Higher categories and observables for generalised Turaev-Viro models

Similar documents
Pre-Lie algebras, rooted trees and related algebraic structures

Worksheet #2 Math 285 Name: 1. Solve the following systems of linear equations. The prove that the solutions forms a subspace of

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

PoS(LL2016)035. Cutkosky Rules from Outer Space. Dirk Kreimer Humboldt Univ.

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition

Qubit and Quantum Gates

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

arxiv: v1 [math.ct] 8 Sep 2009

Algebra in a Category

Lecture Notes No. 10

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

Learning Objectives of Module 2 (Algebra and Calculus) Notes:

Hybrid Systems Modeling, Analysis and Control

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a.

Abstraction of Nondeterministic Automata Rong Su

THREE DIMENSIONAL GEOMETRY

There are two 2 twist-spun trefoils

C. Aydın*, M. Bayar and A. H. Yılmaz Physics Department, Karadeniz Technical University, 61080, Trabzon, Turkey.

arxiv: v1 [math.gt] 31 Jan 2008

REVERSIBLE LOGIC SYNTHESIS BY QUANTUM ROTATION GATES

1 Introdution Ever sine the seminl ppers [] nd [W], mthemtiins nd physiists hve een interested in the prolem of onstrution of topologil quntum eld the

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

Can one hear the shape of a drum?

Generalization of 2-Corner Frequency Source Models Used in SMSIM

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Lecture Summaries for Multivariable Integral Calculus M52B

Electromagnetism Notes, NYU Spring 2018

After the completion of this section the student should recall

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

DEFORMATIONS OF ASSOCIATIVE ALGEBRAS WITH INNER PRODUCTS

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations)

GRAND PLAN. Visualizing Quaternions. I: Fundamentals of Quaternions. Andrew J. Hanson. II: Visualizing Quaternion Geometry. III: Quaternion Frames

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

HOMEWORK FOR CLASS XII ( )

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Learning Partially Observable Markov Models from First Passage Times

Translation symmetry, Space groups, Bloch functions, Fermi energy

Hyers-Ulam stability of Pielou logistic difference equation

Unit-VII: Linear Algebra-I. To show what are the matrices, why they are useful, how they are classified as various types and how they are solved.

Petri Nets. Rebecca Albrecht. Seminar: Automata Theory Chair of Software Engeneering

Coalgebra, Lecture 15: Equations for Deterministic Automata

Automata for Analyzing and Querying Compressed Documents

Lecture 10 :Kac-Moody algebras

MAT 403 NOTES 4. f + f =

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

( ) { } [ ] { } [ ) { } ( ] { }

MUTATION PAIRS AND TRIANGULATED QUOTIENTS

Polarimetric Target Detector by the use of the Polarisation Fork

Automatic Synthesis of New Behaviors from a Library of Available Behaviors

VECTOR ALGEBRA. Syllabus :

Comparing the Pre-image and Image of a Dilation

arxiv: v1 [math.gr] 11 Jan 2019

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

CHENG Chun Chor Litwin The Hong Kong Institute of Education

CS344: Introduction to Artificial Intelligence

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Behavior Composition in the Presence of Failure

Data Structures and Algorithm. Xiaoqing Zheng

Area of a Region Between Two Curves

y1 y2 DEMUX a b x1 x2 x3 x4 NETWORK s1 s2 z1 z2

Topologie en Meetkunde 2011 Lecturers: Marius Crainic and Ivan Struchiner

Figure 1. The left-handed and right-handed trefoils

CS 573 Automata Theory and Formal Languages

The Ellipse. is larger than the other.

Logic Synthesis and Verification

Boolean Algebra cont. The digital abstraction

Active Diagnosis. Serge Haddad. Vecos 16. October the 6th 2016

The perverse t-structure

nd edges. Eh edge hs either one endpoint: end(e) = fxg in whih se e is termed loop t vertex x, or two endpoints: end(e) = fx; yg in whih se e is terme

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

System Validation (IN4387) November 2, 2012, 14:00-17:00

Computational Biology Lecture 18: Genome rearrangements, finding maximal matches Saad Mneimneh

Consistent Probabilistic Social Choice

Virtual knot theory on a group

Logic, Set Theory and Computability [M. Coppenbarger]

Memory Minimization for Tensor Contractions using Integer Linear Programming.

