTURE OF PYRIDINE + BENZENE + N, N-DIMETHYLFORMAMIDE BY ULTRASONIC VELOCITY MEASUREMENTS

Pelagia Research Library

Ultrasonic studies of molecular interactions in binary mixtures of n-butanol with water at different temperatures (308K, 318K and 328K)

Molecular Association Studies on Polyvinyl Alochol At 303k

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

Ultrasonic Studies in Ternary Mixtures of Alcohols With NN DMA in N- Hexane at 303K

Dielectric Relaxation and Thermodynamic Study of Erythritol in DMSO Using TDR Technique

Dielectric Study of Binary Liquid Mixtures of 1,2 di-aminopropane (1,2-Dap) With Methanol At 9.85 Ghz Microwave Frequency

Scholars Research Library

[Thakur*, 4.(9): September, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Comparative Study of Molecular Interaction in Ternary Liquid Mixtures of Polar and Non-Polar Solvents by Ultrasonic Velocity Measurements

ULTRASONIC STUDIES AND MOLECULAR INTERACTION STUDIES ON SARDINE FISH OIL AND ANILINE BINARY MIXTURE

Research Article. Ultrasonic investigation of molecular interaction in aqueous glycerol and aqueous ethylene glycol solution

International Journal of Science and Research (IJSR) ISSN (Online): Index Copernicus Value (2013): 6.14 Impact Factor (2014): 5.

Molecular Interaction Studies with Zinc Stearate, Calcium Stearate and Ethylene Glycol

Density & viscosity studies of Fluoxetine hydrochloride in mixed binary solvent in presence of additives

Theoretical evaluation of internal pressure in ternary and sub-binary liquid mixtures at various temperatures

Isentropic Compressibility for Binary Mixtures of Propylene Carbonate with Benzene and Substituted Benzene

Molecular interactions in ternary liquid mixture involving toluene at different frequencies

THE STUDY OF MOLECULAR INTERACTIONS IN STABILIZERS AND PLASTICIZER THROUGH ULTRASONIC MEASUREMENTS

Volumetric, Viscometric and Refractive Indices Properties of Binary Mixtures of Acetyl Acetone with 1-Butanol at Different Temperatures

Pelagia Research Library

ISSN X Original Article ACOUSTICAL STUDIES OF BINARY LIQUID MIXTURES OF P-CHLOROTOLUENE IN CHLOROBENZENE AT DIFFERENT TEPERATURES

Ultrasonic Studies of Some Biomolecules in Aqueous Guanidine Hydrochloride Solutions at K

Dielectric relaxation in ternary mixtures of benzotrifluorides

Journal of Chemical and Pharmaceutical Research, 2012, 4(8): Research Article

Solvation Studies on Sodium Dodecyl Sulphate in aqueous solutions at different temperatures

International Journal of Advanced Scientific Research and Management, Volume 3 Issue 7, July 2018

ULTRASONIC INVESTIGATIONS OF MOLECULAR INTERACTIONS IN AQUEOUS ELECTROLYTIC SOLUTIONS AT VARYING TEMPERATURES

American Journal of Energy Science 2015; 2(4): Published online June 10, 2015 (

Theoretical Evaluation of Ultrasonic Velocity in Binary Liquid Mixtures of Alcohols [S] + Benzene

Measurement of Ultrasonic Velocityin Binary Liquid Mixture of N,N-Dimethyl Acetamide (NNDA) + Diethyl Amine(DEA)

Research Article. Refractometric study of azomethine drugs in different composition

Evaluation of Thermodynamical Acoustic Parameters of Binary mixture of DBP with Toluene at 308K and at Different Frequencies

Refractive Properties of Liquid Binary Mixture at Temperature Range T= K

Research Journal of Chemical Sciences ISSN X Vol. 5(6), 32-39, June (2015)

Study of excess acoustical parameters of dimethyl sulphoxide in 2-Propanol as binary liquid mixture at various temperatures

Molecular interaction studies of acrylic esters with alcohols

Pelagia Research Library

Acoustical and Thermodynamical Studies in Ternary Mixtures of Ethylene Glycol and Glycerol with Octanol AT K

