Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Similar documents
Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Supplementary Information. Single Crystal X-Ray Diffraction

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling

Supporting Information. Molecular Iodine-Catalyzed Aerobic α,β-diamination of Cyclohexanones with 2- Aminopyrimidine and 2-Aminopyridines

Supporting Information

Supporting information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Supporting Information

Structure Report for J. Reibenspies

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Supporting Information

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Supporting Information

Supplementary Information

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Supplementary Information

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Supplementary materials

Supporting Information

Seth B. Harkins and Jonas C. Peters

Stereoselective Synthesis of (-) Acanthoic Acid

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Electronic Supplementary Information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite)

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Supporting Information

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS ET DES CARBONES-13

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

Supporting Information. Table of Contents

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Supporting Information for the Article Entitled

Copper Mediated Fluorination of Aryl Iodides

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

SUPPORTING INFORMATION

Supporting Information. for

Crystal growth and characterization of solvated organic charge-transfer complexes built on TTF and 9-dicyanomethylenefluorene derivatives

ion, as obtained from a search of the Cambridge Structural database (CSD), December 2013.

,

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Manganese-Calcium Clusters Supported by Calixarenes

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information

Supporting Information

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Crystal structure of DL-Tryptophan at 173K

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.7, pp 36-41, 2015

Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1)

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS

Changing and challenging times for service crystallography. Electronic Supplementary Information

David Samuel, Kirsten Norrell, David G. Hilmey* Department of Chemistry, St. Bonaventure University, St. Bonaventure, NY #$ %& $&% '$&% ($) *+!

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2

Supporting Information. Table of Contents

Stereoselective Synthesis of Ezetimibe via Cross-Metathesis of Homoallylalcohols and α- Methylidene-β-Lactams

Supporting Information

Electronic Supplementary Information

Anti-Inflammatory Isoquinoline with Bis-seco-aporphine Skeleton from Dactylicapnos scandens

Experimental. Crystal data. C 18 H 22 N 4 O 6 M r = Monoclinic, P2=n a = (5) Å b = (4) Å c = (5) Å = 104.

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

Electronic Supplementary Information (ESI)

Supporting Infromation

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan*

Copyright WILEY-VCH Verlag GmbH, D Weinheim, 2000 Angew. Chem Supporting Information For Binding Cesium Ion with Nucleoside Pentamers.

Enantiospecific Synthesis of both Enantiomers of the Longtailed Mealybug Pheromone and their Evaluation in a New Zealand Vineyard

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Synthesis and Unique Optical Properties. of Selenophenyl BODIPYs. and Their Linear Oligomers

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION

Supplementary Information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2002

Supporting Information

Supplementary Information

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes

CHAPTER 2 CRYSTALLOGRAPHIC ANALYSIS

metal-organic compounds

Transcription:

Supporting information (+)- and ( )-Ecarlottones, Uncommon Chalconoids from Fissistigma latifolium with Proapoptotic Activity Charlotte Gény, Alma Abou Samra, Pascal Retailleau, Bogdan I. Iorga, Hristo Nedev, Khalijah Awang, Fanny Roussi, Marc Litaudon,,* and Vincent Dumontet,* Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR201, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France. Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur 00, Malaysia. Corresponding Author *Tel: +(0)198208. Fax: +(0)1902. E-mail: vincent.dumontet@cnrs.fr (V. D.). *Tel: +(0)198208. Fax: +(0)1902. E-mail: marc.litaudon@cnrs.fr (M. L.).

List of Supporting information S1. 1 H NMR (00 MHz, CDCl ) spectra of the new compound 1 at various temperatures S2. 1 H NMR (00 MHz, CDCl at 2 K) spectrum of the new compound 1 S. 1 C NMR (10 MHz, CDCl at 2 K) spectrum of the new compound 1 S. HSQC (00 MHz, CDCl at 2 K) spectrum of the new compound 1 S. HMBC (00 MHz, CDCl at 2 K) spectrum of the new compound 1 S. Structure refinement details of the new compounds (+)-1 and ( )-1 S. (a) Superposed experimental ECD spectrum of (+)-ecarlottone (black) with the computed ECD spectrum (red) starting from the X-ray structure of 1 (S,S); (b) X-ray structure of 1 (S,S); (c) Superposed experimental ECD spectrum of ( )-ecarlottone (black) with the computed ECD spectrum (red) starting from the X-ray structure of 1 (R,R); (d) X-ray structure of 1 (R,R). S8. 1 H NMR (00 MHz, CDCl at 2 K) spectrum of compound S9. 1 H NMR (00 MHz, CDCl ) spectrum of the new compound S10. 1 C NMR ( MHz, CDCl ) spectrum of the new compound S11. HSQC (00 MHz, CDCl ) spectrum of the new compound S12. HMBC (00 MHz, CDCl ) spectrum of the new compound S1. 1 H NMR (00 MHz, CDCl ) spectrum of the new compound S1. 1 C NMR (1 MHz, CDCl ) spectrum of the new compound S1. HSQC (00 MHz, CDCl ) spectrum of the new compound S1. HMBC (00 MHz, CDCl ) spectrum of the new compound S1. 1 H NMR (00 MHz, CDCl ) spectrum of the new compound S18. 1 C NMR (1 MHz, CDCl ) spectrum of the new compound S19. HSQC (00 MHz, CDCl ) spectrum of the new compound S20. HMBC (00 MHz, CDCl ) spectrum of the new compound S21. Raw data used for Table and their graphical representation

S1. 1 H NMR (00 MHz, CDCl ) spectra of the new compound 1 at various temperatures 11 12 10 '' '' '' 8 9 H '' '' 2'' 2 1'' H ' 1 1' 2' 22 K ' ' ' 2 K 2 K 2 K 2 K 298 K

S2. 1 H NMR (00 MHz, CDCl at 2 K) spectrum of the new compound 1 11 12 10 '' '' '' 8 9 H '' '' 2'' 2 1'' H ' 1 1' 2' ' ' '

S. 1 C NMR (10 MHz, CDCl at 2 K) spectrum of the new compound 1 11 12 10 '' '' '' 8 9 H '' '' 2'' 2 1'' H ' 1 1' 2' ' ' '

