Solar Telescopes II. specific aspects of solar telescopes

Similar documents
solar telescopes Solar Physics course lecture 5 Feb Frans Snik BBL 707

Astronomy 203 practice final examination

METIS- ESA Solar Orbiter Mission: internal straylight analysis

AST 101 Intro to Astronomy: Stars & Galaxies

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO

Lecture 9: Speckle Interferometry. Full-Aperture Interferometry. Labeyrie Technique. Knox-Thompson Technique. Bispectrum Technique

Telescopes (Chapter 6)

Optics and Telescope. Chapter Six

EXPOSURE TIME ESTIMATION

Ground- and Space-Based Telescopes. Dr. Vithal Tilvi

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO

Why Use a Telescope?

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Multi-Application Solar Telescope Preliminary results

Phys102 Lecture Diffraction of Light

Astronomy. Optics and Telescopes

Telescopes. Astronomy 320 Wednesday, February 14, 2018

How do they work? Chapter 5

Optical Instruments. Chapter 25. Simple Magnifier. Clicker 1. The Size of a Magnified Image. Angular Magnification 4/12/2011

Light and Telescopes

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley

Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee

ASTR 1120 General Astronomy: Stars & Galaxies

Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies !

September 9, Wednesday 3. Tools for Solar Observations-I

A Question. Simple Magnifier. Magnification by a Lens 11/29/2011. The last lecture

2.71. Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET

September 14, Monday 4. Tools for Solar Observations-II

TIE-43: Optical Properties of ZERODUR

Telescopes. Optical Telescope Design. Reflecting Telescope

Topics for Today. Clicker Q: Radio Waves. Radios. Discussion of how do ROTATING STARS yield Doppler-broadened spectral emission lines

Lecture 2. September 13, 2018 Coordinates, Telescopes and Observing

Properties of Thermal Radiation

More Optical Telescopes

Techniques for direct imaging of exoplanets

Astronomical Techniques I

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

ASTR-1010: Astronomy I Course Notes Section VI

Large FOV Mobile E-O Telescope for Searching and Tracking Low-earth Orbit Micro-satellites and Space Debris

Telescopes: Portals of Discovery

Some Issues of Creation of Wide-Field Telescopes for Monitoring Satellites and Space Debris in High Earth Orbits. Maui, Hawaii, April 2010

Astronomy 114. Lecture 26: Telescopes. Martin D. Weinberg. UMass/Astronomy Department

Application of Precision Deformable Mirrors to Space Astronomy

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

3/7/2018. Light and Telescope. PHYS 1411 Introduction to Astronomy. Topics for Today s class. What is a Telescopes?

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Universe. Chapter 6. Optics and Telescopes 8/12/2015. By reading this chapter, you will learn. Tenth Edition

Design and Correction of optical Systems

Telescopes, Observatories, Data Collection

AST 2010: Descriptive Astronomy EXAM 2 March 3, 2014

Light and motion. = v c

5. LIGHT MICROSCOPY Abbe s theory of imaging

Version 087 EX4 ditmire (58335) 1

Telescopes. Optical Telescope Design. Reflecting Telescope

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The table summarises some of the properties of Vesta, one of the largest objects in the asteroid belt between Mars and Jupiter.

Galilean telescopes use a diverging ocular placed closer to the objective lens than the focal length:

Prentice Hall EARTH SCIENCE

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition

Optics and Telescopes

CHAPTER IV INSTRUMENTATION: OPTICAL TELESCOPE

Talk about. Optical Telescopes and Instrumentation. by Christian Clemens

Real Telescopes & Cameras. Stephen Eikenberry 05 October 2017

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1

HMI Filter Calibration

PhysicsAndMathsTutor.com 1

Fig. 2 The image will be in focus everywhere. It's size changes based on the position of the focal plane.

Telescopes. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. Key Ideas:

Final Announcements. Lecture25 Telescopes. The Bending of Light. Parts of the Human Eye. Reading: Chapter 7. Turn in the homework#6 NOW.