5. Every rational number have either terminating or repeating (recurring) decimal representation.

The quantal algebra and abstract equations of motion. Samir Lipovaca

A Differential Approach to Inference in Bayesian Networks

Bisimulation, Games & Hennessy Milner logic

Vector Integration. Line integral: Let F ( x y,

Solutions to Assignment 1

Geometrically Realizing Nested Torus Links

arxiv: v4 [math.gt] 9 Jul 2018

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vector Integration

AVL Trees. D Oisín Kidney. August 2, 2018

Standard Trigonometric Functions

The Emission-Absorption of Energy analyzed by Quantum-Relativity. Abstract

Construction and Properties of Adhesive and Weak Adhesive High-Level Replacement Categories

Übungen zur Theoretischen Physik Fa WS 17/18

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

CLASS XII. AdjA A. x X. a etc. B d

Linear Algebra Introduction

Génération aléatoire uniforme pour les réseaux d automates

Lecture 11 Binary Decision Diagrams (BDDs)

Reflection Property of a Hyperbola

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

arxiv: v1 [math.co] 6 Jan 2019

Transcription:

Hiher teories nd oservles or enerlised Turev-Viro models Septemer 21, 2010 CLP 7 Cteories, Loi nd Phsis, Birminhm Ctherine Meusurer, Deprtment Mthemtik, Universität Hmur work with John W Brrett (in proress)

Motivtion Turev-Viro invrint teories, invrints o 3-mniolds, representtion theor o Hop lers,... stte sum models o (3d) quntum rvit topoloil quntum ield theor onorml ield theor, hiher ue theor losed trinulted mniold omple numer invrint under hne o trinultion trinulted mniold with oundr mp etween Hilert spes ssoited with oundr omponents phsil interprettion (TQT, quntum rvit): trnsition mplitudes etween eometries prolem otinin oservles prtil results or speii ses / ontet o quntum rvit so r: no enerl results or ormlism underlin mthemtil strutures?

Contents 1. enerlised Turev Viro models 2. Ide: oservles rom hiher teories 3. Cteor dt or oservles: SphCt 4. Deinition o the model 5. Evlution nd oservles 6. Reltion to Reshetikhin-Turev-Witten invrints 7. Outlook nd onlusions

1. enerlised Turev-Viro models [Turev, Viro] [Brrett, Westur] invrints o pieewise liner mniolds rom representtion theor o U q (su(2)) t root o unit enerlistion to non-deenerte semisimple spheril teories non-deenerte semisimple spheril teories [Brrett, Westur] non-deenerte pivotl usion teor in whih tr L tr R monoidl teor with strit duls: monoidl teor (C,, e) α β α α β toether with ontrvrint strit tensor untor : C C op, 1 C pivotl: olletion o morphisms ɛ : e (oevlution) or ll ojets whih stis - (α 1 ) ɛ (1 α ) ɛ omptiilit with morphisms - ɛ z (1 ɛ z 1 ) ɛ omptiilit with tensor produt ɛ (1 ɛ ) (ɛ 1 )1 - α α* z α* α

spheril: riht- nd let- tre ree tr L (α) ɛ (1 α) ɛ tr R (α) ɛ (α 1 ) ɛ α α tr L (α) tr R (α) non-deenerte usion teor: - End(e) C - Hom(, ) inite-dimensionl vetor spe over - : C C C, : C C op re C-(i)liner - pirin Hom(, ) Hom(, ) C, (α, β) tr(α β) is non-deenerte - initeness: the set o isomorphism equivlene lsses o simple ojets is inite C J Hom(,) Hom(,) - semisimpliit: there eists set J o non-trivil simple ( End() C ) ojets suh tht Hom(, ) Hom(, ) Hom(, ) is vetor spe isomorphism J enerlise rep. theor o q-deormed universl envelopin lers t roots o unit uildin loks o (enerlised) Turev-Viro invrint