S. HSQC (00 MHz, CDCl at 2 K) spectrum of the new compound 1 11 12 10 '' '' '' 8 9 H '' '' 2'' 2 1'' H ' 1 1' 2' ' ' '

S. HMBC (00 MHz, CDCl at 2 K) spectrum of the new compound 1 11 12 10 '' '' '' 8 9 H '' '' 2'' 2 1'' H ' 1 1' 2' ' ' '

S. Structure refinement details of the new compounds (+)-1 and ( )-1 X-ray diffraction experiment on compounds (+)-1 and ( )-1 were performed on a Rigaku MM00 HF rotating-anode diffractometer, equipped with a Rapid II curved Image Plate detector and using Cu-Ka radiation (l =1.18 Å). A suitable red single crystal obtained in a mixture of acetonitrile methanol solvent was irradiated at low temperature (19K). frames of -degree oscillations segmented in three omega-scans allowed us to record complete dataset in the 2q range of 1-1.. Data reduction and scaling were carried out with an empirical absorption correction, as well as a treatment for Lorentz and polarization effects using the program Fs_Process. 1 The structure was solved by direct methods (Shelxs- 9) 2 in the space group P 2 1 /c (n 1), then refined by full matrix least squares on F 2 using the SHELXL-201/. Anisotropic thermal parameters were used for all non-hydrogen atoms and if most of the H atoms were located in residual maps they all were refined as riding, with U eq values set at 1.2U eq (parent atom) (1. for the methyl groups or hydroxyl oxygen atoms). The racemic compound is found in the asymmetric unit in a head-to-tail dimeric assembly. Tables (S1-S) on crystallographic data collection, crystal model statistics and geometry details are shown below. The crystallographic data of (+)-1 and ( )-1 have been deposited in the Cambridge Crystallographic Data Centre as CCDC 19889 and are available free of charge via http://www.ccdc.cam.ac.uk/data_request/cif. References: (1) Rigaku. (2009) Fs_Process as implemented within CrystalClear-SM Expert 2.0 r Rigaku Corporation, Tokyo, Japan. (2) Sheldrick, G. M. (2008). Acta Cryst. A, 112-122. () Sheldrick, G. M. (201). Acta Cryst. C1, -8. () Burnett, M. N. & Johnson, C. K. (199). RTEPIII. Report RNL-89. ak Ridge National Laboratory, Tennessee, USA. Figure S1. RTEP view of compound (+)-1 and ( )-1in the asymmetric unit.

Table S1. Crystal data and structure refinement for (+)-1 and ( )-1. Identification code (+)-1 and ( )-1 Empirical formula C 2 H 28 Formula weight.8 Temperature 19(2) K Wavelength 1.18 Å Crystal system Monoclinic Space group P2 1 /c Unit cell dimensions a = 2.21(18) Å a= 90. b =.8() Å b= 108.1(8). c = 2.9(19) Å g= 90. Volume.() Å Z 8 Density (calculated) 1.2 Mg/m Absorption coefficient 0. mm-1 F(000) 18 Crystal size 0.28 x 0.2 x 0.08 mm Theta range for data collection.1 to 8.221. Index ranges -21 h 29, -8 k 8, -2 l 0 Reflections collected 2198 Independent reflections 8181 [R(int) = 0.08] Completeness to theta =.8 98. % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9 and 0.9 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 81 / 0 / 8 Goodness-of-fit on F2 1.01 Final R indices [I>2s(I)] R1 = 0.09, wr2 = 0.18 R indices (all data) R1 = 0.109, wr2 = 0.102 Largest diff. peak and hole 0.2 and -0.229 e.å- Table S2. Atomic coordinates (x 10 ) and equivalent isotropic displacement parameters (Å 2 x 10 ) for (+)-1 and ( )-1. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) C(1) 02(1) -2() 29(1) (1) (1) 98(1) 290(2) 8(1) (1) C(2) 0(1) -10() 98(1) (1) (2) 09(1) 91(2) 880(1) (1) () 2(1) () 8(1) 98(1) C() 9(1) -2088() 02(1) (1) C() 10(1) -08() 82(1) 8(1) () 22(2) 2() 9(1) 120(1) C() 0(1) -22() 290(1) (1) () (1) -2() 29(1) 82(1) C() 2(1) -82() (1) (1) () 09(1) -1() 0(1) (1)

C() 91(1) 19() 22(1) 1(1) C(8) 20(1) 1() 89(1) 8(1) C(9) 9(1) 21() 12(1) (1) C(10) 0(1) 0() 80(1) (1) C(11) (2) 28() 2(1) (1) C(12) 8(1) 9() 1(1) (1) C(1) 111(1) () 00(1) 2(1) C(1) 02(2) 0() 12(2) 8(1) C(1) 9(1) () 89(1) (1) C(1) 91(2) 1() 290(1) (1) C(1) 0(2) 211() 22(2) 8(1) C(18) 9(2) 2() 29(2) 89(1) C(19) 9(2) 18() 2(2) (1) C(20) 1(1) 8() 2(1) (1) C(21) 29(1) -9() 9(1) (1) C(22) 89(1) -2() 88(1) (1) C(2) 9(1) -9() 0(1) 8(1) C(2) 819(2) -00() 2(2) 80(1) C(2) 82(2) -998() 08(2) 1() C(2) 8(2) -211(8) 298(2) 120(2) (1B) 89(1) 80(2) 08(1) 2(1) C(1B) 88(1) 8() 2(1) 0(1) (2B) 8(1) -19(2) 1(1) 1(1) C(2B) 82(1) () 0(1) 0(1) (B) 980(1) -21(2) 09(1) (1) C(B) 89(1) () 1(1) (1) (B) 982(1) 1() 088(1) 8(1) C(B) 9(1) () 22(1) (1) (B) 98(1) 01() 0(1) 9(1) C(B) (1) 8() (1) 1(1) (B) 900(1) 8(2) 91(1) 0(1) C(B) 80(1) 1() 0(1) 9(1) C(B) 88(1) 199() 0(1) 8(1) C(8B) 88(1) 12() 12(1) (1) C(9B) 90(1) 22() 88(1) 8(1) C(10B) 91(1) 289() 9(1) 8(1) C(11B) 909(1) 908() 90(1) (1) C(12B) 928(1) -0() 1(1) (1) C(1B) 891(1) -() 9(1) 9(1) C(1B) 1008(2) 1() 9(1) (1) C(1B) 921(1) 1() 9(1) (1) C(1B) 90(1) 8() 9(1) 2(1) C(1B) 102(1) 1() 2(1) 1(1) C(18B) 101(1) 22() 10(1) (1) C(19B) 992(2) 19() 0(1) 9(1) C(20B) 90(1) 222() 01(1) 8(1) C(21B) 80(1) 81() 8(1) 2(1) C(22B) 29(1) 908() 18(1) (1) C(2B) 1(1) 10918() 98(1) (1) C(2B) 88(1) 11() 2(1) (1) C(2B) (2) 9992(8) 9(2) 1(2) C(2B) 80(2) 121() 90(2) 122(2)