Interrelationship between Surface Tension and Sound Velocity & Thermodynamical studies of binary liquid mixtures

Ultrasonic studies of molecular interactions in pyridine + N-N dimethylformamide + cyclohexane ternary liquid mixtures at different temperatures

Static permittivity, refractive index, density and related properties of binary mixtures of pyridine and 1-propanol at different temperatures

Available online at Universal Research Publications. All rights reserved

Viscosities of oxalic acid and its salts in water and binary aqueous mixtures of tetrahydrofuran at different temperatures

Ultrasonic Behaviour of Binary Mixtures Containing Stearates and Acetone

International Journal of Scientific Research and Reviews

Molecular Interaction Study of Binary Solutions of n-butyl Acetate and Isopropanol at Various Temperatures

Acoustic Studies on Different Binary Liquid Mixtures of LIX Reagents with Different Diluents

International Journal of Chemical and Physical Sciences, ISSN: IJCPS Vol. 4 Special Issue NCSC Jan

Available online Research Article

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 4, May 2014

Study and analysis of various mixing rules of refractive index for some liquid mixtures

Volumetric and transport properties of binary liquid mixtures of aromatic hydrocarbons with N-methylacetamide at K

Apparent molar volume of sodium chloride in mixed solvent at different temperatures

MOLECULAR INTERACTION STUDIES OF GLYCYLGLYCINE IN AQUEOUS SODIUM HALIDE SOLUTIONS AT 303, 308 AND 313K

Structural study of aqueous solutions of tetrahydrofuran and acetone mixtures using dielectric relaxation technique

A Study on Density and Viscosity of Binary Solutions of n- Propyl Acetate and IsoPropyl Alcohol at Various Temperatures

Journal of Chemical and Pharmaceutical Research, 2015, 7(6): Research Article

Transcription:

IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 78-4861.Volume 6, Issue Ver. II (Mar-Apr. 14), PP 64-68 Microwave Dielectric Relaxation of Alcohols in non polar solutions T.Ganesh 1, D.J.S. Anand Karunakaran,P.Udhayageetha 1, P.Jeevanandham 3, S.Kumar 3 1 Post Graduate & Research Department of Physics Rajah Serfoji Government College, Thanjavur 613 5. Tamil Nadu. Post Graduate & Research Department of Physics Bishop Heber College, Tiruchirapalli 6 17,Tamil Nadu 3 Department of Physics, Annamalai University, Annamalai Nagar 68, Tamil Nadu Abstract: The properties of the binary mixtures of 1-propanol and phenol have been studied at constant temperature 33K in dilute solutions of benzene using standard standing wave microwave X-band (9.4 GHz) J- band (7.4 GHz) technique. The values of different dielectric parameters ε, ε', ε'', ε have been determined for five different mole fractions of 1-propanol and phenol. The values of permittivity and dielectric loss are used to evaluate relaxation time for overall molecular rotation (τ 1 ), relaxation time for intermolecular rotations (τ ), most probable relaxation time ( ) and dipole moment (µ) at constant temperature 33K. The values of relaxation times and dipole moment are found to increases with the mole fraction of 1-propanol, phenol in all binary mixtures. The energy parameter (ΔFτ) for dielectric relaxation process of the mixtures is also calculated. It is found that the dielectric relaxation process can be treated as a rate process. The present investigation suggest that existence of both the intermolecular and intramolecular orientation takes place in both binary mixtures. Keywords: Dipolemoment, energy parameters, microwave absorption, relaxation time. I. Introduction Dielectric relaxation studies of binary mixtures of polar liquids in microwave region provide useful information about self association of solute-solute interaction and solute-solvent type of molecular association [1-7]. Alcohols play an important role in many chemical reactions due to the ability to undergo self-association with manifold internal structure. The interaction study between associated liquid and non-associated in inert media gives valuable information about solute-solute and solute-solvent interaction [8]. 1-propanol is used as a safest antiseptic compound and is also used in the manufacture of insecticides. It is very effective against a broad spectrum of microorganisms including bacteria, fungi, and virus such as HIV, hepatitis-b etc. Dielectric relaxation studies on a variety of mixtures of hydrogen bonded liquids have been performed at microwave frequencies by various researches over a decade. Strong alcohols like 1-propanol and phenol are strongly associative in liquid state and undergo hydrogen bonding with binary solvents which have wider applications. The experimental work concerned with the dielectric relaxation process in the binary mixture of the above two compounds is carried out and molecular association in the different concentration of 1-propanol in the binary mixtures is tried to understand during present course of work. Phenols are strongly associative in liquid state and undergo hydrogen bonding with many solvents Magee and Walker [9] investigated phenol in number of non polar solvents and found that even at the lowest concentration the relaxation time of alcohol is lengthened by intramolecular association due to either solutesolute or hydrogen bonding of phenol to the π electron cloud of solvent or both factors. During last several years, investigations of dielectric relaxation phenomena have provided an important approach to explore the structural behavior of complex organic polar molecules in non-polar solvents. To study the structural behavior of molecules, it is necessary to determine various dielectric parameters which are related with inter and intramolecular association and internal rotation with temperature variation. Recently, dielectric behavior of mixture of different industrial and biological useful polar solvent molecules under varying conditions of compositions has evoked. Considerable interest[1-1] because it hel in formulating adequate models of liquid relaxation and obtaining information about the relaxation process in a polar mixture. The relaxation studies of non-polar solvents provide valuable information about solute-solute and solute solvent interaction [13-15]. Several researchers have studied dilute solutions of non-polar solvents and observed interesting abrupt behavior due to formation of complexes in the mixture of polar molecules [16-18]. In the present investigation the dielectric properties of binary mixtures of 1-propanol and phenol at different concentrations and constant temperature 33k in dilute solutions of benzene have been carried out and results are reported. 64 Page

