AN APPROACH FOR THE RECONSTTUCTION SYNTHESIS OF LOST ANCIENT CHINESE MECHANISMS

Similar documents
目錄 Contents. 題語 Legend 28. 容庚 ( 貽耕堂 ) Calligraphy by Rong Geng 29. 書法項目 Calligraphy Items

Chapter 22 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Electric Potential 電位 Pearson Education, Inc.

= lim(x + 1) lim x 1 x 1 (x 2 + 1) 2 (for the latter let y = x2 + 1) lim

大原利明 算法点竄指南 点竄術 算 額 絵馬堂

0 0 = 1 0 = 0 1 = = 1 1 = 0 0 = 1

The Japanese astronomy in the 7 th and 8 th centuries

Ch.9 Liquids and Solids

Chapter 20 Cell Division Summary

Chapter 1 Linear Regression with One Predictor Variable

生物統計教育訓練 - 課程. Introduction to equivalence, superior, inferior studies in RCT 謝宗成副教授慈濟大學醫學科學研究所. TEL: ext 2015

KWUN TONG GOVERNMENT SECONDARY SCHOOL 觀塘官立中學 (Office) Shun Lee Estate Kwun Tong, Kowloon 上學期測驗

Differential Equations (DE)

Chapter 6. Series-Parallel Circuits ISU EE. C.Y. Lee

Chapter 1 Physics and Measurement

2019 年第 51 屆國際化學奧林匹亞競賽 國內初選筆試 - 選擇題答案卷

國立中正大學八十一學年度應用數學研究所 碩士班研究生招生考試試題

RSSR Mechanism with Constant Transmission Angle

授課大綱 課號課程名稱選別開課系級學分 結果預視

EXPERMENT 9. To determination of Quinine by fluorescence spectroscopy. Introduction

Work Energy And Power 功, 能量及功率

Algorithms and Complexity

2012 AP Calculus BC 模拟试卷

Statistics and Econometrics I

Chapter 8 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Gravity 重力 Pearson Education, Inc. Slide 8-1

Linear Regression. Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) SDA Regression 1 / 34

台灣大學開放式課程 有機化學乙 蔡蘊明教授 本著作除另有註明, 作者皆為蔡蘊明教授, 所有內容皆採用創用 CC 姓名標示 - 非商業使用 - 相同方式分享 3.0 台灣授權條款釋出

5.5 Using Entropy to Calculate the Natural Direction of a Process in an Isolated System

Chapter 1 Linear Regression with One Predictor Variable

ApTutorGroup. SAT II Chemistry Guides: Test Basics Scoring, Timing, Number of Questions Points Minutes Questions (Multiple Choice)

Candidates Performance in Paper I (Q1-4, )

1 dx (5%) andˆ x dx converges. x2 +1 a

壓差式迴路式均熱片之研製 Fabrication of Pressure-Difference Loop Heat Spreader

Frequency Response (Bode Plot) with MATLAB

MECHANICS OF MATERIALS

The Hong Kong Polytechnic University. Subject Description Form

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

Typhoon dynamics, mathematical modeling, scientific computing, and atmospheric and oceanic fluid dynamics

基因演算法 學習速成 南台科技大學電機系趙春棠講解

tan θ(t) = 5 [3 points] And, we are given that d [1 points] Therefore, the velocity of the plane is dx [4 points] (km/min.) [2 points] (The other way)

Serials Subscription 2018/19 : Department of Chinese. Lingnan University Fong Sum Wood Library Collection Development and Gift & Exchange

相關分析. Scatter Diagram. Ch 13 線性迴歸與相關分析. Correlation Analysis. Correlation Analysis. Linear Regression And Correlation Analysis

原子模型 Atomic Model 有了正確的原子模型, 才會發明了雷射

Atomic and Molecular Beam Methods, Giacinto Scoles, Davide Bassi, Udo Buck, Derek Laine, Oxford University Press, Inc., New York, 1988.