Table S. Bond lengths [Å] and angles [ ] for (+)-1 and ( )-1. C(1)-C() 1.99() C(1)-C() 1.() C(1)-C(2) 1.0() C(1)-H(1) 1.0000 (1)-C() 1.1() (1)-H(1) 0.800 C(2)-C(1) 1.01() C(2)-C() 1.0() C(2)-H(2) 1.0000 (2)-C(1) 1.2() ()-C(12) 1.() ()-H(1) 0.800 C()-C() 1.0() C()-H(A) 0.9900 C()-H(B) 0.9900 C()-C() 1.1() C()-C(21) 1.1() ()-C(11) 1.1() ()-C(1) 1.2() C()-C() 1.99() C()-H() 0.900 ()-C(10) 1.21() C()-H(A) 0.9900 C()-H(B) 0.9900 ()-C(9) 1.218() C()-C(8) 1.89() C(8)-C(1) 1.2() C(8)-C(9) 1.0() C(9)-C(10) 1.() C(10)-C(11) 1.() C(11)-C(12) 1.() C(12)-C(1) 1.8() C(1)-H(1A) 0.9800 C(1)-H(1B) 0.9800 C(1)-H(1C) 0.9800 C(1)-C(20) 1.80() C(1)-C(1) 1.02() C(1)-C(1) 1.() C(1)-H(1) 0.900 C(1)-C(18) 1.9() C(1)-H(1) 0.900 C(18)-C(19) 1.() C(18)-H(18) 0.900 C(19)-C(20) 1.0() C(19)-H(19) 0.900 C(20)-H(20) 0.900 C(21)-C(22) 1.28() C(21)-H(21A) 0.9900 C(21)-H(21B) 0.9900

C(22)-C(2) 1.8() C(22)-H(22A) 0.9900 C(22)-H(22B) 0.9900 C(2)-C(2) 1.299() C(2)-H(2) 0.900 C(2)-C(2) 1.88() C(2)-C(2) 1.0() C(2)-H(2A) 0.9800 C(2)-H(2B) 0.9800 C(2)-H(2C) 0.9800 C(2)-H(2A) 0.9800 C(2)-H(2B) 0.9800 C(2)-H(2C) 0.9800 (1B)-C(B) 1.1() (1B)-H(1B) 0.800 C(1B)-C(B) 1.99() C(1B)-C(B) 1.() C(1B)-C(2B) 1.0() C(1B)-H(1B) 1.0000 (2B)-C(1B) 1.2() C(2B)-C(1B) 1.11() C(2B)-C(B) 1.1() C(2B)-H(2B) 1.0000 (B)-C(12B) 1.() (B)-H(B) 0.800 C(B)-C(B) 1.98() C(B)-H(BA) 0.9900 C(B)-H(BB) 0.9900 (B)-C(11B) 1.9() (B)-C(1B) 1.11() C(B)-C(B) 1.2() C(B)-C(21B) 1.0() (B)-C(10B) 1.210() C(B)-C(B) 1.02() C(B)-H(B) 0.900 (B)-C(9B) 1.21() C(B)-H(BA) 0.9900 C(B)-H(BB) 0.9900 C(B)-C(8B) 1.9() C(8B)-C(1B) 1.0() C(8B)-C(9B) 1.() C(9B)-C(10B) 1.() C(10B)-C(11B) 1.() C(11B)-C(12B) 1.() C(12B)-C(1B) 1.0() C(1B)-H(1D) 0.9800 C(1B)-H(1E) 0.9800 C(1B)-H(1F) 0.9800 C(1B)-C(1B) 1.8() C(1B)-C(20B) 1.91() C(1B)-C(1B) 1.9() C(1B)-H(1B) 0.900

C(1B)-C(18B) 1.8() C(1B)-H(1B) 0.900 C(18B)-C(19B) 1.8() C(18B)-H(18B) 0.900 C(19B)-C(20B) 1.() C(19B)-H(19B) 0.900 C(20B)-H(20B) 0.900 C(21B)-C(22B) 1.28() C(21B)-H(21C) 0.9900 C(21B)-H(21D) 0.9900 C(22B)-C(2B) 1.0() C(22B)-H(22C) 0.9900 C(22B)-H(22D) 0.9900 C(2B)-C(2B) 1.0() C(2B)-H(2B) 0.900 C(2B)-C(2B) 1.2() C(2B)-C(2B) 1.08() C(2B)-H(2D) 0.9800 C(2B)-H(2E) 0.9800 C(2B)-H(2F) 0.9800 C(2B)-H(2D) 0.9800 C(2B)-H(2E) 0.9800 C(2B)-H(2F) 0.9800 C()-C(1)-C() 109.1(2) C()-C(1)-C(2) 112.(2) C()-C(1)-C(2) 108.(2) C()-C(1)-H(1) 108.9 C()-C(1)-H(1) 108.9 C(2)-C(1)-H(1) 108.9 C()-(1)-H(1) 109. C(1)-C(2)-C() 112.(2) C(1)-C(2)-C(1) 11.8(2) C()-C(2)-C(1) 10.2(2) C(1)-C(2)-H(2) 10. C()-C(2)-H(2) 10. C(1)-C(2)-H(2) 10. C(12)-()-H(1) 109. C()-C()-C(2) 112.9(2) C()-C()-H(A) 109.0 C(2)-C()-H(A) 109.0 C()-C()-H(B) 109.0 C(2)-C()-H(B) 109.0 H(A)-C()-H(B) 10.8 C()-C()-C() 121.1() C()-C()-C(21) 12.() C()-C()-C(21) 11.2(2) C(11)-()-C(1) 12.8() C()-C()-C() 12.() C()-C()-H() 11. C()-C()-H() 11. C()-C()-C(1) 111.9(2)

