Sharp Bounds for Sums Associated to Graphs of Matrices. at the WaldenFest. Roland Speicher Universität des Saarlandes Saarbrücken, Germany

Similar documents
Quantum Mechanics I - Session 4

Quantum Mechanics for Scientists and Engineers. David Miller

First day August 1, Problems and Solutions

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

NP-Completeness : Proofs

9 Characteristic classes

EEE 241: Linear Systems

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Formulas for the Determinant

Introduction to Algorithms

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

Randić Energy and Randić Estrada Index of a Graph

Statistical Mechanics and Combinatorics : Lecture III

From Biot-Savart Law to Divergence of B (1)

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Calculation of time complexity (3%)

Introduction to Algorithms

Robust observed-state feedback design. for discrete-time systems rational in the uncertainties

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach

1 GSW Iterative Techniques for y = Ax

The Dirac Equation for a One-electron atom. In this section we will derive the Dirac equation for a one-electron atom.

Math 217 Fall 2013 Homework 2 Solutions

Lecture 6: Introduction to Linear Regression

arxiv: v1 [math.co] 1 Mar 2014

Lecture 10: May 6, 2013

Homework 9 Solutions. 1. (Exercises from the book, 6 th edition, 6.6, 1-3.) Determine the number of distinct orderings of the letters given:

Lecture 4: Universal Hash Functions/Streaming Cont d

ECE559VV Project Report

Linear Approximation with Regularization and Moving Least Squares

An Inequality for the trace of matrix products, using absolute values

Section 3.6 Complex Zeros

Cauchy-Schwarz Inequalities Associated with Positive Semidenite. Matrices. Roger A. Horn and Roy Mathias. October 9, 2000

Homework Notes Week 7

Exercises. 18 Algorithms

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Lecture 14: Forces and Stresses

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

CHAPTER 4. Vector Spaces

Interpreting Slope Coefficients in Multiple Linear Regression Models: An Example

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1)

A NOTE ON CES FUNCTIONS Drago Bergholt, BI Norwegian Business School 2011

Note on EM-training of IBM-model 1

Section 8.3 Polar Form of Complex Numbers

DONALD M. DAVIS. 1. Main result

Lecture 10 Support Vector Machines II

Important Instructions to the Examiners:

Complete subgraphs in multipartite graphs

Non-negative Matrices and Distributed Control

New Method for Solving Poisson Equation. on Irregular Domains

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

PSEUDO ORBIT EXPANSION FOR THE RESONANCE CONDITION ON QUANTUM GRAPHS AND THE RESONANCE ASYMPTOTICS

Min Cut, Fast Cut, Polynomial Identities

Neuro-Adaptive Design - I:

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

Inductance Calculation for Conductors of Arbitrary Shape

APPENDIX A Some Linear Algebra

Special Relativity and Riemannian Geometry. Department of Mathematical Sciences

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

On the average number of divisors of the sum of digits of squares

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

GELFAND-TSETLIN BASIS FOR THE REPRESENTATIONS OF gl n

arxiv: v1 [math.co] 12 Sep 2014

Chapter 9: Statistical Inference and the Relationship between Two Variables

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

Google PageRank with Stochastic Matrix

Assortment Optimization under MNL

THE SUMMATION NOTATION Ʃ

COS 521: Advanced Algorithms Game Theory and Linear Programming

CALCULUS CLASSROOM CAPSULES

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

10-701/ Machine Learning, Fall 2005 Homework 3

6.854J / J Advanced Algorithms Fall 2008

TRANSPOSE ON VERTEX SYMMETRIC DIGRAPHS

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 2/21/2008. Notes for Lecture 8

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

Structure and Drive Paul A. Jensen Copyright July 20, 2003

MAE140 - Linear Circuits - Fall 10 Midterm, October 28

1 Vectors over the complex numbers

Errors for Linear Systems

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Dynamic Systems on Graphs

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites

Professor Chris Murray. Midterm Exam

More metrics on cartesian products

5 The Rational Canonical Form

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Time-Varying Systems and Computations Lecture 6

Problem Set 9 Solutions

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices

4DVAR, according to the name, is a four-dimensional variational method.

