Commun Nonlinear Sci Numer Simulat

Similar documents
Journal of Engineering Science and Technology Review 2 (1) (2009) Research Article

Commun Nonlinear Sci Numer Simulat

Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation

Newton-homotopy analysis method for nonlinear equations

Commun Nonlinear Sci Numer Simulat

International Journal of Modern Mathematical Sciences, 2012, 3(2): International Journal of Modern Mathematical Sciences

Homotopy Analysis Transform Method for Time-fractional Schrödinger Equations

An Analytical Scheme for Multi-order Fractional Differential Equations

Improving homotopy analysis method for system of nonlinear algebraic equations

Research Article On a New Reliable Algorithm

Example 2: a system of coupled ODEs with algebraic property at infinity

Homotopy Analysis Method to Water Quality. Model in a Uniform Channel

Series solutions of non-linear Riccati differential equations with fractional order

APPROXIMATING THE FORTH ORDER STRUM-LIOUVILLE EIGENVALUE PROBLEMS BY HOMOTOPY ANALYSIS METHOD

Improving convergence of incremental harmonic balance method using homotopy analysis method

Commun Nonlinear Sci Numer Simulat

Approximate Analytical Solutions of Two. Dimensional Transient Heat Conduction Equations

An analytic approach to solve multiple solutions of a strongly nonlinear problem

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM

On the convergence of the homotopy analysis method to solve the system of partial differential equations

A Numerical Study of One-Dimensional Hyperbolic Telegraph Equation

A new method for homoclinic solutions of ordinary differential equations

Analytical solution for nonlinear Gas Dynamic equation by Homotopy Analysis Method

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method

SOLUTION TO BERMAN S MODEL OF VISCOUS FLOW IN POROUS CHANNEL BY OPTIMAL HOMOTOPY ASYMPTOTIC METHOD

Basic Ideas and Brief History of the Homotopy Analysis Method

The Series Solution of Problems in the Calculus of Variations via the Homotopy Analysis Method

Approximate Analytical Solution to Time-Fractional Damped Burger and Cahn-Allen Equations

MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS

HOMOTOPY ANALYSIS METHOD FOR SOLVING KDV EQUATIONS

(Received 1 February 2012, accepted 29 June 2012) address: kamyar (K. Hosseini)

Research Article Series Solution of the Multispecies Lotka-Volterra Equations by Means of the Homotopy Analysis Method

Research Article Analytic Solution for MHD Falkner-Skan Flow over a Porous Surface

AN AUTOMATIC SCHEME ON THE HOMOTOPY ANALYSIS METHOD FOR SOLVING NONLINEAR ALGEBRAIC EQUATIONS. Safwan Al-Shara

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 7, August 2014

An Effective Approach for solving MHD Viscous Flow Due to A Shrinking Sheet

An explicit solution of the large deformation of a cantilever beam under point load at the free tip

Analytic solution of fractional integro-differential equations

CONSTRUCTION OF SOLITON SOLUTION TO THE KADOMTSEV-PETVIASHVILI-II EQUATION USING HOMOTOPY ANALYSIS METHOD

Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013)

Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field

Commun Nonlinear Sci Numer Simulat

Riyadh 11451, Saudi Arabia. ( a b,c Abstract

Study of Couette and Poiseuille flows of an Unsteady MHD Third Grade Fluid

Homotopy Analysis Method for Nonlinear Jaulent-Miodek Equation

Commun Nonlinear Sci Numer Simulat

Boundary layer flow of nanofluid over an exponentially stretching surface

ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD

ANALYTICAL APPROXIMATE SOLUTIONS OF THE ZAKHAROV-KUZNETSOV EQUATIONS

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç

arxiv: v1 [math.ap] 21 Apr 2016

Commun Nonlinear Sci Numer Simulat

Boundary Layer Stagnation-Point Flow of Micropolar Fluid over an Exponentially Stretching Sheet

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE

Explicit Analytic Solution for an. Axisymmetric Stagnation Flow and. Heat Transfer on a Moving Plate

Chaos, Solitons and Fractals

UNSTEADY MAGNETOHYDRODYNAMICS THIN FILM FLOW OF A THIRD GRADE FLUID OVER AN OSCILLATING INCLINED BELT EMBEDDED IN A POROUS MEDIUM