C()-C()-H(A) 109.2 C(1)-C()-H(A) 109.2 C()-C()-H(B) 109.2 C(1)-C()-H(B) 109.2 H(A)-C()-H(B) 10.9 (1)-C()-C(8) 120.1(2) (1)-C()-C(1) 11.1(2) C(8)-C()-C(1) 12.8(2) C()-C(8)-C(1) 119.1(2) C()-C(8)-C(9) 12.(2) C(1)-C(8)-C(9) 11.(2) ()-C(9)-C(8) 12.0() ()-C(9)-C(10) 11.() C(8)-C(9)-C(10) 118.(2) ()-C(10)-C(11) 122.1() ()-C(10)-C(9) 11.9() C(11)-C(10)-C(9) 119.9() ()-C(11)-C(12) 12.9() ()-C(11)-C(10) 112.() C(12)-C(11)-C(10) 119.() ()-C(12)-C(11) 121.1() ()-C(12)-C(1) 11.1() C(11)-C(12)-C(1) 121.() (2)-C(1)-C(8) 121.() (2)-C(1)-C(12) 11.1(2) C(8)-C(1)-C(12) 122.() ()-C(1)-H(1A) 109. ()-C(1)-H(1B) 109. H(1A)-C(1)-H(1B) 109. ()-C(1)-H(1C) 109. H(1A)-C(1)-H(1C) 109. H(1B)-C(1)-H(1C) 109. C(20)-C(1)-C(1) 11.1() C(20)-C(1)-C(2) 12.0() C(1)-C(1)-C(2) 118.8() C(1)-C(1)-C(1) 121.1() C(1)-C(1)-H(1) 119. C(1)-C(1)-H(1) 119. C(1)-C(1)-C(18) 120.9() C(1)-C(1)-H(1) 119. C(18)-C(1)-H(1) 119. C(19)-C(18)-C(1) 118.8() C(19)-C(18)-H(18) 120. C(1)-C(18)-H(18) 120. C(18)-C(19)-C(20) 121.2() C(18)-C(19)-H(19) 119. C(20)-C(19)-H(19) 119. C(19)-C(20)-C(1) 120.8() C(19)-C(20)-H(20) 119. C(1)-C(20)-H(20) 119. C()-C(21)-C(22) 11.(2) C()-C(21)-H(21A) 108.1

C(22)-C(21)-H(21A) 108.1 C()-C(21)-H(21B) 108.1 C(22)-C(21)-H(21B) 108.1 H(21A)-C(21)-H(21B) 10. C(2)-C(22)-C(21) 11.2() C(2)-C(22)-H(22A) 108. C(21)-C(22)-H(22A) 108. C(2)-C(22)-H(22B) 108. C(21)-C(22)-H(22B) 108. H(22A)-C(22)-H(22B) 10. C(2)-C(2)-C(22) 128.8() C(2)-C(2)-H(2) 11. C(22)-C(2)-H(2) 11. C(2)-C(2)-C(2) 122.() C(2)-C(2)-C(2) 121.9() C(2)-C(2)-C(2) 11.() C(2)-C(2)-H(2A) 109. C(2)-C(2)-H(2B) 109. H(2A)-C(2)-H(2B) 109. C(2)-C(2)-H(2C) 109. H(2A)-C(2)-H(2C) 109. H(2B)-C(2)-H(2C) 109. C(2)-C(2)-H(2A) 109. C(2)-C(2)-H(2B) 109. H(2A)-C(2)-H(2B) 109. C(2)-C(2)-H(2C) 109. H(2A)-C(2)-H(2C) 109. H(2B)-C(2)-H(2C) 109. C(B)-(1B)-H(1B) 109. C(B)-C(1B)-C(B) 109.1(2) C(B)-C(1B)-C(2B) 111.9(2) C(B)-C(1B)-C(2B) 109.(2) C(B)-C(1B)-H(1B) 108. C(B)-C(1B)-H(1B) 108. C(2B)-C(1B)-H(1B) 108. C(1B)-C(2B)-C(B) 110.(2) C(1B)-C(2B)-C(1B) 11.(2) C(B)-C(2B)-C(1B) 10.9(2) C(1B)-C(2B)-H(2B) 10.9 C(B)-C(2B)-H(2B) 10.9 C(1B)-C(2B)-H(2B) 10.9 C(12B)-(B)-H(B) 109. C(B)-C(B)-C(2B) 11.9(2) C(B)-C(B)-H(BA) 108. C(2B)-C(B)-H(BA) 108. C(B)-C(B)-H(BB) 108. C(2B)-C(B)-H(BB) 108. H(BA)-C(B)-H(BB) 10. C(11B)-(B)-C(1B) 12.(2) C(B)-C(B)-C(B) 120.9() C(B)-C(B)-C(21B) 12.1() C(B)-C(B)-C(21B) 11.9(2)

C(B)-C(B)-C(B) 12.() C(B)-C(B)-H(B) 11.8 C(B)-C(B)-H(B) 11.8 C(B)-C(B)-C(1B) 111.8(2) C(B)-C(B)-H(BA) 109. C(1B)-C(B)-H(BA) 109. C(B)-C(B)-H(BB) 109. C(1B)-C(B)-H(BB) 109. H(BA)-C(B)-H(BB) 10.9 (1B)-C(B)-C(8B) 120.2(2) (1B)-C(B)-C(1B) 11.1(2) C(8B)-C(B)-C(1B) 12.(2) C(B)-C(8B)-C(1B) 118.(2) C(B)-C(8B)-C(9B) 12.8(2) C(1B)-C(8B)-C(9B) 11.8(2) (B)-C(9B)-C(8B) 12.(2) (B)-C(9B)-C(10B) 11.(2) C(8B)-C(9B)-C(10B) 119.1(2) (B)-C(10B)-C(11B) 12.() (B)-C(10B)-C(9B) 11.(2) C(11B)-C(10B)-C(9B) 119.0(2) (B)-C(11B)-C(12B) 11.0(2) (B)-C(11B)-C(10B) 12.9(2) C(12B)-C(11B)-C(10B) 120.1() (B)-C(12B)-C(11B) 118.9() (B)-C(12B)-C(1B) 118.(2) C(11B)-C(12B)-C(1B) 122.(2) (2B)-C(1B)-C(8B) 122.2(2) (2B)-C(1B)-C(12B) 11.(2) C(8B)-C(1B)-C(12B) 121.(2) (B)-C(1B)-H(1D) 109. (B)-C(1B)-H(1E) 109. H(1D)-C(1B)-H(1E) 109. (B)-C(1B)-H(1F) 109. H(1D)-C(1B)-H(1F) 109. H(1E)-C(1B)-H(1F) 109. C(1B)-C(1B)-C(20B) 11.() C(1B)-C(1B)-C(2B) 122.(2) C(20B)-C(1B)-C(2B) 120.2(2) C(1B)-C(1B)-C(1B) 121.() C(1B)-C(1B)-H(1B) 119.2 C(1B)-C(1B)-H(1B) 119.2 C(18B)-C(1B)-C(1B) 120.2() C(18B)-C(1B)-H(1B) 119.9 C(1B)-C(1B)-H(1B) 119.9 C(1B)-C(18B)-C(19B) 119.0() C(1B)-C(18B)-H(18B) 120. C(19B)-C(18B)-H(18B) 120. C(20B)-C(19B)-C(18B) 120.() C(20B)-C(19B)-H(19B) 119.8 C(18B)-C(19B)-H(19B) 119.8 C(19B)-C(20B)-C(1B) 121.()