enerlised Turev-Viro model [Turev, Viro] [Brrett, Westur] invrints o pieewise liner 3-mniolds rom non-de. semisimple spheril teories inredients trinulted 3-mniold M non-deenerte inite semisimple spheril teories dt (lellin) oriented edes simple ojets (reversed ede dul ojet) oriented trinles morphisms etween simple ojets t oundr (reversed orienttion dul morphism) d δ β tetrhedron mplitude α oriented tetrhedr 6j smol γ { } : Hom(, ) Hom(, d) Hom(, ) Hom( d, ) C d α β γ δ tr (δ (γ 1) (1 β) α) γ α : α δ β mplitude o lelled trinultion lelled trinultion mplitude Z(M, l) oriented tetrhedr t { } t t t d t t t

Turev Viro invrint C(M) K v K irreps dim q () 2 Z(M, l) oriented tetrhedr t { } t t t d t t t mplitude or trinultion nd lellin q-dimension dim q () tr(id ) e sum over ssinments o simple ojets to edes l:e e Z(M, l) dim q ( e ) losed trinulted 3-mniold M omple numer C(M) deines invrint o pieewise liner 3-mniolds: trinultions relted inite sequenes o Phner moves C(M) invrint under Phner moves h d j i h,i,j,k k d k h k i d j h i d j 1-4 move orthoonlit o 6j smols 2-3 move Biedenhrn Elliot reltion or mniolds with oundr: C(M) depends onl on dt on oundr

2. Ide: Oservles rom hiher teories phsil interprettion topoloil quntum ield theor, quntum rvit Turev-Viro model: quntum theor o Euliden 3d rvit with positive osmoloil onstnt interprettion o C(M) s stte sum (~ sttistil phsis models, disrete pth interl) M 2 M 1 question: oservles? dt t oundr M : phsil sttes (Hilert spe) Turev-Viro invrint: deines trnsition mplitudes, inner produt H M2 Hom(, ) lelled trinles () o M 2 H M1 Hom(, ) lelled trinles () o M 1 M M 1 M 2 nivel: oservles s untions o model dt nd dditionl prmeters epettion vlue insertion into stte sum O K v O(M, l)z(m, l) C(M) l:e e J e dim q ( e ) C(M) :HM 1 H M2 C φ ψ φ, ψ

prolem need dditionl dt / prmeters to deine oservles whih dt? prtil results: or U q (su(2)) inlusion o prtiles in spin om models Brrett, ri-isls, ri Mrtins reidel, Loupre, irirn, Livine... enerl pttern? enerl deinition? underlin mthemtil strutures? reltion to Reshetikhin-Turev-Witten invrints (invrints o oloured rion rphs)? ide: oservles rom hiher teories k m l phsil interprettion: oservles s deets in stte sum model α α d enerlised Turev-Viro model model vi luin individul lelled tetrhedr luin ondition: ojets nd morphisms on shred es mth ide: rel luin onditions in ontrolled w vi hiher teor theor

reled luin onditions ide: interpret spheril teor s 2-teor with sinle ojet onsider ssoited suteor o 2-Ct luin tetrhedr t es ojets nd morphisms on shred es relted untors : C C (1-morphisms in 2-Ct) k l () θ m (α) () () α β d luin tetrhedr round n ede onsisten ondition: or eh ede: pseudonturl trnsormtion etween ssoited untors ν : H (2-morphisms in 2-Ct) luin tetrhedr round verte onsisten ondition: or eh verte modiition etween ssoited pseudonturl trnsormtions Φ: σ τ µ ν id (3-morphisms in 2-Ct) M τ : L HM () H () H() L ν : H µ : L K K σ : M K

3. Cteor dt or oservles: SphCt need: omptiilit with model dt (non-deenerte semisimple spheril teor) untors, pseudonturl trnsormtions, modiitions orm r-teor with dulit opertions: SphCt SphCt otined rom r teor 2-Ct restrition to 2-teories with sinle ojet MonCt imposin omptiilit with struture o spheril teor SphCt ojets: spheril teories C (2-teories with sinle ojet) 1-morphisms: spheril untors : C D strit tensor untors etween spheril teories (α β) (α) (β) (e C )e D omptile with dulit (α ) (α) (ɛ )ɛ () rphil representtion: reions in 2d dirms () () () ()