Commun Nonlinear Sci Numer Simulat

MAGNETOHYDRODYNAMIC FLOW OF POWELL-EYRING FLUID BY A STRETCHING CYLINDER WITH NEWTONIAN HEATING

Computers and Mathematics with Applications

Unsteady Hydromagnetic Couette Flow within a Porous Channel

MELTING HEAT TRANSFER IN THE STAGNATION-POINT FLOW OF THIRD GRADE FLUID PAST A STRETCHING SHEET WITH VISCOUS DISSIPATION

Research Article Effects of Thermocapillarity and Thermal Radiation on Flow and Heat Transfer in a Thin Liquid Film on an Unsteady Stretching Sheet

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH

Flow of a Weakly Conducting Fluid in a Channel Filled with a Darcy Brinkman Forchheimer Porous Medium

Research Article The One Step Optimal Homotopy Analysis Method to Circular Porous Slider

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized

Dynamics of four coupled phase-only oscillators

Periodic wave solution of a second order nonlinear ordinary differential equation by Homotopy analysis method

Homotopy Perturbation Method for Solving MHD Nanofluid Flow with Heat and Mass Transfer Considering Chemical Reaction Effect

Numerical Solution of 12 th Order Boundary Value Problems by Using Homotopy Perturbation Method

Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation

Homotopy Analysis Method for Nonlinear Differential Equations with Fractional Orders

American Academic & Scholarly Research Journal Special Issue - January 2012

Homotopy perturbation method for solving hyperbolic partial differential equations

Application of Homotopy Perturbation Method (HPM) for Nonlinear Heat Conduction Equation in Cylindrical Coordinates

Flow of a micropolar fluid in channel with heat and mass transfer

MEAN SQUARE SOLUTIONS OF SECOND-ORDER RANDOM DIFFERENTIAL EQUATIONS BY USING HOMOTOPY ANALYSIS METHOD

Homotopy Analysis Transform Method for Integro-Differential Equations

Introduction. Page 1 of 6. Research Letter. Authors: Philip O. Olanrewaju 1 Jacob A. Gbadeyan 1 Tasawar Hayat 2 Awatif A. Hendi 3.

ANALYTICAL SOLUTION FOR VIBRATION OF BUCKLED BEAMS

A new approach to solve fuzzy system of linear equations by Homotopy perturbation method

arxiv: v1 [nlin.ao] 10 Jun 2008

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics

ISSN Article

Application of Optimal Homotopy Asymptotic Method for Solving Linear Boundary Value Problems Differential Equation

Application of Homotopy Analysis Method for Linear Integro-Differential Equations

Homotopy perturbation method for temperature distribution, fin efficiency and fin effectiveness of convective straight fins

HOMOTOPY ANALYSIS METHOD FOR SOLVING COUPLED RAMANI EQUATIONS

Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He s homotopy perturbation method

Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method

Research Article On Critical Buckling Loads of Columns under End Load Dependent on Direction

Vidyasagar et al., International Journal of Advanced Engineering Technology E-ISSN A.P., India.

SOLUTION OF TROESCH S PROBLEM USING HE S POLYNOMIALS

A Comparison of Adomian and Generalized Adomian Methods in Solving the Nonlinear Problem of Flow in Convergent-Divergent Channels

Adomain Decomposition Method for Solving Non Linear Partial Differential Equations

Computers and Mathematics with Applications

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

New interpretation of homotopy perturbation method

Transcription:

Commun Nonlinear Sci Numer Simulat 16 (2011) 2730 2736 Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns Homotopy analysis method applied to electrohydrodynamic flow Antonio Mastroberardino School of Science, Penn State Erie, The Behrend College, Erie, Pennsylvania 16563-0203, USA article info abstract Article history: Received 20 July 2010 Received in revised form 30 September 2010 Accepted 2 October 2010 Available online 25 October 2010 Keywords: Homotopy analysis method Electrohydrodynamic flow Nonlinear boundary value problem In this paper, we consider the nonlinear boundary value problem (BVP) for the electrohydrodynamic flow of a fluid in an ion drag configuration in a circular cylindrical conduit. We present analytical solutions based on the homotopy analysis method (HAM) for various values of the relevant parameters and discuss the convergence of these solutions. We also compare our results with numerical solutions. The results provide another example of a highly nonlinear problem in which HAM is the only known analytical method that yields convergent solutions for all values of the relevant parameters. Ó 2010 Elsevier B.V. All rights reserved. 1. Introduction The electrohydrodynamic flow of a fluid in an ion drag configuration in a circular cylindrical conduit was first reviewed by McKee [1]. In that article, a full description of the problem was presented in which the governing equations were reduced to the nonlinear boundary value problem (BVP) d 2 w dr þ 1 2 r dw dr þ H2 1 w ¼ 0; 0 < r < 1; ð1:1þ 1 aw subject to the boundary conditions w 0 ð0þ ¼0; wð1þ ¼0; ð1:2þ ð1:3þ where w(r) is the fluid velocity, r is the radial distance from the center of the cylindrical conduit, H is the Hartmann electric number, and the parameter a is a measure of the strength of the nonlinearity. Perturbative and numerical solutions to (1.1) (1.3) for small/large values of a were provided. Paullet [2] proved the existence and uniqueness of a solution to (1.1) (1.3), and in addition, discovered an error in the perturbative and numerical solutions given in [1] for large values of a. The purpose of this present work is to present accurate analytical solutions to (1.1) (1.3) for all values of the relevant parameters using the homotopy analysis method (HAM), introduced by Liao [3 6]. We show that the analytical solutions are in excellent agreement with numerical solutions obtained with MATLAB. We also show that the homotopy perturbation method (HPM) yields divergent solutions for all of the cases considered. This is further illustration of the utility of HAM in comparison with other analytical methods used to solve highly nonlinear differential equations. We refer the reader to [7 14] for enlightening comparisons between HAM and HPM. Tel.: +1 814 898 6328; fax: +1 814 898 6213. E-mail address: axm62@psu.edu 1007-5704/$ - see front matter Ó 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.cnsns.2010.10.004