II. Experimental Details Benzene was dried by refluxing over freshly cut sodium metal for 6-8 hour and distilled through a long vertical fractioning column and middle fraction of the distilled benzene was used. 1-propanol used in these investigations where purchased AR grade from Merck India Ltd., AR grade phenol is used without further purification. The static permittivity (ε ) is measured by using a Dipolemeter DM1 supplied by weissenchanijiftlich technische Werkatatter, Germany operated at frequency of MH Z The refractive indices of the solutions are obtained by abbe s refractometer which in turn give the optical permittivity [19] (ε =nd ) and the results are obtained at a constant temperature 33K. The densities of the liquids and their mixtures were determined using a specific gravity bottle of capacity 5cm 3. The viscosity of the solution at constant temperatures at 33K were measured with Oswald s viscometer. The X band and J band microwave was used to measure wavelength in the dielectric medium and voltage standing wave ratio (VSWR) using a short circuiting plunger. The setup was tuned at microwave frequency 9.4 GH Z, 7.4 GH Z. The energy parameters for the binary mixture have been calculated from the knowledge of their dielectric parameters viz. static permittivity( ), dielectric constant( ), dielectric loss factor( ) and optical permittivity( ). From the experimental studies, it is found that the dielectric relaxation process depends on the solute-solute association. The excess parameter is evaluated by using Eyring rate equation at constant temperature 33K. For present investigation double minima method is used for determining the loss factor. The values of and according to this method are given by ' - (1) c d g d dp d dh - () where and sin -(3) 1 ( cos ) x -(4) g Where c is the cut-off wave length, the free space wave length, d the wave length of the dielectric medium, g is wave length in the empty wave guide, inverse voltage standing wave ratio, n is the number of minima, X is the double minima width in the standing wave patterns. For dilute solutions in non-polar solvents,,, and can be expressed as linear functions of concentrations[1-]. = +aw = a W = 1 + a W = 1 + a W Here subscript 1 refers to the pure solvent, to the solute, refers to the static (or) low frequency and refers optical frequency. W is the weight fraction of the solute. The Higasi s [3] parameters a, a, a, a are the slopes of the above mentioned equations. From the Higasi s parameters dielectric relaxation time() is evaluated. 1 A B w C A a( a a ) B ( a C ( a a a)( a a ) ( a ) 1 1 ) ( a) --- (5) The values of the dipole moment () of the solute molecules for all the binary mixtures are calculated by using Higasi s method. 65 Page