奈米微污染控制工作小組 協辦單位 台灣賽默飛世爾科技股份有限公司 報名方式 本參訪活動由郭啟文先生負責 報名信箱

中華字經注釋本. Chinese Character Canon Commentary 第一冊. 中華字經國際書院 The Miktam of Chinese International Inc

Multiple sequence alignment (MSA)

2. Suppose that a consumer has the utility function

邏輯設計 Hw#6 請於 6/13( 五 ) 下課前繳交

允許學生個人 非營利性的圖書館或公立學校合理使用本基金會網站所提供之各項試題及其解答 可直接下載而不須申請. 重版 系統地複製或大量重製這些資料的任何部分, 必須獲得財團法人臺北市九章數學教育基金會的授權許可 申請此項授權請電郵

Candidates Performance in Paper I (Q1-4, )

Numbers and Fundamental Arithmetic

國立交通大學 電子工程學系電子研究所碩士班 碩士論文

REAXYS NEW REAXYS. RAEXYS 教育訓練 PPT HOW YOU THINK HOW YOU WORK

Chap. 4 Force System Resultants

Earth System Science Programme. Academic Counseling 2018

A Direct Simulation Method for Continuous Variable Transmission with Component-wise Design Specifications

1 1 1 n (1) (nt p t) (1) (2) (3) τ T τ. (0 t nt p ) (1) (4) (5) S a (2) (3) 0sin. = ωp

2001 HG2, 2006 HI6, 2010 HI1

論文與專利寫作暨學術 倫理期末報告 班級 : 碩化一甲學號 :MA 姓名 : 林郡澤老師 : 黃常寧

A study on the working mechanism of astronomical clock in Sejong Era 1)

Statistical Intervals and the Applications. Hsiuying Wang Institute of Statistics National Chiao Tung University Hsinchu, Taiwan

1373. Structural synthesis for broken strands repair operation metamorphic mechanism of EHV transmission lines

雷射原理. The Principle of Laser. 授課教授 : 林彥勝博士 Contents

Chapter 7 Propositional and Predicate Logic

第二章 : Hydrostatics and Atmospheric Stability. Ben Jong-Dao Jou Autumn 2010

Learning to Recommend with Location and Context

適應控制與反覆控制應用在壓電致動器之研究 Adaptive and Repetitive Control of Piezoelectric Actuators

Search and Digitalization of Maps at the National Diet Library

磁振影像原理與臨床研究應用 課程內容介紹 課程內容 參考書籍. Introduction of MRI course 磁振成像原理 ( 前 8 週 ) 射頻脈衝 組織對比 影像重建 脈衝波序 影像假影與安全 等

目錄 Contents. Copyright 2008, FengShui BaZi Centre < 2

Study of Leaf Area as Functions of Age and Temperature in Rice (Oryza sativa L.) 1

DESIGN OPTIMIZATION FOR ROBUSTNESS USING QUADRATURE FACTORIAL MODELS

高雄市立右昌國民中學 107 學年度第一學期第三次段考二年級英語科試題卷

d) There is a Web page that includes links to both Web page A and Web page B.

Lesson 8 - Days of the Week

Keywords: Principle Of Escapement Mechanism, Tower Escape Apparatus, Mechanism Design.

The Prospective Aspect of the Cosmogonic Models in Laozi and T iandi Teaching s Text

Introduction to Multi-hazard Risk-based Early Warning System in Japan

Deviation Modeling of RV Retarder Parts Based on Probability Statistics and Vector

misterfengshui.com 玄空掌派 I-Ching & The World of Metaphysics

CHAPTER 4. Thermochemistry ( 熱化學是熱力學的一支, 在化學反應或相變化過程中發生的能量吸收或釋出, 若以吸放熱的形式表現, 即為熱化學研究的對象 ) Chap. 4 Thermochemistry

Chapter 9 Time-Weighted Control Charts. Statistical Quality Control (D. C. Montgomery)

misterfengshui.com 風水先生

CHAPTER 2. Energy Bands and Carrier Concentration in Thermal Equilibrium

Chapter 5-7 Errors, Random Errors, and Statistical Data in Chemical Analyses

Regression Analysis. Institute of Statistics, National Tsing Hua University, Taiwan