A. Mastroberardino / Commun Nonlinear Sci Numer Simulat 16 (2011) 2730 2736 2731 HAM is a nonperturbative analytical method for obtaining series solutions to nonlinear equations and has been successfully applied to numerous problems in science and engineering [15 22]. In comparison with other perturbative and nonperturbative analytical methods, HAM offers the ability to adjust and control the convergence of a solution via the so-called convergence-control parameter. Because of this, HAM has proved to be the most effective method for obtaining analytical solutions to highly nonlinear differential equations. Previous applications of HAM have mainly focused on nonlinear differential equations in which the nonlinearity is a polynomial in terms of the unknown function and its derivatives. As seen in (1.1), the nonlinearity present in electrohydrodynamic flow takes the form of a rational function, and thus, poses a greater challenge with respect to finding approximate solutions analytically. Our results show that even in this case, HAM yields excellent results. 2. Homotopy analysis method In this section, we apply HAM to solve (1.1) (1.3) for the fluid velocity w(r). We choose the initial guess to be w 0 ðrþ ¼0; which satisfies the boundary conditions in (1.2) and (1.3). Since the domain of the unknown function is bounded, it is appropriate to choose the linear operator to be [23] Lðf Þ¼f 00 ; with the property L½c 1 r þ c 2 Š¼0; where c 1 and c 2 are constants of integration. The zeroth-order deformation equation is ð1 pþl½ ^wðr; pþ w 0 ðrþš ¼ phn½^wðr; pþš; with the boundary conditions where @ ^w ð0; pþ ¼0 and ^wð1; pþ ¼0; ð2:8þ @r N½^wðr; pþš ¼ ð1 a ^wþ @ 2 ^w @r 2 þ 1 r! @ ^w þ H 2 ð1 ð1þaþ^wþ: @r Here p 2 [0,1] is an embedding parameter, and h is the convergence-control parameter. Note that for p = 0 and p = 1 we have ^wðr; 0Þ ¼w 0 ðrþ and ^wðr; 1Þ ¼wðrÞ: ð2:10þ Thus as p increases from 0 to 1, ^wðr; pþ varies from the initial guess w 0 (r) to the desired solution w(r). Expanding ^wðr; pþ in a Taylor series with respect to p yields ð2:4þ ð2:5þ ð2:6þ ð2:7þ ð2:9þ ^wðr; pþ ¼w 0 ðrþþ X1 w m ðrþp m ; m¼1 where w m ðrþ ¼ 1 @ m ^wðr; pþ m! @p m : p¼0 ð2:11þ ð2:12þ If the auxiliary linear operator, the initial guess, and the convergence-control parameter h are properly chosen, the series in (2.11) converges at p = 1, yielding the homotopy-series solution wðrþ ¼w 0 ðrþþ X1 m¼1 w m ðrþ; to (1.1) (1.3). Differentiating (2.7) m times with respect to the embedding parameter p, dividing by m!, and then setting p = 0, we obtain the mth-order deformation equation ð2:13þ L½w m ðrþ v m w m 1 ðrþš ¼ hr m ð~w m 1 Þ; ð2:14þ where R m ð~w m 1 Þ¼w 00 m 1 þ 1 r w0 m 1 þ H2 ½1 v m ð1þaþw m 1 Š a Xm 1 w i w 00 m 1 i a r i¼1 X m 1 i¼1 w i w 0 m 1 i ; ð2:15þ