C(19B)-C(20B)-H(20B) 119. C(1B)-C(20B)-H(20B) 119. C(B)-C(21B)-C(22B) 11.(2) C(B)-C(21B)-H(21C) 108.2 C(22B)-C(21B)-H(21C) 108.2 C(B)-C(21B)-H(21D) 108.2 C(22B)-C(21B)-H(21D) 108.2 H(21C)-C(21B)-H(21D) 10. C(2B)-C(22B)-C(21B) 11.() C(2B)-C(22B)-H(22C) 108.9 C(21B)-C(22B)-H(22C) 108.9 C(2B)-C(22B)-H(22D) 108.9 C(21B)-C(22B)-H(22D) 108.9 H(22C)-C(22B)-H(22D) 10. C(2B)-C(2B)-C(22B) 128.() C(2B)-C(2B)-H(2B) 11.8 C(22B)-C(2B)-H(2B) 11.8 C(2B)-C(2B)-C(2B) 12.() C(2B)-C(2B)-C(2B) 121.() C(2B)-C(2B)-C(2B) 11.2() C(2B)-C(2B)-H(2D) 109. C(2B)-C(2B)-H(2E) 109. H(2D)-C(2B)-H(2E) 109. C(2B)-C(2B)-H(2F) 109. H(2D)-C(2B)-H(2F) 109. H(2E)-C(2B)-H(2F) 109. C(2B)-C(2B)-H(2D) 109. C(2B)-C(2B)-H(2E) 109. H(2D)-C(2B)-H(2E) 109. C(2B)-C(2B)-H(2F) 109. H(2D)-C(2B)-H(2F) 109. H(2E)-C(2B)-H(2F) 109. Table S. Anisotropic displacement parameters (Å 2 x 10 ) for (+)-1 and ( )-1. The anisotropic displacement factor exponent takes the form: -2p 2 [h 2 a* 2 U 11 +... + 2 h k a* b* U 12 ] U 11 U 22 U U 2 U 1 U 12 C(1) 2(2) (2) (2) -2(1) 1(1) 1(1) (1) 2(1) (1) 1(1) -(1) 29(1) -9(1) C(2) 1(2) 2(2) (2) -2(1) 1(1) -2(1) (2) 1(1) 29(1) (1) -2(1) 2(1) -(1) () 1() 2(1) 10(2) -(1) 11(2) (2) C() (2) (2) (2) -10(1) 1(2) (2) C() (2) (2) 0(2) -(1) 22(2) (1) () 211() 1(2) 1() -(2) 10() (2) C() 2(2) 2(2) (2) -(2) (2) 10(2) () 12(2) 8(1) 11(2) -(1) 8(2) -8(1) C() 2(2) (2) 8(2) -(2) (2) 10(2) () 100(2) 2(1) 80(2) 1(1) 1(1) (1)

C() (2) (2) (2) 0(1) 9(1) -(1) C(8) 2(2) 28(1) 1(2) 1(1) 10(1) 1(1) C(9) (2) 29(2) 1(2) -1(1) 1(2) (1) C(10) 2(2) 2(2) 8(2) 2(2) (2) 1(2) C(11) 92() (2) 88() -(2) 9(2) (2) C(12) 8(2) 2(2) 1(2) -2(1) 0(2) (2) C(1) (2) 2(2) 0(2) 2(1) 10(1) -1(1) C(1) 112() () 110() 1(2) () 21(2) C(1) (2) (2) (2) -(1) (1) 0(1) C(1) (2) 8(2) 0(2) 8(2) 12(2) -(2) C(1) 101() () () 18(2) () 8(2) C(18) 90() 0() 8() -(2) -18() 2(2) C(19) (2) () 88() -2(2) (2) (2) C(20) 0(2) (2) (2) -10(2) 9(2) -2(2) C(21) 1(2) (2) 1(2) -9(2) 20(2) (2) C(22) 9(2) (2) 8(2) -(2) 18(2) 1(2) C(2) 8(2) 9(2) 8() -(2) 2(2) 9(2) C(2) 0(2) 10() 8() -1(2) 20(2) 12(2) C(2) 108() 10() 188() -10() 11() 1() C(2) 90() 19() 9() -9() 1() -() (1B) (1) (1) 8(1) -(1) (1) -10(1) C(1B) (2) (2) 0(2) -2(1) 1(1) -(1) (2B) 1(1) 28(1) 2(1) -1(1) 2(1) -8(1) C(2B) (2) 2(2) 8(2) -2(1) 1(1) -2(1) (B) 111(2) 22(1) 8(2) -2(1) (1) -1(1) C(B) 8(2) 0(2) 0(2) -8(1) 1(1) -1(1) (B) 1(2) (1) 118(2) -1(1) 10(2) 1(1) C(B) (2) 8(2) (2) -(1) 1(1) (1) (B) 19() 28(1) 1(2) (1) 121(2) -(1) C(B) (2) 2(2) 2(2) -(2) 11(2) (1) (B) 98(2) 2(1) (2) 1(1) (1) 2(1) C(B) 0(2) 1(2) 1(2) -(1) (1) 1(1) C(B) 0(2) (2) 8(2) -2(1) 8(1) -(1) C(8B) 2(2) 2(1) (2) 0(1) 1(1) -1(1) C(9B) (2) 2(2) 2(2) 1(1) 1(1) 0(1) C(10B) 9(2) 2(2) 8(2) (1) (2) 0(1) C(11B) 8(2) 28(2) (2) -2(1) (2) 1(1) C(12B) 1(2) 2(2) 1(2) -1(1) 2(2) -1(1) C(1B) (2) 2(1) (2) (1) 1(1) -1(1) C(1B) 9() (2) (2) (2) (2) (2) C(1B) (2) 0(1) 0(2) -(1) 1(1) -1(1) C(1B) (2) 8(2) 1(2) 0(1) 11(1) -1(1) C(1B) 0(2) 2(2) (2) -(2) 19(2) 2(2) C(18B) (2) 2(2) 2(2) 1(2) 9(2) 1(2) C(19B) (2) (2) (2) 12(2) 1(2) 18(2) C(20B) 9(2) (2) 2(2) (1) 20(2) 2(2) C(21B) (2) (2) 9(2) -9(1) 1(2) (2) C(22B) 0(2) 1(2) (2) -(2) 18(2) 18(2) C(2B) 2(2) (2) (2) -2(2) 29(2) 1(2) C(2B) 0(2) 10() (2) -1(2) 19(2) 1(2) C(2B) 129() 222() 10() -2() 2() -() C(2B) 9() 1() 10() -0() 2() ()

