Nondeterministic Biautomata and Their Descriptional Complexity

Similar documents
I F I G R e s e a r c h R e p o r t. Minimization, Characterizations, and Nondeterminism for Biautomata. IFIG Research Report 1301 April 2013

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

Theory of Computation Regular Languages

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

Lecture 6 Regular Grammars

Deterministic Finite Automata

CS:4330 Theory of Computation Spring Regular Languages. Equivalences between Finite automata and REs. Haniel Barbosa

State Complexity of Union and Intersection of Binary Suffix-Free Languages

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck.

Lecture 09: Myhill-Nerode Theorem

Java II Finite Automata I

Regular expressions, Finite Automata, transition graphs are all the same!!

Non-deterministic Finite Automata

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

Non-deterministic Finite Automata

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2016

Non-Deterministic Finite Automata

Fundamentals of Computer Science

Chapter 2 Finite Automata

Harvard University Computer Science 121 Midterm October 23, 2012

1 Nondeterministic Finite Automata

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2014

Regular Languages and Applications

Worked out examples Finite Automata

Non Deterministic Automata. Formal Languages and Automata - Yonsei CS 1

Minimal DFA. minimal DFA for L starting from any other

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018

1 From NFA to regular expression

On Determinisation of History-Deterministic Automata.

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh

Designing finite automata II

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Converting Regular Expressions to Discrete Finite Automata: A Tutorial

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA

FABER Formal Languages, Automata and Models of Computation

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers

CMSC 330: Organization of Programming Languages

Synchronizing Automata with Random Inputs

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

Formal Languages and Automata

Good-for-Games Automata versus Deterministic Automata.

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Lecture 08: Feb. 08, 2019

Formal languages, automata, and theory of computation

Introduction to ω-autamata

CHAPTER 1 Regular Languages. Contents

The Magic Number Problem for Subregular Language Families

Myhill-Nerode Theorem

NFAs continued, Closure Properties of Regular Languages

Quotient Complexity of Ideal Languages

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)

Finite-State Automata: Recap

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

Regular languages refresher

1.4 Nonregular Languages

Chapter 1, Part 1. Regular Languages. CSC527, Chapter 1, Part 1 c 2012 Mitsunori Ogihara 1

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

Let's start with an example:

Finite Automata-cont d

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

1.3 Regular Expressions

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

Scanner. Specifying patterns. Specifying patterns. Operations on languages. A scanner must recognize the units of syntax Some parts are easy:

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!)

GNFA GNFA GNFA GNFA GNFA

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

Tutorial Automata and formal Languages

Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-*

ɛ-closure, Kleene s Theorem,

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun:

80 CHAPTER 2. DFA S, NFA S, REGULAR LANGUAGES. 2.6 Finite State Automata With Output: Transducers

Homework 3 Solutions

Compiler Design. Fall Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

CDM Automata on Infinite Words

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language.

Prefix-Free Subsets of Regular Languages and Descriptional Complexity

5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata

CISC 4090 Theory of Computation

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

The Cayley-Hamilton Theorem For Finite Automata. Radu Grosu SUNY at Stony Brook

Automata and Languages

More on automata. Michael George. March 24 April 7, 2014

From LTL to Symbolically Represented Deterministic Automata

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

The Degree of Irreversibility in Deterministic Finite Automata

Formal Language and Automata Theory (CS21004)

Nondeterminism and Nodeterministic Automata

Convert the NFA into DFA

Coalgebra, Lecture 15: Equations for Deterministic Automata

First Midterm Examination

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

Talen en Automaten Test 1, Mon 7 th Dec, h45 17h30

Model Reduction of Finite State Machines by Contraction

Transcription:

Nondeterministic Biutomt nd Their Descriptionl Complexity Mrkus Holzer nd Sestin Jkoi Institut für Informtik Justus-Lieig-Universität Arndtstr. 2, 35392 Gießen, Germny 23. Theorietg Automten und Formle Sprchen Ilmenu, 25.-27. Septemer 2013

