Non-Covalent Interactions in the Crystal Structure of Methyl 4-Hydroxy-3-Nitrobenzoate

Similar documents
= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

,

= (3) V = (4) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = 1.

metal-organic compounds

metal-organic compounds

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 92 parameters

organic papers Malonamide: an orthorhombic polymorph Comment

organic papers Acetone (2,6-dichlorobenzoyl)hydrazone: chains of p-stacked hydrogen-bonded dimers Comment Experimental

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1)

metal-organic compounds

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement

(+-)-3-Carboxy-2-(imidazol-3-ium-1-yl)- propanoate

Experimental. Crystal data. C 18 H 22 N 4 O 6 M r = Monoclinic, P2=n a = (5) Å b = (4) Å c = (5) Å = 104.

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Prakash S Nayak, B. Narayana, Jerry P. Jasinski, H. S. Yathirajan and Manpreet Kaur

electronic reprint 2-Hydroxy-3-methoxybenzaldehyde (o-vanillin) revisited David Shin and Peter Müller

4-(4-Hydroxymethyl-1H-1,2,3-triazol-1-yl)benzoic acid

metal-organic compounds

Synthesis and structural characterization of homophthalic acid and 4,4-bipyridine

Z =8 Mo K radiation = 0.35 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

ion, as obtained from a search of the Cambridge Structural database (CSD), December 2013.

metal-organic compounds

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

Validation of Experimental Crystal Structures

= (1) V = (12) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Supporting Information

Synthesis and Crystal Structure Analysis of Ethyl-4-(4- acetoxy-phenyl)-3-acetyl-6-methyl-2-thioxo-1,2,3,4- tetrahydro-pyrimidine-5-carboxylate

Halogen bonding of N-bromosuccinimide by grinding

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Crystal structure of 4-p-hydroxyphenyl-2,2,4-trimethyl-7,8- benzo thiachroman: a fused-ring counterpart of thia-dianin's compound.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Supporting Information Palladium-catalyzed, ortho-selective C-H halogenation of benzyl nitriles, aryl Weinreb amides and anilides.

Stabilization of a Reactive Polynuclear Silver Carbide Cluster through the Encapsulation within Supramolecular Cage

A two-dimensional Cd II coordination polymer: poly[diaqua[l 3-5,6-bis(pyridin-2-yl)pyrazine-2,3- dicarboxylato-j 5 O 2 :O 3 :O 3,N 4,N 5 ]cadmium]

Supporting Information. Can Melting Point Trends Help Us Develop New Tools to Control the Crystal Packing of Weakly Interacting Ions?

metal-organic compounds

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Supporting Information for the Article Entitled

Supporting Information

3-methoxyanilinium 3-carboxy-4-hydroxybenzenesulfonate dihydrate.

metal-organic compounds

metal-organic compounds

metal-organic compounds

2-Methoxy-1-methyl-4-nitro-1H-imidazole

A low-temperature refinement of tris [N,N'-bis (2-hydroxy ethyl)dithio carbamato-[kappa]^[2]s,s']anti mony(iii)

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 245 parameters 2 restraints

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Department of Chemistry, University of Basel, St. Johanns-Ring 19, Spitalstrasse 51, and Klingelbergstrasse 80, CH-4056 Basel, Switzerland

Supporting Information

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Supporting information. for. isatins and α-amino acids

Department of Chemistry, Tianjin University, Tianjin , P. R. China Tel:

organic papers 2-Iodo-4-nitro-N-(trifluoroacetyl)aniline: sheets built from iodo nitro and nitro nitro interactions

Hydrophobic Ionic Liquids with Strongly Coordinating Anions

Crystal structure of DL-Tryptophan at 173K

metal-organic compounds

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling

Ethylenediaminium pyridine-2,5-dicarboxylate dihydrate

Supporting Information

Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity

Supplemental Information

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound

Supporting Information

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Acta Crystallographica. Section C: Crystal Structure Communications

Supplementary Information

and H 2 Scotland, UK Reprint requests to Prof. Dr. V.T. Yilmaz.

metal-organic compounds

metal-organic compounds

Supporting Information

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

2. Experimental Crystal data

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

= 0.09 mm 1 T = 294 (2) K. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Supporting Information

Diammonium biphenyl-4,4'-disulfonate. Author. Published. Journal Title DOI. Copyright Statement. Downloaded from. Link to published version

Crystal structure analysis of N,2-diphenylacetamide

metal-organic compounds

Sodium 3,5-dinitrobenzoate

Supporting Information

metal-organic compounds

Synthesis of two novel indolo[3,2-b]carbazole derivatives with aggregation-enhanced emission property