Lecture 3. Ax x i a i. i i

Approximate D-optimal designs of experiments on the convex hull of a finite set of information matrices

Transcription:

Sharp Bounds for Sums Assocated to Graphs of Matrces at the WaldenFest Roland Specher Unverstät des Saarlandes Saarbrücken, Germany

Academc famly tree of Wlhelm von Waldenfels Schürmann Köng Wese Köng Specher Waldenfels Skede

Academc famly tree of Wlhelm von Waldenfels Schürmann Köng Wese Köng Specher and sons Waldenfels Skede

Hedelberg... at the good old tmes... last century

Some thngs we learned... thnkng s hard work...

Some thngs we learned... thnkng s hard work...

Some thngs we learned... look for a (hdden) conceptual structure behnd your complcated concrete problem...

Queston What s the asyptotc behavour n N of 1,..., 2m some constrants on equalty of ndces 1 2 t (2) 3 4 t (m) 2m 1 2m wth gven matrces T k = ( t (k) ) N,=1

Examples t,=1 T =1 t T,,k=1 t(2) k t(3) k T 1 T 2 k,,k,l=1 t(2) k t(3) l T 2 T 1 k l

That s easy? Okay, so look on ths: 1,..., 8 =1 1 2 t (2) 3 2 t (3) 3 4 t (4) 4 4 t (5) 5 3 t (6) 2 5 t (7) 6 5 t (8) 6 5 t (9) 6 6 t (10) 7 5 t (11) 8 7 t (12) 8 7 4 T 4 3 1 T 2 T 2 1 T 5 T 6 T 7 T 6 11 T 10 T 8 8 T 9 T 12 7 5

Problem For a gven drected graph G (multple edges and loops allowed), wth matrces attached to the edges, denote the correspondng sum by S G (N) Queston: What s the optmal bound r(g) n S G (N) N r(g) m k=1 T k

Optmal asymptotcs n N? 4 T 4 3 1 T 2 T 2 1 T 5 T 6 T 7 T 6 11 T 10 T 8 8 T 9 T 12 7 5 1 1 t (2) 2 3 t (3) 2 3 t (4) 4 4 t (5) 4 5 t (6) 3 2 t (7) 5 6 t (8) 5 6 t (9) 5 6 t (10) 6 7 t (11) 5 8 t (12) 7 8 N??? 7 12 =1 T

Motvaton such sums appear and have to be asymptotcally controlled n calculatons of moments of products of random (Wgner) matrces and determnstc matrces Yn + Krshnaah, 1983 Ba (+ Slversten), 1999 (2006) Mngo + Specher, 2012 JFA (asymptotc freeness of Wgner and determnstc matrces) Male, 2012 traffcs

Example =1 t T Then or =1 t =1 T = N T =1 t = Tr(T ) = N tr(t ) N T

Example =1 t T Then or =1 t =1 T = N T =1 t = Tr(T ) = N tr(t ) N T

Example,,k=1 t(2) k t(3) k T 1 T 2 k,,k=1 t(2) k t(3) k = Tr(T 1T 2 ) = N tr(t 1 T 2 ) N T 1 T 2 N T 1 T 2

Example t,=1 T trval estmate:,=1 t,=1 T = N 2 T But we can do better...

t,=1 T... wth usng the vectors we can wrte e := (0,..., 1,..., 0), e := (1, 1,..., 1) and thus,=1 t =,=1 e, T e = e, T e snce,=1 t e, T e e 2 T = N T e = N

t,=1 T... wth usng the vectors we can wrte e := (0,..., 1,..., 0), e := (1, 1,..., 1) and thus,=1 t =,=1 e, T e = e, T e snce,=1 t e, T e e 2 T = N T e = N

,,k,l=1 Example t(2) k t(3) l T 2 T 1 k l t(2) k t(3) l =,,k,l=1,,k,l e, T 1 e e, T 2 e k e, e l }{{} e e,t 2 e k e l = e, T 1 e e e }{{} V :C N C N C N T 2, e e = e, T 1 V (T 2 ) e e

,,k,l=1 Example t(2) k t(3) l T 2 T 1 k l,,k,l=1 t(2) k t(3) l =,,k,l e, T 1 e e, T 2 e k e, e l }{{} e e,t 2 e k e l = e, T 1 e e e }{{} V :C N C N C N T 2, e e = e, T 1 V (T 2 ) e e