期中考前回顧 助教 : 王珊彗. Copyright 2009 Cengage Learning

Source mechanism solution

Brainwashed Tom Burrell Pdf Download >>> DOWNLOAD

FUNDAMENTALS OF FLUID MECHANICS Chapter 3 Fluids in Motion - The Bernoulli Equation

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

pseudo-code-2012.docx 2013/5/9

EVIDENCE FOR THE EXISTENCE OF THE MEDIEVAL WARM PERIOD IN CHINA

USTC SNST 2014 Autumn Semester Lecture Series

Digital Integrated Circuits Lecture 5: Logical Effort

Fabrics ( 組構 ): Foliation and Lineations ( 葉理與線理 )

GSAS 安裝使用簡介 楊仲準中原大學物理系. Department of Physics, Chung Yuan Christian University

Ancient Greek Technology. Alena Šolcová Dept. of Applied Mathematics Faculty of Information Technology Czech Technical University in Prague

Ch. 8 Thermochemistry 熱化學

The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA 报告人 : 沈胤

Transcription:

AN APPROACH FOR THE RECONSTTUCTION SYNTHESIS OF LOST ANCIENT CHINESE MECHANISMS Hong-Sen Yan Department of Mechanical Engineering, National Cheng Kung University,, University Road, Tainan 70-0, Taiwan. E-mail: hsyan@mail.ncku.edu.tw ABSTRACT This paper presents a systematic approach for the reconstruction of all possible topological structures of lost ancient Chinese mechanisms. This approach utilizes the idea of creative mechanism design methodology to converge the divergent conceptions from the results of literature studies to a focused scope, and then applies the mechanical evolution and variation method to obtain feasible reconstruction design concepts that meet the scientific and technological standards of the subjects time period. Three examples, such as south pointing chariots, Zhang Heng s seismoscope, and Su Song s escapement regulator, are provided. KEYWORDS: mechanism, reconstruction synthesis and design, history of machinery, creative mechanism design INTRODUCTION In the long history of Chinese civilization, many ingenious machines were invented. However, due to incomplete documentation and loss of finished objects, most of the original machines cannot be verified and many of the inventions did not pass down to later generations. In past years some reconstruction designs of lost machines in ancient China were brought into existence based on literature

studies, and with or without the help of modern science and technology. However, these designs were mainly based on personal knowledge and judgment, and the results may not be solidly functional and proven. Furthermore, very few scholars studied lost ancient machines, those with some literary records but without surviving hardware, especially based on a systematic approach. In the past several decades, some major methodologies were developed for the structural synthesis of mechanisms [-]. The objective here is to briefly present a systematic approach, based on a methodology for creative mechanism design [], to re-generate the topological structures of mechanisms of lost ancient machines that are consistent with historical records and the levels of ancient technology and craftsmanship subject to design specifications, requirements, and constraints []. Procedure of Reconstruction Synthesis Fig. shows the procedure of reconstruction synthesis []. It includes the following four steps: Historical Archives Design Specifications Number synthesis Topological characteristics Generalized Kinematic Chains Specialization Design requirements and constraints Specialized Chains Ancient science and technology Reconstruction Designs Fig.. Procedure of the reconstruction synthesis []

