Neutrino Masses in the Lepton Number Violating MSSM

Similar documents
Neutrino Masses in the MSSM

CLFV beyond minimal SUSY

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Models of New Physics for Dark Matter

BNV and LNV in MSSM. Mu-Chun Chen, University of California, Irvine

Strings, Exceptional Groups and Grand Unification

Testing supersymmetric neutrino mass models at the LHC

arxiv: v1 [hep-ph] 5 Jan 2012

arxiv:hep-ph/ v1 22 Jun 2005

Models of Neutrino Masses

arxiv: v1 [hep-ph] 16 Mar 2017

arxiv:hep-ph/ v1 15 Jun 2004

Falsifying highscale Baryogenesis

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

12 Mar 2004, KTH, Stockholm. Peter Skands Dept. of Theoretical High Energy Physics, Lund University LHC

Neutrino Oscillations and R-parity Violating Supersymmetry

arxiv:hep-ph/ v2 9 Aug 1999

Searches for Lepton Flavor Violation. Update on BaBar Searches for Lepton Flavor Violation using Tau Decays

Lecture 18 - Beyond the Standard Model

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays

Supersymmetric Seesaws

arxiv: v3 [hep-ph] 6 Oct 2014

Fermion Electric Dipole Moments in R-parity violating Supersymmetry.

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

Electric Dipole moments of charged leptons and lepton flavor violating interactions in the general two Higgs Doublet model

Beyond Standard Model Effects in Flavour Physics: p.1

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah

Supersymmetry Breaking

Lectures on Supersymmetry I

12.2 Problem Set 2 Solutions

Minimal Lepton Flavor Violation

Inverse See-saw in Supersymmetry

Bimaximal Neutrino Mixing in a Zee-type Model with Badly Broken Flavor Symmetry

+ µ 2 ) H (m 2 H 2

Neutrino Mixing from SUSY breaking

A light singlet at the LHC and DM

Rare B decay searches with BABAR using hadronic tag reconstruction

Proton Decay and GUTs. Hitoshi Murayama (Berkeley) Durham July 20, 2005

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Gauge-Higgs Unification on Flat Space Revised

Flavour and CP Violation Phenomenology in SUSY with an SU(3) Flavour Symmetry

Recent progress in leptogenesis

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

arxiv:hep-ph/ v1 5 Oct 2005

2 Induced LFV in the SUSY see-saw framework

Testing supersymmetric neutrino mass models at the LHC

3.5 kev X-ray line and Supersymmetry

Investigating Beyond Standard Model

BABAR results on Lepton Flavour Violating (LFV) searches for τ lepton + pseudoscalar mesons & Combination of BABAR and BELLE LFV limits

P, C and Strong CP in Left-Right Supersymmetric Models

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross

Split Supersymmetry A Model Building Approach

Neutrino Mass Models

Electroweak and Higgs Physics

Searching supersymmetry at the LHCb with displaced vertices

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Searching for sneutrinos at the bottom of the MSSM spectrum

Charged Lepton Flavor Violation in Electron-Positron Collisions

SUSY Phenomenology a

Lepton Flavor Violation in the Standard Model with general Dimension-6 Operators.

Introduction to Supersymmetry

Search for R-parity violating Supersymmetry. III Phys. Inst. A, RWTH Aachen

Introduction to the SM (5)

Biswajoy Brahmachari. Abstract. model (MSUSYLR) model is studied. We nd that the top quark Yukawa coupling (Y t ) displays

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

Theoretical Particle Physics Yonsei Univ.

A model of the basic interactions between elementary particles is defined by the following three ingredients:

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv:

Hidden two-higgs doublet model

Lepton-flavor violation in tau-lepton decay and the related topics

The Standard Model of particle physics and beyond

Revisiting gravitino dark matter in thermal leptogenesis

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:

Search for Resonant Slepton Production with the DØ-Experiment

SUSY Phenomenology & Experimental searches

Spontaneous CP violation and Higgs spectra

Generalized Gaugino Condensation: Discrete R-Symmetries and Supersymmetric Vacua

SU(3)-Flavons and Pati-Salam-GUTs

Introduction to Supersymmetry

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

arxiv: v1 [hep-ex] 7 Jul 2016

Updated S 3 Model of Quarks

SM predicts massless neutrinos

SUSY models of neutrino masses and mixings: the left-right connection

Search for Lepton Number Violation at LHCb

Probing the Planck scale with Proton Decay. Hitoshi Murayama (Berkeley) ICRR Mozumi July 27, 2004

Results on Tau Physics from BaBar

S-CONFINING DUALITIES

Effective Theory for Electroweak Doublet Dark Matter

Lecture 16 V2. October 24, 2017

Lepton flavour violation

A talk for string theorists.