Chapter 7: Photodimerization of the α -Polymorph of ortho-ethoxytrans-cinnamic acid in the Solid-State. Part1: Monitoring the Reaction at 293 K 1

metal-organic compounds

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

From Double-Shelled Grids to Supramolecular Frameworks

metal-organic compounds

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Synthesis and Structure of the Cadmium (II) Complex: [Cd(C 5 H 5 N) 2 (S 2 CO-n-C 4 H 9 ) 2 ]

Crystal structure of zwitterionic 4-(ammoniomethyl)benzoate: a simple molecule giving rise to a complex supramolecular structure

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

Supplementary Material (ESI) for CrystEngComm. An ideal metal-organic rhombic dodecahedron for highly efficient

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Supporting Information

molecules ISSN

New Journal of Chemistry. Synthesis and mechanism of novel fluorescent coumarindihydropyrimidinone. multicomponent reaction.

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Transcription:

Crystals 2012, 2, 669-674; doi:10.3390/cryst2020669 Communication OPEN ACCESS crystals ISSN 2073-4352 www.mdpi.com/journal/crystals Non-Covalent Interactions in the Crystal Structure of Methyl 4-Hydroxy-3-Nitrobenzoate Xin-Ling Fu 1, *, Jiang-Sheng Li 2 and Jim Simpson 3 1 2 3 Changsha Medical University, Changsha 410219, China School of Chemistry & Biological Engineering, Changsha University of Science and Technology, Changsha 410114, China; E-Mail: js_li@yahoo.com.cn Department of Chemistry, University of Otago, P. O. Box 56, Dunedin 9054, New Zealand; E-Mail: jsimpson@alkali.otago.ac.nz * Author to whom correspondence should be addressed; E-Mail: xinlingfu@gmail.com; Tel.: +86-731-85258733; Fax: +86-731-85258733. Received: 18 April 2012; in revised form: 22 May 2012 / Accepted: 1 June 2012 / Published: 12 June 2012 Abstract: Methyl 4-hydroxy-3-nitrobenzoate, (I), C 8 H 7 NO 5, crystallizes with two unique molecules, A and B, in the asymmetric unit of the triclinic unit cell. The space group was assigned as P-1, with lattice parameters a = 0.72831(15), b = 1.0522(2), c = 1.1410(2) nm, α = 83.38(3), β = 80.83(3), γ = 82.02(3), Z = 4, V = 0.8510(3) nm 3, M r = 197.15, D c = 1.539 g/m 3, µ= 0.131 mm 1, F(000) = 408, R = 0.1002 and wr = 0.2519. In the crystal structure, 12 hydrogen bonding and two π-stacking interactions link the molecules into infinite stacked sheets parallel to (101). Keywords: hydroxynitrobenzoate ester; crystal structure; noncovalent interactions; hydrogen bonding; π-stacking 1. Introduction Weak noncovalent interactions play a significant role in biological or biomimetic systems as well as in artificial supramolecular structures. They can stabilize the three-dimensional structure of large molecules, such as proteins and nucleic acids, and are involved in many biological processes [1]. Also, the noncovalent bond is the dominant contact between supramolecules in supramolecular chemistry [2]. These forces commonly include both classical and non-classical hydrogen bonding, π-π and C H π

Crystals 2012, 2 670 interactions together with hydrophobic forces, van der Waals interactions, and electrostatic effects [2]. The study of these non-covalent interactions is crucial to understanding the structures of organic crystals, drug binding, and many biological processes. Experimentally, these interactions are often seen in complex environments, where it can be difficult to pick out only the interaction of interest. Theoretically, they feature shallow potential energy surfaces and require very accurate quantum-mechanical modeling for reliable predictive results. In the structure of methyl 4-hydroxy-3-nitrobenzoate, C 8 H 7 NO 5 (I), determined by single crystal X-ray analysis, we examine the variety of non-covalent interactions that lead to the overall stability of the crystal structure. 2. Results and Discussion Methyl 4-hydroxy-3-nitrobenzoate (I) crystallizes with two unique molecules in the asymmetric unit of the triclinic unit cell (Figure 1). The two molecules are closely similar and overlay with an rms deviation of 0.0193 Å and a maximum deviation of 0.0398 Å [3]. Both the N1 O1 O2 nitro and C7 O4 O5 C8 methyl ester substituents lie close to the planes of the benzene rings in both molecules, with dihedral angles between the planes of 6.1 (6) and 10.5 (3) in molecule A and 6.2 (7) and 10.4 (2) in molecule B. Intramolecular O3A H3A O2A and O3B H3B O2B hydrogen bonds, Table 1, generate planar S(6) rings [4]. Rms deviations from these ring planes are 0.035Å for molecule A and 0.023Å for molecule B suggesting that these contacts contribute to the overall planarity of both molecules. A search of the Cambridge Database [5] reveals two isomeric forms of (I), namely methyl 2-hydroxy-3-nitrobenzoate (II) [6] and methyl 2-hydroxy-5-nitrobenzoate (III) [7] together with the closely related methyl 2-hydroxy-3,5-dinitrobenzoate (IV) [8]. In all three similar structures, intramolecular O H O hydrogen bonds involve the OH substituent and either a nitro or carbonyl oxygen and ensure that the molecules adopt reasonably planar conformations. Interestingly, for (II) and (IV), where a choice of O acceptor atom is possible due to the relative placements of the nitro and methyl ester substituents, the carbonyl O atom of the methyl ester is the preferred acceptor. In addition, the structures of a number of derivatives in which the phenol H atom has been replaced to form alkyl [9] and aryl [10,11] ether derivatives have also been reported. Figure 1. The asymmetric unit of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level, and intramolecular hydrogen bonds are drawn as dashed lines in molecules A and B. A B