2-morphisms spheril trnsormtions ν : etween spheril untors, : C D pseudonturl trnsormtions: ν () ν ojet ν o D toether with olletion o isomorphisms ν : ν () () ν tht re () () ν spheril ondition: ν () () ν () ν nturl ((α) 1 ν ) ν ν z (1 ν (α)) omptile with unit ν e 1 ν omptile with tensor produt ν z (1 () ν z ) (ν 1 (z) ) ν () () () () () () ν ν ν () ν () () () () ν () () ν () ν 3-morphisms modiitions Φ: ν µ etween spheril trnsormtions ν, µ : ν μ Φ ν () Φ μ () μ ν () Φ () μ μ morphisms Φ: ν µ tht ommute with morphisms ν,µ (1 () Φ) µ ν (Φ 1 () )

produt opertions r produt: omposition o spheril untors : C D : C E : D E omposition o spheril untors with spheril trnsormtions nd modiitions ν : H(ν) Hν : H H νk : K K ν H H (Hν) H(ν ) K K, : C D (νk) ν K() H(Φ) H : D E Φ K : B C H(μ) horizontl omposition o spheril trnsormtions nd modiitions µ, ν : π ν π µ : H ρ, π : H H (π µ) (π 1 µ ) (1 π µ ) Φ: ν µ Ψ Φ Ψ: π ρ Ψ Φ: π ν ρ µ ρ μ Ψ Φ (1 π Φ) (Ψ 1 µ ) (Ψ 1 ν ) (1 ρ Φ) μ (vertil) omposition o modiitions µ, ν, ρ : Φ: µ ρ Ψ: ν µ Φ Ψ ν μ Ψ Φ: ν ρ ρ

tensortor ρ H(ν) H or spheril trnsormtions ν :, invertile modiition σ ν,µ :(ρ) (Hν) (Kν) (ρ ) ρ : H K K H K K(ν) ρ ommutes with modiitions K ρ H K K(μ) H(μ) H(ν) H(Φ) ρ H ρ H K K(ν) K(Φ) K(μ) K H(ν) H ρ stisies enerlised YBE K(ρ) KN (μ) HM KM ν K(ρ) (μ) KM HM (μ) KN HM KM H(ρ) K(ρ) HN ν HM HN KN KN HM (μ) KN ν (μ) HN KN H(ρ) ν (μ) H(ρ)

dulit opertions dt rom SphCt to lel oriented edes nd es need dulit opertions or reversin orienttion strit untor o r teories *: SphCt SphCt vi dulit in spheril teor - trivil on spheril untors: - tion on spheril trnsormtions: ν : ν : (ν ) (ν ) - tion on modiitions: Φ: ν µ Φ : µ ν **1, ontrvrint with respet to horizontl nd vertil omposition spheril ondition morphisms ɛ deine modiition I ν :1 ν ν : e ν ν ν ν identities: restrition to: μ ν non-deenerte spheril teories invertile spheril untors H wek untor o r teories #: SphCt SphCt - tion on spheril untors: # 1 - tion on spheril trnsormtions ν : : ν # # ν # - tion on modiitions Φ: ν µ, ν, µ : : Φ # # Φ # ν ν ν ν ρ Φ Φ pirin o morphisms in spheril teories preserved tr D ( (α) (β)) tr C (α β) ontrvrint with respet to r produt nd horizontl omposition dirms: olds in plnes (invertiilit o untors olds nd usps re trivil!) omptiilit identit: # # 1 ν ρ ν