Step. Develop design specifications of the mechanism of the lost machine based on the study of available historical archives, and conclude the topological characteristics of the mechanism. Step. Obtain the atlas of generalized kinematic chains with the required numbers of members and joints as specified in Step, based on the algorithm of number synthesis. Step. Assign required types of members and joints to each generalized kinematic chain obtained in Step, and based on the process of specialization, to have the atlas of specialized chains subject to concluded design requirements and constraints. Step. Particularize each specialized chain obtained in Step into its corresponding schematic format to have the atlas of reconstruction mechanisms that meet the science and technology standards of the subject s time period by utilizing the mechanical evolution and variation theory to perform a mechanism equivalent transformation. The reconstruction of ancient machines requires exhaustive literature study to clearly recognize and define the problem in order to develop design specifications. It is also important to be familiar with the available science and technology of the subjects time period. Mechanical elements and mechanisms of lost ancient machines may be different in different dynasties. Based on the developed design specifications or by studying the topological characteristics of mechanisms of available existing designs, design requirements and constraints can be concluded. They are normally identified based on technology reality and designers decisions. Different design requirements and constraints result in different atlases of specialized chains. The second step of the reconstruction synthesis methodology is to obtain the atlas of generalized kinematic chains with the required numbers of members and joints as specified in the concluded topological characteristics of mechanisms [, ]. A generalized joint is a joint in general; it can be a revolute joint, spherical joint, or some others. A generalized link is a link with generalized joints; it can be a binary link, ternary link, and etc. A generalized kinematic chain consists of generalized links connected by generalized joints. It is connected, closed, without any bridge-link, and with simple joints only. The topological structure of a generalized kinematic chain is characterized by the number and the type of links, the number of joints, and the incidences between links and joints. The core concept of this methodology is specialization [, ]. The process of assigning specific types of members and joints in the available atlas of generalized kinematic chains, subject to certain design requirements and constraints is called specialization. And, a generalized kinematic chain after specialization is called a specialized chain. In what follows, three examples for the reconstruction synthesis of the topological structures of mechanisms of lost ancient Chinese machines are presented based on the process shown in Fig..

South Pointing Chariots [, 7-8] Many ancient Chinese legends refer to the mysterious invention of the south pointing chariots. And, there were various literary works regarding south pointing chariots in different dynasties in ancient China. An important one is as follows [9]: The south pointing chariot originated from the Yellow Emperor. During the battle of Zhuolu, Chi You conjured up thick fog that blurred the vision of the Yellow Emperor s men. The Yellow Emperor thus invented a south pointing chariot to find direction, and captured Chi You. 指南車起於黃帝 與蚩尤戰於涿鹿之野 蚩尤作大霧 兵士皆迷 於是作指南車以示四方 遂擒蚩尤 According to legend and historic records, it was said that Yellow Emperor ( 黃 帝, ~ 97-99 BC) successfully invented south pointing chariots. However, they were not recorded in official literature and there was not enough evidence to support the argument. South pointing chariots appeared in some official literature from the time of the Three Kingdoms (0-80 AD) to the Jin Dynasty ( AD). A solid design by Ma Jun ( 馬 鈞 ) first appeared in the era of Three Kingdoms. And, there were two detailed records about the exterior shape and the interior structure of south pointing chariots in Song Shi 宋史, including one design by Yan Su (燕肅) in 07 AD and another by Wu De-ren (吳德仁) in 07 AD. No records regarding south pointing chariots were found after the Yuan Dynasty (0-8 AD). Yan Su s south pointing chariot, reconstructed by Z. D. Wang [0], contains ropes and pulleys for pulling the gears. In fact, in ancient China, the developments of labor-saving devices were very mature and had various applications, especially the rope-and-pulley mechanisms. Besides, the friction wheels have the function of transmitting continuous rotational motion and the advantage of simplicity in structure. Therefore for the reconstruction synthesis of the fixed-axis wheel south pointing chariots with ropes, pulleys, gears, linkages and friction wheels, design specifications are defined as:. The number of links o is four.. The degree of freedom is one.. The mechanical components are links, gears and frictional wheels. For a planar mechanism with one degree of freedom and four links (three members and one rope), the number of joints is five (one joint with two degrees of free dom, two joints with one degree of freedom and two fixed joints). Therefore, the generalized kinematic chain has four links and five joints, Fig. (a). Here, the design requirements and constraints of the rope and fixed joint are:. The rope must be a binary link.. The rope can not be adjacent to the frame.. Any joint incident to the rope must be a fixed joint. And, only the link which is not adjacent to the frame can be assigned as the rope. Two results are obtained as shown in Fig. (b).