Crystals 2012, 2 671 Table 1. Hydrogen-bond geometries for compound I. Bond D H H A D A D H A O3A H3A O2A 0.828(11) 1.94(4) 2.585 (5) 134 (5) O3B H3B O2B 0.831(11) 1.91 (4) 2.584 (5) 137 (5) C8A H8AB O3A i 0.96 2.62 3.372 (7) 136 C8A H8AA O3A ii 0.96 2.61 3.441 (7) 145 C4A H4A O4B iii 0.93 2.41 3.136 (7) 135 O3A H3A O1B iv 0.828 (11) 2.30 (5) 2.896 (5) 129 (5) C1A H1A O2B v 0.93 2.56 3.483 (6) 174 C4B H4B O4A vi 0.93 2.49 3.327 (6) 150 C1B H1B O2A iv 0.93 2.59 3.509 (6) 168 O3B H3B O1A v 0.831 (11) 2.28 (4) 2.863 (5) 128 (5) C8B H8BB O3B vii 0.96 2.50 3.282 (6) 139 C8B H8BA O3B viii 0.96 2.70 3.475 (7) 139 Symmetry codes: i x, y+1, z; ii x, y + 1, z + 1; iii x, y, z + 2; iv x + 1, y, z + 1; v x + 1, y + 1, z + 1; vi x, y + 1, z + 2; vii x, y 1, z; viii x + 1, y, z + 2. In the crystal structure two sets of centrosymmetric dimers form through O3A H3A O1B hydrogen bonds together with C1B H1B O2A interactions and O3B H3B O1A and C1A H1A O2B contacts (Figure 2). The formation of each dimer generates R 2 2 (11) rings [4]. Additional weak C H O contacts link these dimers into sheets in the bc plane. π-stacking interactions are also found between the aromatic rings of adjacent molecules, linking them in a head to tail fashion (Figure 3). Centroid to centroid distances are 3.713 (3) for the A and 3.632 (3) for the B molecules. These interactions are augmented by additional weak inversion related C8A H8AA O3A and C8B H8BA O3B contacts forming AA and BB dimers and generating R 2 2(18) rings. The two sets of dimers combine to form sheets parallel to the (101) plane (Figure 4). Similar sheet formation is also common to the crystal structures of the isomeric forms (II) and (III) [6,7]; significant C H O hydrogen bonds are found in both structures forming layers that are further connected by weak π π contacts. Figure 2. Centrosymmetric dimers forming sheets in the bc plane with hydrogen bonds drawn as dashed lines.

Crystals 2012, 2 672 Figure 3. Centrosymmetric dimers formed by π π contacts (dotted lines) and weak C H O interactions dashed lines. The red spheres represent centroids of the benzene rings in the A molecules and the blue sphere those in the B molecules. B B A A Figure 4. Crystal packing for (I) viewed along the b axis with hydrogen bonds drawn as dashed lines. 3. Experimental Section Synthesis of methyl 4-hydroxy-3-nitrobenzoate (I). Cerium (IV) ammonium nitrate (CAN) (10.96 g, 20 mmol) was added to a mixture of methyl 4-hydroxybenzoate (1.5 g, 10 mmol) and NaHCO 3 (3.5 g) in anhydrous MeCN (60 ml) at room temperature while stirring. The reaction mixture was then stirred at room temperature for a further 30 min. The resulting mixture was filtered, washed with water, and extracted with ethyl acetate (3 25 ml). The combined extracts were dried over anhydrous Na 2 SO 4, and the solvent removed to furnish the title compound (70%). m.p. 74 76 C. 1 H NMR (DMSO-d 6, 400 MHz, ppm) δ 8.39 (d, J = 1.7 Hz, 1 H), 8.06 (dd, J = 8.7 Hz, 1.7 Hz, 1 H), 7.23 (dd, J = 8.7 Hz, 1.7 Hz, 1 H), 3.85 (s, 3 H). 13 C NMR (DMSO-d 6,100 MHz, ppm) 165.4, 156.7, 137.5, 136.0, 127.6, 121.2, 120.2, 53.0. LC/MS: m/z 196 ([M H] ). Anal. calcd (%). for C 8 H 7 NO 5 : C 48.74, H 3.58, N 7.10. Found (%): C 48.66, H 3.51, N 7.03. Colorless plate-like crystals of (I) were grown from