4. Deinition o the model dt or oservles oriented e (trinle) spheril untor : C C (reversed orienttion untor # ) µ H I oriented ede + hoie o djent tetrhedron spheril trnsormtion rom untors o djent es to identit µ : # HIJ # 1 C (reversed orienttion dul spheril trnsormtion µ :1 C # HIJ # ) J verte + hoie o miml tree ( li orderin o inident edes) μ2 μ3 μ4 + hoie o inident tetrhedron ( liner orderin o inident edes) μ1 μ5 modiition etween spheril trnsormtions o inident edes Φ: µ 1 (µ 2 1 )... (µ n n 1 2 1 ) 1 1C μ7 μ6

prolem: how to inorporte dt or oservles into trinultion? ide reine trinultion: onsider 2nd derived omple (vi rentri sudivisions) rentri sudivision o tetrhedron 2nd derived omple o tetrhedron deomposition o M in polhedr ssoited with verties, edes, trinles nd tetrhedr tetrhedron e ede verte

Lellin with dt intrinsi dt oservle dt e j H ede tetrhedron () h α i (i) I J () μ () w n m ρ Ψ (h) j h α Θ μ i Σ z l k z spheril teor C SphCt model without oservles deines oservles e dt simple ojets,, in spheril teor C spheril trnsormtions 1 C 1 C (with simple ojets h,i,j) morphism α in spheril teor C spheril untor : C C ede dt spheril trnsormtion µ : H # I # J 1 C miml tree tetrhedron dt 4 modiitions verte dt modiition Φ: e v ρ Φ µ e id verte

5. Evlution nd oservles ormultion in terms o dirms dt ssined to polhedr dirms or SphCt nd spheril teor v w u () μ H() H () Φ t H() h h s z w w r α Θ j i j i h h v u t s w r z z tetrhedron: omposition lon shred edes losed strin dirm lelled tetrhedron t Z(t, l) C stte sum C(M, l Spht )K v lellins with intrinsi dt oriented tetrhedr t Z(t, l) oriented edes e dim q ( e )

evlution sum over lellins with intrinsi dt in interior usin identities (dirms) or SphCt nd or spheril teor stte sum or three-ll B 3 iven intrinsi dt on oundr oservle dt in interior nd on oundr evlution projetion o interior dt on oundr strin dirm or SphCt nd spheril teor z u v w h p r k s K H o t d stte sum or S 3 iven oservle dt in interior evlution projetion o interior dt on plne p o strin dirm or SphCt z invrint o rph in pieewise liner 3-mniold invrint under Phner moves whih do not involve edes deorted with oservle dt nd oundr u w r s t q

6. Reltion to Reshetikhin-Turev-Witten invrints Chern-Simons theor with ue roup H H (e: Euliden 3d rvit with Λ>0) TV invrints or U q (h) oservles: strin dirms or r teor ssoited with U q (h) quntistion C(M) TV C RT W (M) 2? RTW invrints or D(U q (h)) U q (h) U q (h) oservles: knot invrints or Drinel d doule D(U q (h)) question: reltion o oservles to RTW invrints (knot invrints)? reltion etween representtion teor o Hop ler A nd o Drinel d doule D(A) Hop ler A Drinel d doule onstrution qusitrinulr Hop ler D(A) in.dim.reps in.dim.reps monoidl teor C with duls enter onstrution rided monoidl teor with duls Z(C)

ide: onsider model with ll untors trivil Spht redues to enter Z(C) dirm omponents omposition ridin spheril trnsormtions ojets in Z(C) modiitions morphisms in Z(C) identities oservles z z z model with trivil untors on S 3 oservles: losed strin dirms or Z(C) i ll modiitions in dirm ridins link nd knot invrints or Z(C) otin RTW invrints or Z(C) s speil se rom TV model with oservles or C z Yn Bter Eqution z

7. Outlook nd onlusions oservles or enerlised Turev Viro models ide: rel luin onditions or tetrhedr deortion o model with dt rom r teor SphCt es spheril untors edes spheril trnsormtions verties modiitions deines invrints o rphs emedded in pieewise liner mniolds onsistent nd enerl notion o oservles or 3d stte sum models reover Witten-Reshetikhin-Turev invrints open questions pplitions to onrete ses ( U q (su(2)), inite roups,...) interprettion in ontet o quntum rvit (rvittionl intertion o point prtiles?)