1 Biutomt Nondeterministic Biutomt Structurl Properties of Biutomt 2 Descriptionl Complexity Complexity of the -Property Conversion Prolems for -F-Biutomt Complexity of the F-Property 3 Conclusion M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

1 Biutomt Nondeterministic Biutomt Structurl Properties of Biutomt 2 Descriptionl Complexity Complexity of the -Property Conversion Prolems for -F-Biutomt Complexity of the F-Property 3 Conclusion M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Biutomt...s introduced in [Kĺım, Polák, 2011] A iutomton A = (Q,Σ,,,q 0,F) is deterministic finite utomton with two reding heds (left-to-right nd right-to-left)... q 2 q 0 q 0 q 1 q 3 q 4... tht stisfies the following two restrictions:,, 1 heds move independently: (q ) = (q ) ( -property) 2 forwrd/ckwrd cceptnce: q F q F (F-property) M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Biutomt...s introduced in [Kĺım, Polák, 2011] A iutomton A = (Q,Σ,,,q 0,F) is deterministic finite utomton with two reding heds (left-to-right nd right-to-left)... q 2 q 1 q 0 q 1 q 3 q 4... tht stisfies the following two restrictions:,, 1 heds move independently: (q ) = (q ) ( -property) 2 forwrd/ckwrd cceptnce: q F q F (F-property) M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Biutomt...s introduced in [Kĺım, Polák, 2011] A iutomton A = (Q,Σ,,,q 0,F) is deterministic finite utomton with two reding heds (left-to-right nd right-to-left)... q 2 q 3 q 0 q 1 q 3 q 4... tht stisfies the following two restrictions:,, 1 heds move independently: (q ) = (q ) ( -property) 2 forwrd/ckwrd cceptnce: q F q F (F-property) M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Biutomt...s introduced in [Kĺım, Polák, 2011] A iutomton A = (Q,Σ,,,q 0,F) is deterministic finite utomton with two reding heds (left-to-right nd right-to-left)... q 2 q 3 q 0 q 1 q 3 q 4... tht stisfies the following two restrictions:,, 1 heds move independently: (q ) = (q ) ( -property) 2 forwrd/ckwrd cceptnce: q F q F (F-property) M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Biutomt...s introduced in [Kĺım, Polák, 2011] A iutomton A = (Q,Σ,,,q 0,F) is deterministic finite utomton with two reding heds (left-to-right nd right-to-left)... q 2 q 2 q 0 q 1 q 3 q 4... tht stisfies the following two restrictions:,, 1 heds move independently: (q ) = (q ) ( -property) 2 forwrd/ckwrd cceptnce: q F q F (F-property) M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Biutomt...s introduced in [Kĺım, Polák, 2011] A iutomton A = (Q,Σ,,,q 0,F) is deterministic finite utomton with two reding heds (left-to-right nd right-to-left)... q 2 q 3 q 0 q 1 q 3 q 4... tht stisfies the following two restrictions:,, 1 heds move independently: (q ) = (q ) ( -property) 2 forwrd/ckwrd cceptnce: q F q F (F-property) M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Biutomt...s introduced in [Kĺım, Polák, 2011] A iutomton A = (Q,Σ,,,q 0,F) is deterministic finite utomton with two reding heds (left-to-right nd right-to-left)... q 2 q 4 q 0 q 1 q 3 q 4... tht stisfies the following two restrictions:,, 1 heds move independently: (q ) = (q ) ( -property) 2 forwrd/ckwrd cceptnce: q F q F (F-property) M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Results on Biutomt [Kĺım, Polák, 2011/12] Similrities to ordinry deterministic finite utomt: iutomt ccept regulr lnguges hve unique miniml utomt Simple chrcteriztions of regulr lnguge clsses vi iutomt: prefix-suffix testle lnguges piecewise testle nd k-piecewise testle lnguges M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Results on Biutomt [Kĺım, Polák, 2011/12] Similrities to ordinry deterministic finite utomt: iutomt ccept regulr lnguges hve unique miniml utomt Simple chrcteriztions of regulr lnguge clsses vi iutomt: prefix-suffix testle lnguges piecewise testle nd k-piecewise testle lnguges [Jirásková, Kĺım, 2012] Descriptionl Complexity: NFA/DFA/syntctic monoid iutomton M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Results on Biutomt [Kĺım, Polák, 2011/12] Similrities to ordinry deterministic finite utomt: iutomt ccept regulr lnguges hve unique miniml utomt Simple chrcteriztions of regulr lnguge clsses vi iutomt: prefix-suffix testle lnguges piecewise testle nd k-piecewise testle lnguges [Jirásková, Kĺım, 2012] Descriptionl Complexity: NFA/DFA/syntctic monoid iutomton [H., J., 2013] Brzozowski-like minimiztion of iutomt Chrcteriztions of cyclic nd commuttive regulr lnguges M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Biutomt...more generl nondeterministic iutomton (NBiA) A = (Q,Σ,,,I,F): Q finite set of sttes Σ input lphet : Q Σ 2 Q forwrd trnsition function : Q Σ 2 Q ckwrd trnsition function I Q set of initil sttes F Q set of finl or ccepting sttes A ccepts w Σ if w = u 1 u 2...u k v k...v 2 v 1 (u i,v i Σ ), nd [((...((((I u 1 ) v 1 ) u 2 ) v 2 )...) u k ) v k ] F deterministic iutomton (DBiA): I = 1 q = 1 nd q = 1 for ll q Q, Σ M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Biutomt...more generl nondeterministic iutomton (NBiA) A = (Q,Σ,,,I,F): Q finite set of sttes Σ input lphet : Q Σ 2 Q forwrd trnsition function : Q Σ 2 Q ckwrd trnsition function I Q set of initil sttes F Q set of finl or ccepting sttes A ccepts w Σ if w = u 1 u 2...u k v k...v 2 v 1 (u i,v i Σ ), nd [((...((((I u 1 ) v 1 ) u 2 ) v 2 )...) u k ) v k ] F deterministic iutomton (DBiA): I = 1 q = 1 nd q = 1 for ll q Q, Σ M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Biutomt...more generl nondeterministic iutomton (NBiA) A = (Q,Σ,,,I,F): Q finite set of sttes Σ input lphet : Q Σ 2 Q forwrd trnsition function : Q Σ 2 Q ckwrd trnsition function I Q set of initil sttes F Q set of finl or ccepting sttes A ccepts w Σ if w = u 1 u 2...u k v k...v 2 v 1 (u i,v i Σ ), nd [((...((((I u 1 ) v 1 ) u 2 ) v 2 )...) u k ) v k ] F deterministic iutomton (DBiA): I = 1 q = 1 nd q = 1 for ll q Q, Σ M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Structurl Properties of Biutomt -property: for ll q Q,, Σ: (q ) = (q ) F-property: for ll q Q, Σ: (q ) F (q ) F -F-DBiA re iutomt s introduced in [Kĺım, Polák, 2011] M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Structurl Properties of Biutomt -property: for ll q Q,, Σ: (q ) = (q ) F-property: for ll q Q, Σ: (q ) F (q ) F -F-DBiA re iutomt s introduced in [Kĺım, Polák, 2011] Simpler cceptnce conditions generl: A ccepts w if w = u 1 u 2...u k v k...v 2 v 1 (u i,v i Σ ) nd [((...((((I u 1 ) v 1 ) u 2 ) v 2 )...) u k ) v k ] F with : A ccepts w if w = uv (u,v Σ ) nd [(I u) v] F (equivlent: [(I v) u] F ) with, F: A ccepts w if [I w] F (equivlent: [I w] F ) M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