(a) Generalized chain JX K G JR KB JG KF JX K G JX K O JR JR KB JO KF JX K O JR (b) Specialized chains Fig.. Atlases of generalized kinematic chains and specialized chains of south pointing chariots Based on the process of specialization, the characteristics of members and joints are assigned. The simplest solution with a direct connection is chosen. As a result, six specialized chains are obtained. Fig. shows the corresponding design concepts from the atlas of specialized chains, in which Fig. (e) is Wang s design. And, Fig. shows a physical reconstruction design of differential type south pointing chariots [7]. Fig.. Synthesized mechanisms of south pointing chariots

Fig.. A reconstruction design of differential type south pointing chariot [7] Zhang Heng s Seismoscope [, -] Researches in the relevant literature show that the earliest seismoscope named Hou Feng Di Dong Yi (候風地動儀) was invented by Zhang Heng (張衡) in the Eastern Han Dynasty (-0 AD). This instrument was designed to indicate not only the occurrence of an earthquake but also the direction to its source. The his toric records in the Biography of Zhang Heng in the History of the Later Han Dynasty 後 漢 書 張 衡 傳 [] are the most complete ones about Zhang Heng s seismoscope, such as the following description: The instrument was cast with bronze. The outer appearance of it was like a jar with a diameter around eight chi. The cover was protruded and it looked like a wine vessel. There was a du zhu (a pillar) in the center of the interior and eight transmitting rods near the pillar. There were eight dragons attached to the outside of the vessel, facing in the principal directions of the compass. Below each dragon rested a toad with its mouth open toward the dragon. Each dragon s mouth contained a bronze ball. The intricate mechanism used was hidden inside the device. When the ground moved, the ball located favorably to the direction of ground movement would drop out of the dragon s mouth and fall into the mouth of a bronze toad waiting below. The direction faced by the dragon that had dropped the ball would be the direction from which the shaking came. 以精銅鑄成 圓徑八尺 合蓋隆 起 形似酒尊 中有都柱 傍行八道 施關發機 外有八龍 首銜銅 丸 下有蟾蜍 張口承之 其牙機巧制 皆隱在尊中 覆蓋周密無際 如有 地動 尊則振 龍機發 吐丸 而蟾蜍銜之 振聲激揚 伺者因此覺知 唯 一龍發機 七首不動 尋其方面 乃知震之所在 However, the records that have passed down through history give a detailed account only of the outside of the instrument, Fig. []; and with very few practical details regarding the mechanism inside the instrument, except for noting that inside there was a central pillar named du zhu (都柱) which was capable of lateral displacement along tracks in eight directions, and so arranged that it would operate a closing and opening mechanism.

7 Fig.. External appearance of Zhang Heng s seismoscope [] Based on the study of historical archives, the design specifications of Zhang Heng s seismoscope can be defined as:. There is one pillar in the center of interior and eight transmitting rods near the pillar.. The basic concept that a switch ball located on the top of the pillar is adapted. And, when an earthquake occurs, the switch ball can move on the transmitting rod.. The design must detect the direction of the first motion, no matter whether it is compressing or expanding.. There are eight devices in the design to detect eight principal directions. Each device has an interior mechanism as a seismometer inside and a recording system outside.. Each interior mechanism has a pillar as the ground link, a sensing link to respond to ground shake, a lever mechanism as a magnifier, and a transmitting rod at least. It is a planar mechanism with one degree of freedom. And, the design requirements and constraints are:. It has a pillar as the frame in the center of the interior, and it has eight transmitting rods as channels near the pillar.. The switch ball which can move on the transmitting rod is held with the eight transmitting rods on the top of the pillar.. The design must detect the first motion of P-waves, no matter if it is compressing or expanding.. There are eight devices in the eight principal directions of the design. Each device has the interior mechanism as a seismometer and a recording system.. Each interior mechanism has at least a ground link, a sensing link, a connecting rod, a lever arm, and a transmitting rod.. It is a planar mechanism with one degree of freedom. For the reconstruction synthesis of feasible mechanisms of Zhang Heng s seismoscope with a rope-and-pulley and with six members and eight joints, the design consists of a ground link (), a sensing link (), a pulley (), a rope (), a lever arm (), a transmitting rod (), a prismatic joint, a wrapping joint, a pin-in-slot joint, and five revolute joints. Based on the procedure of reconstruction synthesis shown in Fig., six interior mechanisms are synthesized, Fig.. And, Fig. 7 shows one of the reconstruction designs.