Table S. Hydrogen coordinates (x 10 ) and isotropic displacement parameters (Å 2 x 10 ) for (+)-1 and ( )-1. x y z U(eq) H(1) -1221 9 2 H(1) 2 88 8 81 H(2) 828 88 H(1) 8 18 H(A) 218-2811 12 H(B) -2028 12 H() 0-028 H(A) 9 189 8 8 H(B) 280-1192 92 8 H(1A) 00 02 1 11 H(1B) 82 0 11 H(1C) 828 991 81 11 H(1) 20 18 28 81 H(1) 9 22 2 10 H(18) 0 1 298 10 H(19) 1 1 92 H(20) - 822 H(21A) 290-8 219 H(21B) 9-02 11 H(22A) 81-99 8 H(22B) 8-80 2 H(2) 821-8 89 82 H(2A) 80-988 20 2 H(2B) 80-100 22 2 H(2C) 81-982 1 2 H(2A) 81-281 209 180 H(2B) 8-00 180 H(2C) 829-0 122 180 H(1B) 89-9 8 8 H(1B) 8 12 8 H(2B) 881 288 8 H(B) 922-282 98 H(BA) 8 8 89 H(BB) 888 9 H(B) 2 09 1 1 H(BA) 0 0 12 8 H(BB) 8 092 8 H(1D) 1022 829 9 98 H(1E) 1020 29 99 98 H(1F) 91 2229 98 H(1B) 920 202 09 1 H(1B) 10 1 2 H(18B) 1080 1991 29 8 H(19B) 1000 111 1 H(20B) 9108 1882 21 8 H(21C) 812 902

H(21D) 8 89 828 H(22C) 22 921 80 H(22D) 910 800 18 H(2B) 1190 28 80 H(2D) 8 1009 20 21 H(2E) 2 8 89 21 H(2F) 18 10221 92 21 H(2D) 0 118 290 18 H(2E) 18 81 18 H(2F) 0 108 9 18 Table S. Torsion angles [ ] for (+)-1 and ( )-1. C()-C(1)-C(2)-C(1) -.8() C()-C(1)-C(2)-C(1) -18.(2) C()-C(1)-C(2)-C() -1.(2) C()-C(1)-C(2)-C().9() C(1)-C(2)-C()-C() -1.(2) C(1)-C(2)-C()-C() -0.() C(2)-C()-C()-C() 1.0() C(2)-C()-C()-C(21) -1.(2) C()-C()-C()-C().2() C(21)-C()-C()-C() -1.() C()-C()-C()-C(1) 12.0() C()-C(1)-C()-C() -19.8(2) C(2)-C(1)-C()-C() -.9() C()-C(1)-C()-(1) 8.() C(2)-C(1)-C()-(1) -1.9() C()-C(1)-C()-C(8) -101.() C(2)-C(1)-C()-C(8) 18.2() (1)-C()-C(8)-C(1).() C(1)-C()-C(8)-C(1) -1.9(2) (1)-C()-C(8)-C(9) -18.(2) C(1)-C()-C(8)-C(9) 1.() C()-C(8)-C(9)-() 9.1() C(1)-C(8)-C(9)-() -12.() C()-C(8)-C(9)-C(10) -12.(2) C(1)-C(8)-C(9)-C(10).8() ()-C(9)-C(10)-() -8.9() C(8)-C(9)-C(10)-() 12.() ()-C(9)-C(10)-C(11) 10.8() C(8)-C(9)-C(10)-C(11) -.() C(1)-()-C(11)-C(12).1() C(1)-()-C(11)-C(10) -12.1() ()-C(10)-C(11)-().1() C(9)-C(10)-C(11)-() -1.() ()-C(10)-C(11)-C(12) -1.2() C(9)-C(10)-C(11)-C(12).1() ()-C(11)-C(12)-() -0.2() C(10)-C(11)-C(12)-() 19.0()