Discrete dark matter mechanism

arxiv:hep-ph/ v2 20 Jul 2005

Ricerca di nuova fisica a HERA

Higgs Boson Phenomenology Lecture I

Transcription:

Neutrino Masses in the Lepton Number Violating MSSM Steven Rimmer Institute of Particle Physics Phenomenology, University of Durham

A supersymmetric standard model Find the most general Lagrangian which is invariant under Lorentz, SU(3) C SU(2) L U(1) Y and supersymmetry transformations; renormalizable minimal in particle content Neither lepton number (L) nor baryon number (B) are conserved Two options: constrain Lagrangian parameters impose a further discrete symmetry when constructing the lagrangian

Superpotential The most general superpotential is given by W = Y E LH 1 E + Y D H 1 QD c + Y U QH 2 U c µh 1 H 2 + 1 2 λllec + λ LQD c κlh 2 + 1 2 λ U c D c D c Dreiner et al, building on work of Ibanez & Ross, show that there are three preferred discrete symmetries; R-parity, a Z 3 allowing /L and P 6, referred to as proton-hexality. L. E. Ibanez and G. G. Ross, Nucl. Phys. B 368, 3 (1992) H. K. Dreiner, C. Luhn and M. Thormeier, Phys. Rev. D 73 (2006) 075007

L violating minimal supersymmetric standard model (/L-MSSM) Without imposing the conservation of L on the Lagrangian, bilinear terms exist between (and hence, mixing occurs between) charged gauginos, charged higgsinos and charged leptons neutral gauginos, neutral higgsinos and neutrinos Higgs bosons, sneutrinos... giving rise to some attractive features. B. C. Allanach, A. Dedes and H. K. Dreiner, Phys. Rev. D 69, 115002 (2004)

Vanishing sneutrino vev basis Notice that if L is not imposed, h 0 1 and ν Li carry the same quantum numbers, even before symmetry breaking. Define ν Lα = (h 0 1, ν Li ) µ α = (µ, κ i ) Solving the minimisation conditions defines a direction in this (h 0 1, ν Li ) space. In the interaction basis, we are free to define any direction in (h 0 1, ν Li ) to be the Higgs. Had the basis been rotated such that the Higgs points in this direction, a basis would have been chosen such that the sneutrino vevs are zero. M. Bisset, O. C. W. Kong, C. Macesanu and L. H. Orr, Phys. Lett. B 430, 274 (1998) Y. Grossman and H. E. Haber, Phys. Rev. D 59, 093008 (1999) A. Dedes, SR, J. Rosiek and M. Schmidt-Sommerfeld, Phys. Lett. B 627 (2005) 161

Neutrino Masses in /L-MSSM The mixing between neutrinos and neutral gauginos/higgsinos produces one tree-level, see-saw suppressed, neutrino mass. where 0 0 0 0 0 0 0 0 m tree ν m tree ν = v 2 d ( M1 g2 2 + M 2 g 2) ( κ1 2 + κ 4Det[M χ 0] 2 2 + κ 3 2) A. S. Joshipura and M. Nowakowski, Phys. Rev. D 51, 2421 (1995) M. Nowakowski and A. Pilaftsis, Nucl. Phys. B 461, 19 (1996)

Neutrino Masses in /L-MSSM Loop corrections lift the degeneracy between the two massless neutrinos. The neutrino masses, and hence mass squared differences, are dependent on the values of lepton number violating couplings. Values for lepton violating couplings exist which reproduce experimental results for mass squared differences and mixing angles. d ν λ λ ν d L d R F. M. Borzumati et al, Phys. Lett. B 384, 123 (1996) ; A. S. Joshipura et al, Phys. Rev. D 60, 111303 (1999) K. Choi et al, Phys. Rev. D 60, 031301 (1999) ; D. E. Kaplan et al, JHEP 0001 (2000) 033 M. Hirsch et al, Phys. Rev. D 62, 113008 (2000) ; A. Abada et al, Phys. Rev. D 65, 075010 (2002) Y. Grossman et al, Phys. Rev. D 69, 093002 (2004) A. Dedes, SR and J. Rosiek, hep-ph/0603225 to appear JHEP