Crystals 2012, 2 673 a solution of petroleum ether and ethyl acetate (1:1, v/v) by slow natural evaporation at room temperature. X-ray Data Collection and Structure Solution. A single crystal of (I) with dimensions 0.20 mm 0.18 mm 0.04 mm was selected for data collection performed on a Rigaku Saturn CCD area detector (λ = 0.71073 Å) [12] using the ω-2θ scan mode. A total of 5670 reflections were collected in the range 1.8 θ 26.1. Of these 2959 were independent (R int = 0.129), and 1408 were considered to be observed with I > 2σ(I) and used in the succeeding refinement. The structure was solved by direct methods and refined on F 2 by full matrix least-squares using the SHELXTL program [13]. The H3A and H3B atoms of the hydroxy groups were located in a difference Fourier map and their coordinates refined with U iso = 1.5U eq (O). All other H-atoms were refined using a riding model with d(c H) = 0.93Å, U iso =1.2U eq (C) for aromatic and 0.96Å, U iso = 1.5U eq (C) for CH 3 H atoms. Goodness-of-fit on F 2 is 0.951. R = 0.1003 and wr2 = 0.2519, with (w = 1/[σ 2 (F o 2 ) + (0.0965P) 2 ], where P = (F o 2 + 2F c 2 )/3). ( ρ) max = 0.43, ( ρ) min = 0.45 e/å 3. The crystal was very weakly diffracting with less than half of the measured reflections with I > 2σ(I) and a high R(int). In addition, anisotropic refinement led to elongations of displacement ellipsoids for some atoms and restraints were used in order to minimise these effects. The final residuals are therefore somewhat higher than normal as a result, but this does not markedly affect the integrity of the overall structure. 4. Conclusions The molecular and crystal structure of methyl 4-hydroxy-3-nitrobenzoate (I) is reported. The structure is stabilised by an extensive set of twelve hydrogen bonding and two π-stacking interactions. Acknowledgments Financial support from the Scientific Research Fund of Hunan Provincial Education Department (10B012 & 10W017) is gratefully acknowledged. References 1. Lodish, H.; Berk, A.; Kaiser, C.A.; Krieger, M.; Scott, M.P.; Bretscher, A.; Ploegh, H.; Matsudaira, P. Molecular Cell Biology, 6th ed.; W.H. Freeman Publishers: New York, NY, USA, 2007; pp. 29 56. 2. Steed, J.W.; Atwood, J.L. Supramolecular Chemistry, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 27 36. 3. Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0-New features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008, 41, 466 470. 4. Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.-L. Patterns in hydrogen bonding: Functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555 1573. 5. Allen, F.H. The Cambridge structural database: A quarter of a million crystal structures and rising. Acta Cryst. 2002, B58, 380 388.

Crystals 2012, 2 674 6. Liu, Y.-Z.; Li, Y.-X.; Zhang, L.; Li, X. Methyl 2-hydroxy-3-nitrobenzoate. Acta Cryst. 2009, E65, doi:10.1107/s1600536809024301. 7 Jin, L.-F.; Xiao, F.-P. Methyl 5-nitrosalicylate. Acta Cryst. 2005, E61, o1107 o1108. 8 Jin, L.-F.; Xiao, F.-P.; Wang, C.-G. Methyl 3,5-dinitrosalicylate. Acta Cryst. 2004, E60, o1593 o1594. 9. Zhao, S.-Y.; Mou, S.-W.; Zhao, S.-H.; Qin, W.-M. Methyl 3-nitro-4-propoxybenzoate. Acta Cryst. 2007, E63, doi:10.1107/s1600536807028619. 10. Gopal, R.; Chandler, W.D.; Robertson, B.E. Conformations of bridged diphenyls. XV. Crystal structure of (4-carbomethoxy-2-nitrophenoxy)benzene and the effect of intramolecular interactions in nitro substituents. Can. J. Chem. 1980, 58, 658 663. 11. Van der Heijden, S.P.N.; Griffith, E.A.H.; Chandler, W.D.; Robertson, B.E. Conformations of bridged diphenyls. VII. Crystal structure of 2-(4 -Carbomethoxy-2 -nitrophenoxy)-1,3,5- trimethylbenzene. Can. J. Chem. 1975, 53, 2084 2092. 12. Rigaku/MSC. CrystalClear; Rigaku/MSC Inc.: The Woodlands, TX, USA, 2005. 13. Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112 122. 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).