()-C(11)-C(12)-C(1) 19.8() C(10)-C(11)-C(12)-C(1) -1.0() C()-C(8)-C(1)-(2) -.() C(9)-C(8)-C(1)-(2) 1.8(2) C()-C(8)-C(1)-C(12) 1.(2) C(9)-C(8)-C(1)-C(12) -1.9() ()-C(12)-C(1)-(2) -0.() C(11)-C(12)-C(1)-(2) 19.() ()-C(12)-C(1)-C(8) 19.() C(11)-C(12)-C(1)-C(8) -0.() C()-C(2)-C(1)-C(20) 91.() C(1)-C(2)-C(1)-C(20) -1.2() C()-C(2)-C(1)-C(1) -89.() C(1)-C(2)-C(1)-C(1) 1.() C(20)-C(1)-C(1)-C(1) -0.2() C(2)-C(1)-C(1)-C(1) -19.0() C(1)-C(1)-C(1)-C(18) 1.() C(1)-C(1)-C(18)-C(19) -1.2() C(1)-C(18)-C(19)-C(20) -0.1() C(18)-C(19)-C(20)-C(1) 1.2() C(1)-C(1)-C(20)-C(19) -1.0() C(2)-C(1)-C(20)-C(19) 1.() C()-C()-C(21)-C(22) -.2() C()-C()-C(21)-C(22) 1.() C()-C(21)-C(22)-C(2) 11.() C(21)-C(22)-C(2)-C(2) 8.2() C(22)-C(2)-C(2)-C(2) -0.() C(22)-C(2)-C(2)-C(2) 19.0() C(B)-C(1B)-C(2B)-C(1B) 2.() C(B)-C(1B)-C(2B)-C(1B) 1.(2) C(B)-C(1B)-C(2B)-C(B) 1.9(2) C(B)-C(1B)-C(2B)-C(B) -2.9() C(1B)-C(2B)-C(B)-C(B) 12.(2) C(1B)-C(2B)-C(B)-C(B).() C(2B)-C(B)-C(B)-C(B) -1.() C(2B)-C(B)-C(B)-C(21B) 1.(2) C(B)-C(B)-C(B)-C(B) -2.() C(21B)-C(B)-C(B)-C(B) 1.9() C(B)-C(B)-C(B)-C(1B) -1.0() C(B)-C(1B)-C(B)-C(B) 10.(2) C(2B)-C(1B)-C(B)-C(B).() C(B)-C(1B)-C(B)-(1B) -2.() C(2B)-C(1B)-C(B)-(1B) 8.8() C(B)-C(1B)-C(B)-C(8B) 10.() C(2B)-C(1B)-C(B)-C(8B) -12.1() (1B)-C(B)-C(8B)-C(1B) -2.() C(1B)-C(B)-C(8B)-C(1B) 18.(2) (1B)-C(B)-C(8B)-C(9B) 19.8(2) C(1B)-C(B)-C(8B)-C(9B) 0.8() C(B)-C(8B)-C(9B)-(B) -.8() C(1B)-C(8B)-C(9B)-(B) 1.() C(B)-C(8B)-C(9B)-C(10B) 1.2(2)

C(1B)-C(8B)-C(9B)-C(10B) -2.() (B)-C(9B)-C(10B)-(B) 1.0() C(8B)-C(9B)-C(10B)-(B) -19.9() (B)-C(9B)-C(10B)-C(11B) -19.() C(8B)-C(9B)-C(10B)-C(11B) -0.() C(1B)-(B)-C(11B)-C(12B) 11.() C(1B)-(B)-C(11B)-C(10B) -10.8() (B)-C(10B)-C(11B)-(B).0() C(9B)-C(10B)-C(11B)-(B) -1.() (B)-C(10B)-C(11B)-C(12B) -18.2() C(9B)-C(10B)-C(11B)-C(12B) 2.() (B)-C(11B)-C(12B)-(B) -1.9() C(10B)-C(11B)-C(12B)-(B) -19.8() (B)-C(11B)-C(12B)-C(1B) 1.() C(10B)-C(11B)-C(12B)-C(1B) -1.() C(B)-C(8B)-C(1B)-(2B).() C(9B)-C(8B)-C(1B)-(2B) -1.9(2) C(B)-C(8B)-C(1B)-C(12B) -1.(2) C(9B)-C(8B)-C(1B)-C(12B).() (B)-C(12B)-C(1B)-(2B) -1.9() C(11B)-C(12B)-C(1B)-(2B) 19.() (B)-C(12B)-C(1B)-C(8B) 1.9(2) C(11B)-C(12B)-C(1B)-C(8B) -1.() C(B)-C(2B)-C(1B)-C(1B) -8.8() C(1B)-C(2B)-C(1B)-C(1B).() C(B)-C(2B)-C(1B)-C(20B) 89.8() C(1B)-C(2B)-C(1B)-C(20B) -18.1(2) C(20B)-C(1B)-C(1B)-C(1B) -1.1() C(2B)-C(1B)-C(1B)-C(1B) 1.(2) C(1B)-C(1B)-C(1B)-C(18B) -0.() C(1B)-C(1B)-C(18B)-C(19B) 1.8() C(1B)-C(18B)-C(19B)-C(20B) -1.2() C(18B)-C(19B)-C(20B)-C(1B) -0.() C(1B)-C(1B)-C(20B)-C(19B) 1.() C(2B)-C(1B)-C(20B)-C(19B) -1.1() C(B)-C(B)-C(21B)-C(22B) -2.0() C(B)-C(B)-C(21B)-C(22B) 1.() C(B)-C(21B)-C(22B)-C(2B) -18.9() C(21B)-C(22B)-C(2B)-C(2B) -9.() C(22B)-C(2B)-C(2B)-C(2B) -0.() C(22B)-C(2B)-C(2B)-C(2B) 19.()

Table S. Hydrogen bonds for (+)-1 and ( )-1 [Å and ]. D-H...A d(d-h) d(h...a) d(d...a) <(DHA) C(1)-H(1)...() 1.00 2.21 2.891() 12. (1)-H(1)...(2) 0.8 1.9 2.8() 10. ()-H(1)...(2) 0.8 2.1 2.0() 11. ()-H(1)...()#1 0.8 1.9 2.2() 1.8 C(1)-H(1A)...() 0.98 2.1 2.8() 9. (1B)-H(1B)...(2B) 0.8 1.9 2.() 10.2 C(1B)-H(1B)...(B) 1.00 2.1 2.902() 129. (B)-H(B)...(2B) 0.8 2.21 2.9() 11.2 (B)-H(B)...(B)#2 0.8 1.98 2.8() 18.9 Symmetry transformations used to generate equivalent atoms: #1 x,y+1,z #2 x,y-1,z

S. (a) Superposed experimental ECD spectrum of (+)-ecarlottone (black) with the computed ECD spectrum (red) starting from the X-ray structure of 1 (S,S); (b) X-ray structure of 1 (S,S); (c) Superposed experimental ECD spectrum of ( )-ecarlottone (black) with the computed ECD spectrum (red) starting from the X-ray structure of 1 (R,R); (d) X-ray structure of 1 (R,R). a b c d

S8. 1 H NMR (00 MHz, CDCl at 2 K) spectrum of compound,0 1,0,0 0 20 0 0 80 100 120 10 10,0 1,0 1,0 ppm,,28,18,1,9,0,2,,,110,9,0,0,00,01 2,901 2,89 2,8 2,80,9,8,0,2,,. (dd, J= 12.9Hz,.Hz) 1 1 1 1 1,0,,,,,,2-2 0 2 8 10 12 1 1 18 20 ppm,0,0,00,01 1,0 % 8 8a a 1' 2 2' ' ' ' ppm,2,1,1.0 (dd, J= 1.Hz, 12.9Hz) 1 1 1 1,0 2,9 2,901 2,89 2,8 2,80 2.88 (dd, J= 1.Hz,.Hz) 1 1 1 1 1,0 2,9 2,8 2,8 2, 2, % ppm,8,,,2,8,,,2,8,,,2,8,,,2,8,,,2 2,8 2, 2, 2,2