8 Su Song s Escapement Regulator [, -] Su Song (蘇頌) of the Northern Song Dynasty invented a water-powered armillary sphere and celestial globe ( 水運儀象臺) around year 088 AD, Fig. 8 [7]. This device was working based on a water-powered mechanical clock with an escapement regulator. Literary records are available for this invention, but unfortunately surviving hardware is lacking. However, several reconstruction designs have existed in the past century. (a) (c) (b) (b) (c) (c) (d) (e) (d) (b) (a) (a) (e) (f) (f) Fig.. Synthesized interior mechanisms Zhang Heng s seismoscope (e) (f) (d) Transmitting Rod () Switch ball Lever arm () Rope () Du Chu (Pillar) Pulley () Sensing link () Fig. 7. A reconstruction design of Zhang Heng s seismoscope []

9 Fig. 8. Su Song's clock tower and escapement regulator [7] Su Song wrote a book named New Design for an Armillary Sphere and Celestial Globe 新儀象法要志 during the period of 088-09 AD, documenting in detail the structure, components, and diagrams of the motion and structure of the water-powered clock tower. The book enabled the escapement regulator using the waterwheel and steelyard clepsydra mechanism to be handed down to future generations. The book read [7]: The constant-level tank had a water-level marker. Water was lifted to a reservoir and poured into the upper reservoir. A constant-level tank was used to regulate water flow to maintain constant the speed and amount of water flowing from the upper reservoir. Water then flowed into the water-receiving scoops on the driving wheel. Since the water flow was maintained constant throughout the day, accurate time measurement was ensured. A lower balancing lever and a lower weight were located above the stopping tongue of the upper balancing lever. A free-spinning axle was located at the center of the lower balancing lever, which was held in place by two plates installed at the crossbar located at the north-south direction of the stand holding the constant-level tank. The tip of the lower balancing lever was a checking fork, which alternately checked and released the water-receiving scoops on the driving wheel. The lower weight was located on the opposite end of the lower balancing lever, which would rise or lower itself in accordance with the amount of water inside the water-receiving scoop. 平水壺上有準水箭 自河車發水入天河 以注天池壺 天池 壺受水有多少緊慢不均 故以平水壺節之 即注樞輪受水壺 晝夜停勻時刻 自正 樞衡 樞權各一 在天衡關舌上 正中為關軸於平水壺南北橫桄 上 為兩頰以貫其軸 常使運動 首為格叉 西距樞輪受水壺 權隨於衡 東 隨水壺虛實低昂 The development of ancient Chinese escapement regulators lies in the knowledge of clepsydra and lever technologies. In ancient China, applications of clepsydra and lever mechanisms were ubiquitous, with steady improvements in the structures, forms, and accuracy documented in historical records. The

0 clepsydra, utilizing the steady flow of water from a reservoir and an arrow to in dicate time, was the predominant timer used in ancient China. As for their structures, the floating clepsydra and the steelyard clepsydra were the two major types. The most popular lever mechanisms in ancient China were the jie gao ( 桔槔, a labor-saving lever with unequal arms) and heng qi (衡器, a weighing apparatus). An escapement can be made by integrating the jie gao as a force amplifier and the heng qi as a weight comparator to control the motion of the waterwheel. Thus, the design specifications of a water wheel steelyard-clepsydra device can be defined as:. It is an escapement regulator.. It has a waterwheel.. It has an independent input that has an isochoric and intermittent motion.. It has an escapement that can control the waterwheel motion. And, the characteristics of the topological structure of this design are concluded as:. It is a planar six-bar mechanism with eight joints.. It has a ground link (member ), a waterwheel (member ), an upper balancing lever (member ), a connecting rod (member ), an upper stopping tongue (member ), and a water-receiving scoop (member ).. It has one upper stopping joint, one cam joint, and six revolute joints.. It has one degree of freedom.. It has one ground link with multiple incident joints. Based on the procedure of reconstruction synthesis shown in Fig., eight feasible designs for the waterwheel steelyard-clepsydra device with four-bar linkage are synthesized, including the original design shown in Fig. 8; and four of them are shown in Fig. 9. Furthermore, Fig. 0 shows a physical reconstruction design. (a) (b) (c) (d) Fig. 9. Four feasible designs of the waterwheel steelyard-clepsydra device