2732 A. Mastroberardino / Commun Nonlinear Sci Numer Simulat 16 (2011) 2730 2736 and 0; if m 6 1; v m ¼ 1; if m > 1; ð2:16þ subject to the boundary conditions w 0 m ð0þ ¼0; w mð1þ ¼0: ð2:17þ The general solution to (2.14) is w m ðrþ ¼w ] m ðrþþc 1r þ c 2 ; ð2:18þ where w ] mðrþ is the particular solution. The constants c 1 and c 2 are determined by the boundary conditions in (2.17) and are given by c 1 ¼ 0; c 2 ¼ w ] mð1þ: ð2:19þ Starting with the initial guess in (2.4), w m (r) for m P 1 are obtained iteratively by solving (2.14) and (2.17) with symbolic computational software. This procedure is terminated after a fixed number iterations N to yield the approximate analytical solution wðrþ ~w N ðrþ ¼ XN m¼0 w m ðrþ; to (1.1) (1.3). To facilitate the analysis in the next section, we substitute (2.20) into (1.1) to obtain the residual function RðrÞ ¼ d2 ~w N dr þ 1 d ~w N 2 r dr þ ~w N H2 1 : ð2:21þ 1 a ~w N We also define the square residual error [24] for the Nth order approximation to be ð2:20þ E N ðhþ ¼ Z 1 0 ½RðrÞŠ 2 dr: ð2:22þ 3. Convergence of the HAM solution In this section, we discuss the convergence of the HAM solution in (2.20) for N = 20. The convergence depends on the convergence-control parameter h, and so, we plot h-curves for w(0) in Fig. 1. As discussed in [3], the interval of convergence is determined by the flat portion of the h-curve. It is clear from Fig. 1 that the admissible values of h are contained in [ 0.7,0] for all of the cases considered and that as H 2 increases, this interval shrinks due to the increase in nonlinearity. Since h = 1is not contained in the interval of convergence, solutions obtained with HPM-a special case of HAM in which h = 1 [7] are divergent. To determine the optimal values of h, we minimize the square residual error given in (2.22). As discussed in [24], computing E N (h) directly with symbolic computational software is impractical. Thus, we approximate (2.22) using Gaussian Fig. 1. h-curves for the 20th order approximation for a = 0.5, 1.

A. Mastroberardino / Commun Nonlinear Sci Numer Simulat 16 (2011) 2730 2736 2733 Fig. 2. Square residual error for the 20th order approximation for a = 0.5, 1. quadrature with eight nodes and plot these approximations in Fig. 2. The optimal values of h for all of the cases considered are obtained by minimizing (2.22) using the Mathematica function Minimize and are given in Table 1. In addition, we plot the residual function R(r) in Figs. 3 6 for all of the cases considered. These plots demonstrate the accuracy of the HAM solution given in (2.20). It is worth noting the residual has been plotted as a function of r for a fixed value of h and not as a function of h for a fixed value of r as this is a better illustration of convergence. 4. Comparison with numerical solutions Here we solve (1.1) (1.3) numerically and compare with the analytical solutions obtained in the previous section for specific values of h. We first convert (1.1) (1.3) to an initial value problem for a two-dimensional first order system and use a shooting method in order to satisfy the right boundary condition in (1.3). To handle the singularity at r = 0, the numerical method involves a combination of Euler s implicit method for the first step of Dr = 0.05 and MATLAB s differential equation solver ode45 for the remainder of the interval. Fig. 7(a) and (b) demonstrate that the analytical solutions for various values of the relevant parameters compare extremely well with the numerical solutions. For all of the cases considered, the maximum difference between the analytical solution and the numerical solution was determined to be less than 10 3. Table 1 The optimal values of h. a H 2 Optimal value of h Minimum value of E N 0.5 0.5 0.375 7.772 10 12 0.5 1 0.276 1.230 10 9 0.5 2 0.275 5.319 10 8 0.5 4 0.205 4.568 10 5 1 0.5 0.303 4.634 10 11 1 1 0.292 4.996 10 9 1 2 0.254 2.363 10 6 1 4 0.198 3.461 10 4 Fig. 3. The residual of the 20th order approximation for H 2 = 0.5.