,,k,l=1 Example t(2) k t(3) l T 2 T 1 k l,,k,l=1 t(2) k t(3) l =,,k,l e, T 1 e e, T 2 e k e, e l }{{} e e,t 2 e k e l = e, T 1 e e e }{{} V :C N C N C N T 2, e e = e, T 1 V (T 2 ) e e

,,k,l=1 Example t(2) k t(3) l T 2 T 1 k l,,k,l=1 t(2) k t(3) l =,,k,l e, T 1 e e, T 2 e k e, e l }{{} e e,t 2 e k e l = e, T 1 e e e }{{} V :C N C N C N T 2, e e = e, T 1 V (T 2 ) e e

,,k,l=1 t(2) k t(3) l T 2 T 1 k l,,k,l=1 t(2) k t(3) l = e, T 1 V (T 2 ) e e e e e }{{} e e T 1 V T }{{} 2 =1 = N 3/2 T 1 T 2 snce V : C N C N C N, e e s an sometry, and thus V = 1. e, f = 0, f

General structure In ths example, our sum S(N) s gven as nner product where S(N) ˆ= output, stuff nput each nput and each output vertex contrbutes factor N 1/2 nternal vertces do not contrbute, summaton over them corresponds to matrx multplcaton or, more general, partal sometres

Note that one can also modfy,,k=1 t(2) k t(3) k T 1 T 2 k to an nput-output form: T 1 T 2 t k

General strategy Modfy gven graph to equvalent nput-output graph then each nput and output vertex gves factor N 1/2 Man problems: Can we always do such a modfcaton? If yes, how can we recognze how many nput/output vertces we need?

Asymptotcs determned by structure of F(G) F(G) = forrest of two-edge-connected components 4 T 4 4 3 1 T 2 T 2 1 T 5 2 = 3 = 5 = 6 5 T 6 T 7 T 6 11 T 10 T 8 8 T 9 T 12 7 1 7 = 8

Theorem [Mngo, Specher, JFA 2012] We have the followng optmal estmate: :V [N] e E t (e) t(e), s(e) N 1 2 #leaves of F(G) e E T e (Trval leaves,.e., only vertces of trval trees, count twce!)

Optmal asymptotcs n N! 4 T 4 4 3 1 T 2 T 2 1 T 5 2 = 3 = 5 = 6 5 T 6 T 7 T 6 11 T 10 T 8 8 T 7 12 T9 1 7 = 8 1 1 t (2) 2 3 t (3) 2 3 t (4) 4 4 t (5) 4 5 t (6) 3 2 t (7) 5 6 t (8) 5 6 t (9) 5 6 t (10) 6 7 t (11) 5 8 t (12) 7 8 N 3/2 7 12 =1 T

Replace by equvalent nput-output problem 4 T 4 4 T 4 4 3 3 1 T 2 T 2 1 T 5 2 T t 2 T 5 5 T 6 T 7 6 T 6 T 7 T 6 11 T 10 T 8 8 T 9 T 12 7 5 T 1 T 10 T8 t 5 7 6 T 9 T 11 T 12 1 8

Addng addtonal vertces 4 T 4 T 4 4 3 T t 2 T 5 5 T 5 2 T 6 T 7 6 T t 2 T 7 I T N 6 6 T 9 T 9 T 1 T 10 T8 t 5 7 T 11 T 12 T 10 T t 8 T 1 T 11 T 12 1 8

H n V n,2 : H n H H T 4 T 4 V 2,1 : H H H T 5 V 1,2 : H H H T 5 T t 2 T 7 I T N 6 V 1,1 V 1,3 : H H) H (H H H) T t 2 T 6 T 7 V 2,1 V 1,1 V 1,2 : (H H) H H H H (H H) T 9 T 9 V 1,1 V 1,1 V 2,1 : H H (H H) H H H T 1 T8 t T 10 T 11 T 12 T t 8 V 1,1 V 2,1 : H (H H) H H T 10 V 1,1 V 1,2 : H H H (H H) T 1 T 11 T 12 H out H out V 1,out V 2,out : H (H H) H out H out

Theorem [Mngo, Specher, JFA 2012] We have the followng optmal estmate: :V [N] e E t (e) t(e), s(e) N 1 2 #leaves of F(G) e E T e (Trval leaves,.e., only vertces of trval trees, count twce!)

Happy Brthday, Wlhelm!!!