Observing the Universe. Optical Instruments

III. ASTRONOMY TOOLS:

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

Astronomical Techniques

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point

Laboratory Exercise 7 MEASUREMENTS IN ASTRONOMY

High-Resolution Imagers

Telescopes. Telescopes Key Concepts. glass

Telescopes and Optical Systems

Lecture 6: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Hanle Effect. Outline

Webster Cash University of Colorado. X-ray Interferometry

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5

The Moon as a Platform for High Resolution Solar Imaging

How Light Beams Behave. Light and Telescopes Guiding Questions. Telescopes A refracting telescope uses a lens to concentrate incoming light at a focus

Center-to-limb Variation of Quiet Sun Intensity Contrasts. Alex Feller

What are the most important properties of a telescope? Chapter 6 Telescopes: Portals of Discovery. What are the two basic designs of telescopes?

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc.

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors

Part I. The Quad-Ridged Flared Horn

Observational Astronomy - Lecture 3 Telescopes and the Electromagnetic Spectrum

Achim Gandorfer Max Planck Institute for Solar System Research on behalf of the Sunrise Team. Solar-C science meeting, Takayama, Nov.

Tools of Astronomy: Telescopes

Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes

Designing a Space Telescope to Image Earth-like Planets

Lecture notes 5: Diffraction

Phys 531 Lecture 27 6 December 2005

MERIS US Workshop. Instrument Characterization Overview. Steven Delwart

Transcription:

Solar Telescopes II specific aspects of solar telescopes

we want to apply our knowledge obtained in the last lecture to understand the specific aspects of solar telescopes In this lecture

science drivers in solar observing Sun is the only star that can be studied in detail highest spatial resolution (angular resolution) in a relatively small FOV (limited number of detector (=resolution) elements) 10arcsec

Physics encoded in shape of spectral lines highest spectral resolution in narrow spectral range (quasi-monochromatic) Vasily Zakharov, PhD thesis

Optical parameters of solar telescopes: 1. Which focal length? typical scale of solar surface phenomena is on the order of 100km or smaller, which corresponds to an angular resolution of a fraction of arcsec! the typical size of a detector element (pixel) is 10µm required plate scale is therefore ~ 4 /mm effective focal length ~ 50m!

2. Which aperture is needed? From wave optics: The angular resolution of an optical system is principally limited by diffraction at the entrance aperture. The smallest resolvable angle on the sky is ~ ratio of wavelength to aperture Special case: circular clear aperture D: angular resolution is 1.22*λ/D ; in the visible (λ=500nm) 0.1arcsec resolution needs D=1m!

diffraction sets upper value of image sharpness classical view: diffraction at entrance aperture creates intensity pattern in focal plane (Airy disc); angular radius 1.22λ/D (for circular unobscured aperture) Airy pattern: point spread function PSF Diffraction limit

Resolving two point sources (double star in front of black sky) Rayleigh criterion: two point sources can be just barely distinguished if the peak of (Airy Star 1) is imaged at the first minimum of (Airy Star 2)

How to deal with extended objects? Sunrise / SuFI images

Resolution of a solar telescope Rayleigh criterion not adequate for Sun: extended object, there might be no point sources! We define resolution via the ability to image intensity contrast Modulation transfer function MTF object with intensity pattern of high contrast optical system measured intensity distribution with significantly reduced contrast

physical meaning of the MTF extended objects show contrast pattern that can be Fourier analysed in spatial frequencies low frequencies (=large scale structures) will be imaged through system without problem high frequencies will be more and more damped by diffraction (and aberrations) cut-off frequency: It is the frequency of a sinpattern, which is completely smeared by the optics to a uniform grey (amplitude of sin variation = 0) image. f limit = D/λ

How to see effect of MTF?

Siemens star (Sunrise SuFI)

MTF curves (circular, unobscured entrance apertures of different sizes) Hinode-size (D=50cm); Sunrise-size (D=1m) if both telescopes are perfect, the larger telescope will provide higher contrast images AT ALL SPATIAL FREQUENCIES!

advantages of the MTF representation MTFs can be multiplied! The optical performance of the system can be regarded as the product of the individual contributions: (seeing)*telescope*instrument*detector at a frequency corresponding to 1.22λ/D (Rayleigh diffraction limit for circular aperture) a perfect telescope transmits only ~10% of the original contrast! A CCD has an MTF of ~50% near the sampling frequency. The solar photosphere has typical rms contrasts of 15%... measured contrast at high frequencies very low! Compare to photon noise!!!