2734 A. Mastroberardino / Commun Nonlinear Sci Numer Simulat 16 (2011) 2730 2736 Fig. 4. The residual of the 20th order approximation for H 2 =1. Fig. 5. The residual of the 20th order approximation for H 2 =2. Fig. 6. The residual of the 20th order approximation for H 2 =4. 5. Conclusions In this paper, the homotopy analysis method (HAM) has been applied to obtain analytical solutions for a nonlinear boundary value problem governing electrohydrodynamic flow. It has been noted that the nonlinearity confronted in this problem is in the form of a rational function, and thus, poses a significant challenge in regard to obtaining analytical solutions. Despite this fact, we have shown that the solutions obtained are convergent and that they compare extremely well with numerical solutions. It has also been shown that the homotopy perturbation method yields divergent solutions for all of the cases considered. These results demonstrate that HAM is a very effective analytical method for solving highly nonlinear problems in science and engineering.

A. Mastroberardino / Commun Nonlinear Sci Numer Simulat 16 (2011) 2730 2736 2735 (a) 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (b) 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Fig. 7. Comparison of 20th order HAM solution (solid line) and numerical solution for (a) a = 0.5 and (b) a =1. Acknowledgment The author thanks the referee for helpful suggestions that improved the content of the paper. References [1] McKee S. Calculation of electrohydrodynamic flow in a circular cylindrical conduit. Z Angew Math Mech 1997;77:457 65. [2] Paullet JE. On the solutions of electrohydrodynamic flow in a circular cylindrical conduit. Z Angew Math Mech 1999;79:357 60. [3] Liao SJ. Beyond perturbation: introduction to the homotopy analysis method. Boca Raton, FL: Chapman & Hall-CRC Press; 2003.

2736 A. Mastroberardino / Commun Nonlinear Sci Numer Simulat 16 (2011) 2730 2736 [4] Liao SJ. On the homotopy analysis method for nonlinear problems. Appl Math Comput 2004;147:499 513. [5] Liao SJ, Tan Y. A general approach to obtain series solutions of nonlinear differential equations. Stud Appl Math 2007;119:297 355. [6] Liao SJ. Notes on the homotopy analysis method: some definitions and theorems. Commun Nonlinear Sci Numer Simul 2009;14:983 97. [7] Liao SJ. Comparision between the homotopy analysis method and homotopy perturbation method. Appl Math Comput 2005;169:1186 94. [8] Abbasbandy S. The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys Lett A 2006;360:109 13. [9] Hayat T, Sajid M. On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys Lett A 2007;361:316 22. [10] Sajid M, Hayat T, Asghar S. Comparison between the HAM and HPM solutions of thin film flows of non-newtonian fluids on a moving belt. Nonlinear Dyn 2007;50:27 35. [11] Sajid M, Hayat T. The application of homotopy analysis method to thin film flows of a third order fluid. Chaos Solitons Fractals 2008;38:506 15. [12] Sajid M, Hayat T. Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations. Nonlinear Anal Real World Appl 2008;9:2296 301. [13] Sajid M, Hayat T. Comparison of HAM and HPM solutions in heat radiation equations. Int Commun Heat Mass Transfer 2009;36:59 62. [14] Liang S, Jeffrey DJ. Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation. Commun Nonlinear Sci Numer Simul 2010;15:581 9. [15] Liao SJ. An explicit totally analytic approximation of Blasius viscous flow problems. Int J Nonlinear Mech 1999;34:759 78. [16] Liao SJ. On the analytic solution of magnetohydrodynamic flows non-newtonian fluids over a stretching sheet. J Fluid Mech 2003;488:189 212. [17] Liao SJ. A new branch of boundary layer flows over a permeable stretching plate. Int J Nonlinear Mech 2007;42:819 30. [18] Tan Y, Xu H, Liao SJ. Explicit series solution of travelling waves with a front of Fisher equation. Chaos Solitons Fractals 2007;31:462 72. [19] Abbasbandy S. Soliton solutions for the FitzhughNagumo equation with the homotopy analysis method. Appl Math Model 2008;32:2706 14. [20] Cheng J, Liao SJ, Mohapatra RN, Vajravelu K. Series solutions of nano boundary layer flows by means of the homotopy analysis method. J Math Anal Appl 2008;343:233 45. [21] Hayat T, Abbas Z. Heat transfer analysis on MHD flow of a second grade fluid in a channel with porous medium. Chaos Solitons Fractals 2008;38:556 67. [22] Hayat T, Naz R, Sajid M. On the homotopy solution for Poiseuille flow of a fourth grade fluid. Commun Nonlinear Sci Numer Simul 2010;15:581 9. [23] Van Gorder RA, Vajravelu K. On the selection of auxiliary functions, operators, and convergence control parameters in the application of the homotopy analysis method to nonlinear differential equations: a general approach. Commun Nonlinear Sci Numer Simul 2009;14:4078 89. [24] Liao SJ. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul 2010;15:2003 16.