1 Biutomt Nondeterministic Biutomt Structurl Properties of Biutomt 2 Descriptionl Complexity Complexity of the -Property Conversion Prolems for -F-Biutomt Complexity of the F-Property 3 Conclusion M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Complexity of the -Property Lemm For ny given n-stte -NBiA A one cn construct n equivlent NFA tht hs O(n 2 ) sttes. In prticulr L(A) is regulr. M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Complexity of the -Property Lemm For ny given n-stte -NBiA A one cn construct n equivlent NFA tht hs O(n 2 ) sttes. In prticulr L(A) is regulr. Lemm 1 Let G = (N,T,P,S) e liner context-free grmmr in normlform. Then one cn construct n equivlent ( N +1)-stte NiBA A. Automton A my stisfy the F-property. 2 Let A e n n-stte NBiA. Then one cn construct n equivlent liner context-free grmmr G in normlform with (n + 1) nonterminls. M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Complexity of the -Property Lemm For ny given n-stte -NBiA A one cn construct n equivlent NFA tht hs O(n 2 ) sttes. In prticulr L(A) is regulr. Lemm 1 Let G = (N,T,P,S) e liner context-free grmmr in normlform. Then one cn construct n equivlent ( N +1)-stte NiBA A. Automton A my stisfy the F-property. 2 Let A e n n-stte NBiA. Then one cn construct n equivlent liner context-free grmmr G in normlform with (n + 1) nonterminls. Theorem The trde-off etween NBiAs nd -NBiAs is non-recursive. M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

n2 n 2(n 1) Conversions to -F-DBiA From [Jirásková, Kĺım 2012]: 1 NFA -F-DBiA 2 DFA -F-DBiA 3 SynMon -F-DBiA SynMon n 2 -F-DBiA 2 2n 2(2 n 1) NFA 2 n DFA M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

n2 n 2(n 1) Conversions to -F-DBiA Theorem For ny given n-stte NBiA one cn construct n equivlent DBiA tht hs 2 n sttes. Further, this construction preserves the - nd F-properties. Proof Ide: Power-set construction. -F-NBiA SynMon n 2 -F-DBiA 2 n 2 2n 2(2 n 1) NFA 2 n DFA M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

n2 n 2(n 1) Conversions to -F-DBiA Lemm For ll m 1 there is lnguge L m ccepted y -F-NBiA with 3m+2 sttes nd for which every -F-DBiA needs t lest 2 2m +1 sttes. Proof Ide: L m = Σ Σ m 1 Σ -F-NBiA SynMon 2 Θ(n) n 2 2 2n 2(2 n 1) -F-DBiA NFA 2 n DFA M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

n2 n 2(n 1) Conversions to -F-NBiA SynMon n 2 -F-NBiA 2 Θ(n) -F-DBiA 2 2n 2(2 n 1) NFA 2 n DFA M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

n2 n 2(n 1) Conversions to -F-NBiA Theorem For ny given n-stte NFA one cn construct n equivlent -F-NBiA tht hs n 2 sttes. Proof Ide: Construct product of forwrd nd ckwrd utomt. -F-NBiA n 2 SynMon 2 Θ(n) n 2 n 2 2 2n 2(2 n 1) -F-DBiA NFA 2 n DFA M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