A diffraction limited optical system diffraction sets theoretical limit to image contrast geometrical optical aberrations also significantly reduce contrast!! optical systems are usally considered diffraction limited as long as the contributions of geometrical aberrations do not exceed the ones due to diffraction

Example: granulation contrast as seen by Hinode original (simulation) original degraded with realistic MTF Hinode image Danilovic et al., A&A 484, L17 L20 (2008)

Contrast killers Aberrations stray light not necessarily scattered light!! usually used term for every photon, which should not be in a detector pixel...regardless of the mechanism that brings it there! most severe: medium order aberrations, (seeing; only on ground), spectral leakage in high spectral resolution instruments)

Specific problems in solar observations

Stray light stray light decreases contrast (the minima of the Airy pattern are not zero anymore!) not a real problem for low-res observations in white light in quiet solar regions (bright target) serious problem in observations in a spectral line in a sunspot umbra (5% continuum intensity times 5% residual intensity in the line core!) see lecture on magnetographs dominating problem in coronographs (see lecture on magnetographs)

Stray light in solar telescopes In contrast to any non-solar telescope, the only light contamination source in solar physics is the object itself!!!!! You cannot avoid that all photons of all wavelengths from the whole solar disk enter the telescope!!

Straylight severeness How many parasitic photons can you afford in a pixel? Typically 1%, that s the typical photon noise anyway.. Now it depends on the following ratio: Number of photons that you expect in the pixel (target brightness * efficiency of your optical system) as compared to Number of photons that could potentially take a wrong route and end up in the pixel (total Sun brightness * straylight suppression capability of your system)

Example: Sunrise SuFI 313nm FoV 20 x40 : ~1xE-4 of solar disk 1px: ~1E-6 of FoV spectral band 1nm in UV: ~1xE-4 of full spectrum throughput ~1E-2 only 1 photon out of 1E16 in the system is a good one!!!! goal: parasitic photons < 1xE-2 relative straylight suppression factor of 1E-18 needed and local (near angle) smearing due to wave front aberrations NOT yet taken into account!!!!

How to do stray-light killing: the Gregory telescope with primary first used in Hainberg observatory Göttingen, then GCT Locarno field stop today: GREGOR, SUNRISE

Cassegrain vs. Gregory: hyperboloid ellipsoid

Cassegrain (1668) vs. Gregory (1663): hyperboloid F1, virtual F1, real F2, real ellipsoid F2, real

Advantage of the Gregory in the Gregory telescope the prime focus (primary solar image) is real here a first field stop (mirror with small hole) can be placed that takes out all photons coming from unused parts of the solar disk (typ. 99%)! side effect: takes also most of the energy away!

Sunrise prime field stop small hole, d=2.8mm solar image (d=2.5cm, P=1kW)

further measures place stops in every intermediate image and pupil, wherever possible! most famous example: Lyot Coronograph! telescope with field stop (occulter for disk) + reimager with real internal pupil image. Without further trick this thing does not work; Lyot placed a pupil stop in the internal pupil to get rid of the bright diffraction pattern occuring at the fully illuminated entrance aperture!

Straylight suppression in Sunrise SuFI/ISLiD Lyot (pupil) stops field stops

SuFI ctd. after wavelength selection light path must be light tight!

Some thermal considerations

Thermal problems of solar telescopes solar energy input not negligible (~1kw/m 2 ) is absorbed near telescope or in telescope: near telescope: local turbulence: ground seeing in telescope: mirror seeing can heat up optical system: performance decrease ( athermal optics ), destruction

Seeing: the enemy seeing is the dominant problem in ground based solar observations solutions: site selection: mountains on islands air knife: laminar flow along mirror evacuation: no air no problem? helium filling

1m Swedish Solar Telescope on La Palma (~2400m above sea level) since the dome is closed, this one seems to be a night time telescope.. (4.2m William Herschel) 50 cm Dutch open telescope

What is mirror seeing Excurs: Mirrors mirrors are coated with Al or protected silver residual absorption ~4-10% (of total Sunlight!) substrate: typ. ZERODUR, has high thermal resistance; deposited energy cannot be drained away from the mirror surface mirror surface will heat up, air becomes convectionally unstable turbulence refractive index of air depends on density air lenses in pupil plane

Seeing: the enemy seeing is the dominant problem in ground based solar observations solutions: site selection: mountains on islands air knife: laminar flow along mirror evacuation: no air no problem? helium filling

open telescopes DOT (Dutch Open Telescope) Experimental telescope open construction: wind avoids internal seeing Site: Observatorio de los Roque de los Muchachos, La Palma

Seeing: the enemy seeing is the dominant problem in ground based solar observations solutions: site selection: mountains on islands air knife: laminar flow along mirror evacuation: no air no problem? helium filling

evacuated telescopes SST (swedish solar telescope on La Palma) is an evacuated refractor objective lens serves as vacuum window internal optical path is seeing free 64.000$ question: WHY DOESN T THE ABSORPTION IN THE LENS (also a few %) POSE THE SAME PROBLEM AS IN A MIRROR TELESCOPE?