Fig. 0. A reconstruction design of Su Song's waterwheel steelyard-clepsydra device [] Conclusions This work is devoted to presenting an innovative methodology in the area of mechanical historiography for the systematic reconstruction synthesis of all possible topological structures of mechanisms of ancient Chinese machines that have been lost to time. If the concluded design specifications, topological characteristics, and design requirements and constraints are feasible, one of the resulting re construction designs should be the original concept. Such an approach provides a logical tool for historians in ancient mechanical engineering and technology to further identify the possible original designs according to proven historical archives. References. Freudenstein F, Maki F (979) The creation of mechanism according to kinematic structure and function, Environment and Planning B, Vol., pp.79.. Yan HS (99) A Methodology for creative mechanism design, Mechanism and Machine Theory, Vol.7, No., pp.-.. Yan HS (998) Creative Design of Mechanical Devices, Springer, Singapore.. Yan HS (007) Reconstruction Designs of Lost Ancient Chinese Machinery, Springer, Netherlands.. Yan HS, Hwang YW (990) Number synthesis of kinematic chains based on permutations groups, Mathematical and Computer Modeling, Vol., No.8, pp.9-.. Yan HS, Hwang YW (99) The specialization of mechanisms, Mechanism and Machine Theory, Vol., No., pp.-. 7. Yan HS, Chen CW (00) A systematic approach for the structural synthesis of differential-type South Point Chariots, JSME International Journal, Series C, Vol.9, No., pp.-0. 8. Yan HS, Chen CW (007) Structural synthesis of South Pointing Chariots with a fixed axis wheel system, Transactions of the Canada Society for Mechanical Engineering, Vol., No., pp.-7.

9. Chi Bao (Jin Dynasty) (9) Gu Jin Zhu - Notes on the Antiquity and Present Days (in Chinese), Taiwan Commercial Press, Taipei. 古今注 崔豹[晉朝]撰 台灣商務印書館 台北 9年 0. Wang ZD (97) Investigations and reproduction in model form of the south pointing chariot and the hodometer (in Chinese), Beiping Academy of Sciences, Historical Journal, Beijing, No., pp.-7. 王振鐸 指南車記里鼓車之考證與模製 史學集刊 科學出版社 第期 北京 第-7頁 97年. Yan HS, Hsiao KH (007) Reconstruction design of the lost seismoscope of ancient China, Mechanism and Machine Theory, Vol., pp.0-7.. Yan HS, Hsiao KH (008) Reconstruction design of Zhang Heng s seismoscope with a rope-and-pulley mechanism, Journal of the Chinese Society of Mechanical Engineers (TAIWAN), Vol.9, No., pp.89-97.. Fan Ye (Eastern Jin Dynasty) (977) The History of the Later Han Dynasty (in Chinese), Ding Wen Publishing House, Taipei. 後漢書 范曄[晉朝]撰 鼎文出版社 台北 977年. Wang ZD (9) Conjecture of Zheng Heng s Seismoscope, Yenching University Journal of Chinese Studies (in Chinese), Beijing, Vol.0, pp.77-8. 王振鐸 漢張衡候風地動儀造法之推測 燕京學報 第 0卷 北 京 第77-8 頁 9年. Yan HS, Lin TY (00) A systematic approach to reconstruction of ancient Chinese escapement regulators, Proceedings of ASME 00 Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC 0), Montreal, Canada.. Yan HS, Lin TY (00) A study on ancient Chinese time laws and the timetelling system of Su Song s clock-tower, Mechanism and Machine Theory, Vol.7, No., pp.-. 7. Su Song (Northern Song Dynasty) (99) Xin Yi Xiang Fa Yao (in Chinese), Taiwan Commercial Press, Taipei. 新儀象法要 蘇頌[北宋]撰 新儀象法要 台灣商務印書館 台 北 99年