III. Result and Discussion The dielectric parameters static dielectric constant(ε ), dielectric constant at infinite frequency(ε ), molar polarizability(p), dipole moment(μ)[] and physical parameters viscosity, density of the binary systems are presented in Table-1 & Table- of the 1-proponal and phenol with benzene respectively. The Fig- shows the increase of static dielectric constant with mole fractions of both the binary systems. The dielectric constant, dielectric loss and average relaxation time for different mole fractions of binary mixtures 1-propanol and phenol in dilute solution with benzene for different weight fractions are determined and presented in Table-3 & Table-4 respectively. Both the values of and vary linearly with weight fractions of solute in benzene at constant temperature 33K. Fig-1 shows the average relaxation time increases with increase in the mole fractions of the binary mixtures. This may possibly be due to increase in the molar volume. The increase in the values of various relaxation times (τ 1, τ and ) with the concentration of 1-propanol may provide useful indicators for absorption of drugs dissolved in 1-propanol. Since the differences between τ 1 and τ are significant at all mole fractions, we may expect more than one mechanism in these mixtures. This implies that the dielectric absorption by its molecules is not solely contributed by their rotation as a single unit, but also contains contribution from the intramolecular rotations i.e., it indicates, the existence of an intramolecular relaxation process in addition to the over all relaxation process. From these observations, it may be concluded, that in these mixtures, the intramolecular rotations are dominant as compared to the individual molecular rotations. The average relaxation time ( ) is found increased because the mole fraction of 1-propanol in the binary mixture is increased with increase of relaxation time may be attributed to the increase in effective radius of the rotating unit. In the binary mixture of 1-propanol and phenol, the CH 3 group is attached to the same carbon atom to which the OH grou is attached, this increases the overall size of the molecule and may cause hindrance to the group rotation which may give rise to increases the relaxation time [4-5]. The dipole moment of mixture increases as the mole fraction of 1-proponol in binary mixtures increases Table-1. This is due to shifting of charge centers in the dilute solutions. It may also be realized that increased solute-solute interaction leads to the increase in contribution, because the number of relaxing hydroxyl grou decreases due to association. Probably this effect is partially responsible for the corresponding increases show by the apparent dipole moment. From the measurement of free energy of activation for dielectric relaxation ΔFτ for all system, the ΔFτ is less than excess viscosity η E, since relaxation time involves rotational motion where as the viscosity involves both rotational and translational motion. Acknowledgement The authors are gratefully acknowledged the Dr.A.N.Kannappan, Former Professor and Head, Department of Physics Annamalai University, for kindly providing the instrumentation laboratory facility. References [1]. Rana V.A.Vyas A D & More N M, Indian J Pure & Appl Phys, 4 () 35. []. Sato T & Buchner R,J Chem Phys, 118 (3) 466. [3]. Rana V A, Vyas A D & Mehotra S C, J Mol Liq. 1 () 379. [4]. Mali C S, Chavan S D, Kanse K S, Kumbharkhane A C & Mehotra S C, Indian J Pure & Appl Phys, 4 (7) 476. [5]. Sharma V, Thakur N, Sharma D R, negi N S & Rangara V S, Indian J Pure & Appl Phys, 5 (7) 163. [6]. Madhurima V, Sobhanadri J & Murthy V R K, Indian J Pure Appl Phys, 4 (4) 837. [7]. Prajapati A N, Rana V A & Vyas A D, Indian J Pure & Appl Phys, 44 (6) 6. [8]. Vyas A D, Rana V A, Bhatnagar S P & Vashisth V M, Indian J Pure & Appl Phys, 49 (11)47. [9]. Magee M D & Walker S.J Chem.Phys, 55 (1971) 368. [1]. Narwade B.S, Gawali P G, Pande R & Kalamse G M. J Chem Sci, 117 (5) 673. [11]. Manjunath M S & Sannappa J, Int J Pure & Appl Phys, 4 (8) 71. [1]. Rangra V S & Sharma D R, Indian J Pure & Appl Phys, 4 (4) 91. [13]. Yaqua M, Ahmed S S & Hussainb A, Pak J Sci Ind Res, 49 (6) 5. [14]. Kolling O B. Transactions of the Kansas Academy of Science, 8 (1979) 18 [15]. Kumar R, Chaudhary R K & Rangra V.S, Indian J Pure & Appl Phys, 49 (11) 4. [16]. Singh P J & Sharma K S, Pramana Journal of Physics, 46 (1996) 59. [17]. Kalaivani T & Krishnan S, Indian J Pure & Appl Phys, 47 (9) 88. [18]. Mohan T M. Sastry S S & Murthy V R K, Indian J Pure & Appl Phys, 48 (1) 668. [19]. Aggarval C, Arya R, GandhiJM & Sisodia M L, J mol.liq, 44 (199) 161. []. Bhatnagar, Indian J Pure & Appl Phys 49 (11) 41. [1]. Franklin, A.D, Hesfton W.H, Henneley E.J & Smyth C.P, J. Amer. Chem. Soc., 7(195) 3447. []. Higasi K, Bull. Chem. Soc. Japan, 39(1996) 157. [3]. Higasi K, Koga Y&Nagamure M, Bull. Chem. Soc. Japan, 44(1971) 988. [4]. Madhu Mohan T, Sreehari Sastry S, Murthy V R K, Indian J Pure & Appl Phys.,48(1)668. [5]. RituJain, Nidhi Bhargava,Sharma K.S, Bhatnagar D, Indian J Pure & Appl Phys.,49(1141 66 Page