Dunn Solar Telescope, Sacramento Peak, New Mexico evacuated tube 120m

Seeing: the enemy seeing is the dominant problem in ground based solar observations solutions: careful site selection: mountains on islands tower telescopes to avoid ground turbulence air knife: laminar flow along mirror evacuation: no air no problem? helium filling

50cm SOLIS VSM Helium filled telescope entrance window thanks to Helium filling it does not have to withstand pressure difference!!

helium filled telescopes large vacuum windows must withstand enormous forces stress detoriates image quality and polarization properties ( stress induced birefringence, see lecture on magnetometry) solution: pressurize telescope with helium examples: THEMIS, SOLIS VSM

effects of helium very high thermal conductivity instantaneous equilibration of local temperature (density) inhomogeneities very low refractive index no (air) lenses In contrast to vacuum telescopes, the window is not subject to pressure difference reduced stress

Thermal effects on optical performance

What can happen? Temperature variations (esp. gradients) can have different effects on an optical component: change in position (thermal expansion/deformation of mechanical mounts, tube length) change in shape (thermal expansion of glass) change in refractive index ( thermal lensing, worst offender!)

What you can do minimize thermal effects by careful material choice and/or thermal stabilisation of your system design instrument as athermal system, which automatically compensates optical effects by careful combination of materials with different response to temperature counteract by (active) realignment/refocussing In most cases you need to do all of them!!

methods in building athermal optical systems material choice: Mirrors can be made from ZERODUR (Astrositall, ULE) with negligeable thermal expansion; refractive components cannot! lenses must change their position to compensate for the change in refractive power! lens mount must be made of a material with a well selected thermal expansion coefficient (CTE)

Athermal design using ZERODUR mirrors: Caveat since the mirrors will not change their properties, also the rest of the system must not change! DON T MAKE THE (COMMON) MISTAKE OF BUYING (MAKING) EXPENSIVE ZERODUR MIRRORS AND USING ALUMINUM AS THE TELESCOPE TUBE/OPTICAL BENCH! The expansion of the tube/bench will spoil your focus (or more)!

ZERODUR ctd. ZERODUR must be used in combination with low (ideally zero) CTE structures: carbon fiber (attention, anisotropic expansion coefficient!), or INVAR (steel, difficult to machine, extremely heavy!) If you cannot avoid materials with non-vanishing thermal expansion, choose a mirror material with a similar CTE; then the whole system will keep its shape factor! Example: OSIRIS on Rosetta: Mirrors and Structure from SiC!

athermal lens design lenses will change their refractive index and their shape! to keep the focus at right position the tube length must shrink...that would mean a negative CTE trick: Mount lens (or detector!) on thickness compensator:

with increasing temperature the focal length is reduced (since n increases with T) detector low CTE material (c.f. carbon fiber) high CTE material (plastic, aluminum) distance between lens and detector shrinks with increasing temperature thanks to the expansion of the red spacer

Example: SUNRISE

Sunrise telescope Grade 0 ZERODUR for main mirror (parabola, D=1m, f=2.42m) and secondary ellipsoid

Sunrise ctd. distance and parallelism of M1 and M2 are secured by athermal Serrurier structure composed of carbon fiber struts with almost zero CTE; expansion of central frame (made from steel) is compensated by aluminum adapters between steel frame and carbon fiber struts; the length of the aluminum piece is exactly calculated for optimum compensation!

Sunrise ctd. still, distance of M1 and M2 varies with elevation of telescope (which influences the overall temperature of the system) to compensate for this, M2 is mounted on a pecision translation stage for in-flight focus compensation between the coldest (-10 o C) and the warmest (-10 o C) situation M2 was moved by 0.1mm with a step size of 1 μm!

Sunrise telescope at MPS thickness compensators

Outlook currently design of the Polarimetric and Helioseismic Imager onboard Solar Orbiter due to strongly elliptical orbit around Sun (distance changes between 0.28 and 0.8 Au), temperature of instrument (telescope + interferometer) will change between -30 o C to +70 o C... clever thermo-mechano-optical system design needed