S9. 1 H NMR (00 MHz, CDCl ) spectrum of the new compound 11 12 10 8 9 2'' 1'' 2 ' ' ' 1 1' 2' '

S10. 1 C NMR ( MHz, CDCl ) spectrum of the new compound 0 10 20 0 0 0 0 0 80 90 100 110 ppm 212,9 2'' 1'' 2 ' ' 11 12 10 9 8 1 1' 2' ' ' 1,8 1, 11,89 128,8 12, 12,99 12,22 118,80,,,00,2 29,908 29,08 2,2 2,9 1,9 % ppm 210 200 190 180 10 10 10 10 10 120 110 100 90 80 0 0 0 0 0 20

S11. HSQC (00 MHz, CDCl ) spectrum of the new compound 10 1 CG1-1-8 18 (1D 1H) 100 20 0 80 % 11 12 10 8 9 0 2'' 1'' 2 ' ' ' 1 1' 2' ' 120 ppm ppm,,2,8,,,2,8,,,2,8,,,2,8,,,2 2,8 2, 2, 2,2 2 1,8 % 1, CG1-1-8 2 (1D 1C) 0 10010

120 100 80 0 0 20 0 S12. HMBC (00 MHz, CDCl ) spectrum of the new compound 10 20 0 0 CG1-1-8 18 (1D 1H) % 11 12 10 10 8 9 ppm 200 180 10 ppm,2,8 2'' 1'' 2 1 1' ' ' ',, 2' ',2,8,,,2,8,,,2,8,,,2 2,8 2, 2, 2,2 2 1,8 % 1, CG1-1-8 2 (1D 1C) 10 20 0

S1. 1H NMR (00 MHz, CDCl) spectrum of the new compound 12 10 9 11 8 2'' 1'' 2 1 1' ' 2' ' ' '

S1. 1 C NMR (1 MHz, CDCl ) spectrum of the new compound 12 9 10 11 8 2'' 1'' 2 ' 1 1' 2' ' ' '

S1. HSQC (00 MHz, CDCl ) spectrum of the new compound 20 0 0 80 CG1-1- 1 (1D 1H) 100 80 20 0 % 12 9 10 11 8 0 2'' 1'' 2 ' 1 1' 2' ' ' ' 120 ppm ppm,,,, 2, 2 1, CG1-1- (1D 1C) % 20 0 0 80

0 0 80 100 20 0 S1. HMBC (00 MHz, CDCl ) spectrum of the new compound 20 0 0 80 CG1-1- 1 (1D 1H) % 12 9 10 11 8 120 2'' 1'' 2 ' 1 1' 2' ppm 10 ppm, ' ' ',,, 2, 2 1, CG1-1- (1D 1C) % 20 0 0 80

S1. 1 H NMR (00 MHz, CDCl ) spectrum of the new compound 11 12 10 8 9 H 1'' 2 ' ' 1 1' ' 2' '

S18. 1 C NMR (1 MHz, CDCl ) spectrum of the new compound 0 10 20 0 0 0 0 0 80 90 100 110 ppm 19,01 Compound (DEPT 1C) Compound (1D 1C) H 1'' 2 ' ' 11 12 10 9 8 1 1' 2' ' ' 1,189 1, 11,918 128,90 12,90 12,81 12,18 118,88, 2,9,,9 29,8 2,21 2,92 1,9 % ppm 180 10 10 10 10 10 120 110 100 90 80 0 0 0 0 0 20

S19. HSQC (00 MHz, CDCl ) spectrum of the new compound % 200080100 CG1-1-1 1 (1D 1H) 20 11 12 10 8 9 0 0 H 1'' 2 ' ' 1 1' ' 2' ' 100 120 80 ppm ppm,,,, 2, 2 1, % Compound (1D 1C) 10 20 00

S20. HMBC (00 MHz, CDCl ) spectrum of the new compound 0 10010 CG1-1-1 1 (1D 1H) 10 120 100 0 20 % 11 12 10 8 9 0 80 H 1'' 2 ' ' ' 1 1' 2' ' ppm 180 10 ppm,,,, 2, 2 1, % Compound (1D 1C) 10 20 0

S21. Raw data used for Table and their graphical representation Bcl-xL/Bak Compound (+)-1 Concentration (nm) % inhib. (mean value) Bcl-xL/Bak Error Concentration (nm) % inhib. (mean value) Mcl-1/Bid 100000 2 1, 100000 92 0,8 000-9,0 000 2 0,9 11000-11,2 11000 8,0 00-1,9 00-8 2, 1200-11 0,9 1200-8,0 10-11 0, 10-8,0 10-11 1,2 10-1 1, -9 2,2-10 2, Error Mean value Error Mean value Error IC 0 (nm) ################## IC 0 (nm) 228 99 K i (nm) ################## K i (nm) 29 10 Compound ( )-1 Concentration (nm) Bcl-xL/Bak % inhib. (mean value) Bcl-xL/Bak Error Mcl-1/Bid Compound (+)-1 Mcl-1/Bid Compound ( )-1 Concentration (nm) % inhib. (mean value) Mcl-1/Bid 100000 88 0,8 100000 9,9 000 2 0,9 000 9 8,0 11000,0 11000 2,0 00 8 2, 00 1,0 1200 -,0 1200 1 0,8 10-8,0 10-0,9 10-10 1, 10-1 1, -10 2, 2 2, Error Mean value Error Mean value Error IC 0 (nm) 2080 IC 0 (nm) 28 99 K i (nm) 102 K i (nm) 21 12 Pourcentage of inhibition (%) Pourcentage of inhibition (%) Compound (+)-1 100 80 0 0 20 0 10 100 1000 10000 100000 1000000-20 Concentration (nm) Compound ( )-1 100 80 0 0 20 0 10 100 1000 10000 100000 1000000-20 Concentration (nm) Bcl-xL/Bak Mcl-1/Bid Mcl-1/Bid Bcl-xL/Bak