X (Mole Microwave Dielectric Relaxation of Alcohols in non polar solutions Table 1 Dielectric parameters with various mole fractions of 1-propanal at 33K. X (Mole Density ρ 1 x1 3 kg/m 3 volum e φ 1 ε (MHz ) ε (n D) Viscosity η 1 x1 3 NSM polariz ability P 1 Dipole moment Higasi s method μ ab (D) η E x 1 3 NSM..864 78.68.385.3.75 4.847.674.11.4.864 78.67.388.4.753 4.891.71.111.6.865 78.64.391.7.759 4.95 3.1.19.8.865 78.61.47.3.763 5.1 3.373.14.1.866 78.54.41.33.771 5.13 3.981.98 Table Dielectric parameters with various mole fractions of phenol at 33K. Dipole Density Viscosity moment ρ 1 ε x1 3 volume ε η 1 (MHz) (n kg/m 3 φ D) x1 3 polarizability Higasi 1 NSM P 1 method μ ab (D) η E x 1 3 NSM..8513 1..316.41.791 3.641.38.1676.4.854 1.8.371.45.786 31.45.39.164.6.8531 1..4715.455.784 3.96.958.165.8.8537 99.95.511.47.783 33.473 3.3.1598.1.8547 99.88.571.485.781 33.449 3.16.1517 X (mole Table 3 Dielectric data and activation energies of 1-propanol in benzene system..354.3617.667.731 14.941 14.83 59.6 57.5.4.364.371.71.81 15.81 14.898 68.4 58.61.6.375.3819.71.831 15.441 15.199 7.7 66.5.8.387.399.737.85 15.581 15.341 76.85 69.87.1.396.41.747.89 16.475 16.459 19.6 18.9 X (mole Table 4 Dielectric data and activation energies of phenol in benzene system..544.98.6.3774 7.81.164 3.5 14.6.4.538.3171.34.39 11.333.1691 14.7 14.4.6.714.3314.41.479 1.455.1731 18.89.39.8.88.356.6.448 14.5669.18 51.43 8.7.1.361.3683.855.4438 15.518.1873 74.47 9.67 67 Page

Figure-1 : Molefraction Vs Relaxation time Figure- : Molefraction Vs Static Dielectric Constant 68 Page