A Lower Bound Technique for -F-NBiA Lemm A set S = {(x i,y i,z i ) x i,y i,z i Σ,1 i n} is i-fooling set for L Σ if 1 for 1 i n it is x i y i z i L, nd 2 for 1 i,j n, with i j, it is x i y j z i / L or x j y i z j / L. Then ny -F-NBiA for L hs t lest S sttes. Proof Ide: Let A = (Q,Σ,,,I,F) e -F-NBiA for L. If x i y i z i L then there is q i [(I x i ) z i ] such tht (q i y i ) F. If Q < S then there re i j with q i = q j. Then x i y j z i L nd x j y i z j L, contrdiction. M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Lower Bound for DFA -F-NBiA Theorem For every n 1 there is lnguge L n ccepted y n n-stte DFA, such tht ny -F-NBiA needs n 2 sttes to ccept L n. Sketch of Proof: Consider A n,,, 0 1... n 1 with the i-fooling set S = {(x i,j,y i,j,z i,j ) 0 i,j n 1}, where x i,j = i, y i,j = n i n 2 j+2, z i,j = n j. Note tht x i,j y i,j z i,j = n n 2 n+2 L(A). Consider (i,j) (i,j ): i = i : Word x i,j y i,j z i,j = n n 2 n+2+j j L(A). i i : Assume (j j) mod n n 1, then x i,j y i,j z i,j = n i +i n 2 n+2+j j L(A). Cse (j j) mod n = n 1 similr. M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Lower Bound for DFA -F-NBiA Theorem For every n 1 there is lnguge L n ccepted y n n-stte DFA, such tht ny -F-NBiA needs n 2 sttes to ccept L n. Sketch of Proof: Consider A n,,, 0 1... n 1 with the i-fooling set S = {(x i,j,y i,j,z i,j ) 0 i,j n 1}, where x i,j = i, y i,j = n i n 2 j+2, z i,j = n j. Note tht x i,j y i,j z i,j = n n 2 n+2 L(A). Consider (i,j) (i,j ): i = i : Word x i,j y i,j z i,j = n n 2 n+2+j j L(A). i i : Assume (j j) mod n n 1, then x i,j y i,j z i,j = n i +i n 2 n+2+j j L(A). Cse (j j) mod n = n 1 similr. M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Conversions to -F-NBiA SynMon -F-NBiA -F-DBiA n 2 n2 n 2(n 1) n 2 2 Θ(n) n 2 2 2n 2(2 n 1) NFA 2 n DFA M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Conversions to -F-NBiA Theorem Let L e regulr lnguge given y syntctic monoid of size n. Then one cn construct -F-NBiA for L tht hs t most n sttes. This ound cn e reched for every n 1. n2 n 2(n 1) -F-NBiA n 2 n SynMon 2 Θ(n) n 2 n 2 2 2n 2(2 n 1) -F-DBiA NFA 2 n DFA M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Conversions to -F-NBiA Theorem For ny given regulr expression of lphetic width n one cn construct n equivlent -F-NBiA tht hs (n+1) 2 sttes. n2 n 2(n 1) RegExp Θ(n 2 ) n -F-NBiA SynMon 2 Θ(n) n 2 -F-DBiA Lemm For ll n 1 there is regulr lnguge L n with lphetic width n, such tht ny -F-NBiA needs n 2 sttes to ccept L n. n 2 NFA n 2 2 2n 2(2 n 1) 2 n DFA M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Complexity of the F-Property The F-property is esy for -NBiAs, Lemm For ny given n-stte -NBiA one cn construct n equivlent -F-NBiA tht hs O(n 4 ) sttes. M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Complexity of the F-Property The F-property is esy for -NBiAs, Lemm For ny given n-stte -NBiA one cn construct n equivlent -F-NBiA tht hs O(n 4 ) sttes....nd hrd for -DBiAs. Lemm For every n 1 there is regulr lnguge L n ccepted y -DBiA with O(n 2 ) sttes nd for which every -F-DBiA needs Ω(2 n ) sttes. M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

1 Biutomt Nondeterministic Biutomt Structurl Properties of Biutomt 2 Descriptionl Complexity Complexity of the -Property Conversion Prolems for -F-Biutomt Complexity of the F-Property 3 Conclusion M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Conclusion Summry nondeterminism for iutomt structurl properties:, F descriptionl complexity of conversion prolems Further Reserch tight ound for determiniztion of -F-NBiAs tight ounds for -BiA -F-BiA nd -BiA NFA/DFA understnding the F-property (lso concerning minimiztion prolems) further chrcteriztions of suregulr lnguge clsses residul iutomt... M. Holzer, S. Jkoi (JLU Gießen) Nondeterministic Biutomt 23. Theorietg, Ilmenu, Septemer 2013

Thnk you for your ttention!