Neutrino masses generated via λ couplings m 2 ATM [ev2 ] 6x10-3 5x10-3 4x10-3 3x10-3 2x10-3 a) All LNV=0 except λ i33 m 2 SOL [ev2 ] 1x10-4 9x10-5 8x10-5 7x10-5 All LNV=0, λ i33 fixed, λ i11 varied b) 1x10-3 2.5x10-5 3.0x10-5 3.5x10-5 λ i33 6x10-5 1.04x10-2 1.08x10-2 λ 111 m 2 SOL [ev2 ] 1x10-4 9x10-5 8x10-5 7x10-5 All LNV=0, λ i33 fixed, λ i22 varied c) m 2 SOL [ev2 ] 1x10-4 9x10-5 8x10-5 7x10-5 All LNV=0, λ i33 fixed, λ i33 varied d) 6x10-5 6.0x10-4 6.5x10-4 7.0x10-4 λ 122 6x10-5 2.7x10-5 2.9x10-5 λ 133 A. Dedes, SR and J. Rosiek, hep-ph/0603225 to appear JHEP

Interplay between µ-decays and neutrino masses In certain cases lepton number violating couplings which give rise to the mass squared differences observed in neutrino experiments will be correlated with the branching ratios for rare lepton decays.

Interplay between µ-decays and neutrino masses Generate atmospheric mass difference h 0 2 h 0 2 B κ 1 h 0 2 h 0 2 κ 1 Generate µ eγ ẽ γ ν 1 ν 1 µ L λ 121 ẽ Generate solar mass difference ẽ ν1 B e R λ ν 121 λ 121 2 ν 2 el er A. Dedes, SR and J. Rosiek, in progress

Bounds m 2 solar = (7.1 8.9) 10 5 ev 2 m 2 atm = (1.4 3.3) 10 3 ev 2 (hep-ph/0510331) B(τ µγ) < 6.8 10 8 BaBar (hep-ex/0502032) B(µ eγ) < 1.2 10 11 MEGA (hep-ex/0111030) T. Schwetz, Acta Phys. Polon. B 36 (2005) 3203 B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 95, 041802 (2005) M. Ahmed et al. [MEGA Collaboration], Phys. Rev. D 65, 112002 (2002)

Solar mass sqaured difference against λ 121 0.00016 0.00014 0.00012 m 2 atm 0.0001 8e-05 6e-05 4e-05 2e-05 0.16 0.18 0.2 0.22 0.24 0.26 λ 121 All low energy parameters reproduced correctly SPS1a parameters, plus κ i chosen to give matm λ 121 varied Preliminary results

Br(µ eγ) against λ 121 2e-11 1.8e-11 Br(µ -> e γ) 1.6e-11 1.4e-11 1.2e-11 1e-11 8e-12 6e-12 0.16 0.18 0.2 0.22 0.24 0.26 λ 121 All low energy parameters reproduced correctly SPS1a parameters, plus κ i chosen to give matm λ 121 varied Preliminary results

Summary and Conclusions The one-loop corrections to the neutrino masses in the /L-MSSM have been calculated, and it has been shown that the current values for mass squared differences and leptonic mixing angles can be reproduced. In some cases, the operators which determine neutrino masses, either at tree or loop level, will also give rise to flavour violating leptonic decays. Future experiments, B-factories in particular, will improve current bounds. It will be possible to correlate results from neutrino experiments with flavour violation and neutrinoless double beta decay experiments, providing useful information in determining the phenomenology of physics beyond the Standard Model.

Effective Operators LFV events can be derived in terms of effective operators, in a model independent manner. Leading contributions to the effective operators arise from d = 6, SU(2) L U(1) Y invariant operators. For example, the τ µ γ vertex, with an on-shell photon, arises from the following terms in the effective Lagrangian. τ L D γ R µ R τ R D γ L µ L γ γ L eff = em τ [id γ L µ L σ µν τ R + id γ R µ Rσ µν τ L + H.c.] F µν A. Brignole and A. Rossi, Nucl. Phys. B 701 (2004) 3