Further Results on Pair Sum Graphs

Similar documents
Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

The Equitable Dominating Graph

Further Results on Pair Sum Labeling of Trees

Iterative Methods of Order Four for Solving Nonlinear Equations

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

On the approximation of the constant of Napier

Independent Domination in Line Graphs

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Journal of Modern Applied Statistical Methods

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

k-difference cordial labeling of graphs

Derangements and Applications

PURE MATHEMATICS A-LEVEL PAPER 1

A Review of Complex Arithmetic

H2 Mathematics Arithmetic & Geometric Series ( )

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

International Journal of Mathematical Archive-6(5), 2015, Available online through ISSN

Some Results on E - Cordial Graphs

International Journal of Advanced and Applied Sciences

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE

1985 AP Calculus BC: Section I

In 1991 Fermat s Last Theorem Has Been Proved

k-equitable mean labeling

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Folding of Hyperbolic Manifolds

Odd-even sum labeling of some graphs

cycle that does not cross any edges (including its own), then it has at least

International Journal of Mathematical Archive-7(5), 2016, Available online through ISSN

Aotomorphic Functions And Fermat s Last Theorem(4)

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

On the Reformulated Zagreb Indices of Certain Nanostructures

Solutions to Homework 5

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

Steinberg s Conjecture is false

STIRLING'S 1 FORMULA AND ITS APPLICATION

Difference Cordial Labeling of Graphs Obtained from Double Snakes

Super Mean Labeling of Some Classes of Graphs

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

A Note on Chromatic Weak Dominating Sets in Graphs

Harmonic Mean Labeling for Some Special Graphs

k-remainder Cordial Graphs

Bayesian Economic Cost Plans II. The Average Outgoing Quality

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

A Simple Proof that e is Irrational

Limiting value of higher Mahler measure

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Absolutely Harmonious Labeling of Graphs

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Chapter 10. The singular integral Introducing S(n) and J(n)

Logarithms. Secondary Mathematics 3 Page 164 Jordan School District

Search sequence databases 3 10/25/2016

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

On the irreducibility of some polynomials in two variables

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

APPENDIX: STATISTICAL TOOLS

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

Week 3: Connected Subgraphs

Keywords- Weighted distributions, Transmuted distribution, Weibull distribution, Maximum likelihood method.

Combinatorial Networks Week 1, March 11-12

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

Sum divisor cordial labeling for star and ladder related graphs

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since

On spanning trees and cycles of multicolored point sets with few intersections

Restricted Factorial And A Remark On The Reduced Residue Classes

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

ASSERTION AND REASON

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list.

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Law of large numbers

Discrete Fourier Transform (DFT)

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Chapter Taylor Theorem Revisited

Linear Algebra Existence of the determinant. Expansion according to a row.

Correlation in tree The (ferromagnetic) Ising model

ROOT SQUARE MEAN GRAPHS OF ORDER 5

Probability & Statistics,

Final Exam Solutions

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

Reliability of time dependent stress-strength system for various distributions

1 Minimum Cut Problem

Ordinary Differential Equations

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Coupled Pendulums. Two normal modes.

Solution to 1223 The Evil Warden.

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

Transcription:

Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt of Mathmatis, Sri Paramakalyai Collg, Alwarkurihi, Idia Dpartmt of Mathmatis, St. Joh s Collg, Palayamottai, Idia Dpartmt of Mathmatis, Maomaiam Sudaraar Uivrsity, Tirulvli, Idia Email: porajmaths@idiatims.om, parthi68@rdiffmail.om, karthipyi9@yahoo.o.i Rivd Jauary, 0; rvisd Fbruary 9, 0; aptd Fbruary 6, 0 ABSTRACT Lt G b a pq, graph. A ijtiv map f : V G,,, p is alld a pair sum lablig if th idud dg futio, f : EG Z 0 dfid f uv is o-o ad f EG is ithr of th form k, k,, kq/ or k, k,, k( q)/ k( q)/ aordig as q is v or odd. A graph with a pair sum lablig is alld a pair sum graph. I this papr w ivstigat th pair sum lablig bhavior of subdivisio of som stadard graphs. Kywords: Path; Cyl; Laddr; Triagular Sak; Quadrilatral Sak. Itrodutio Th graphs osidrd hr will b fiit, udirtd ad simpl. V G ad EG will dot th vrtx st ad dg st of a graph G. Th ardiality of th vrtx st of a graph G is dotd p ad th ardiality of its dg st is dotd q. Th oroa GG of two graphs G ad G is dfid as th graph obtaid takig o opy of G (with p vrtis) ad p opis of G ad th joiig th ith vrtx of to G all th vrtis i th ith opy of G. If = uv is a dg of G ad w is a vrtx ot i G th is said to b subdividd wh it is rplad th dgs uw ad wv. Th graph obtaid subdividig ah dg of a graph G is alld th subdivisio graph of G ad it is dotd SG. Th graph P P is alld th laddr. A drago is a graph formd joiig a d vrtx of a path P m to a vrtx of th yl C. It is dotd as. C@ Pm Th triagular sak T is obtaid from th path P rplaig vry dg of a path a triagl C. Th quadrilatral sak Q is obtaid from th path P vry dg of a path is rplad a yl C. Th 4 opt of pair sum lablig has b itrodud i []. Th Pair sum lablig bhavior of som stadard graphs lik omplt graph, yl, path, bistar, ad som mor stadard graphs ar ivstigatd i [-]. That all th trs of ordr 9 ar pair sum hav b provd i [4]. Trms ot dfid hr ar usd i th ss of Harary [5]. Lt x b ay ral umbr. Th x stads for th largst itgr lss tha or qual to x ad x stads for th smallst itgr gratr tha or qual to x. Hr w ivstigat th pair sum lablig bhavior of SG, for som stadard graphs G.. Pair Sum Lablig Dfiitio.. Lt G b a pq, graph. A ijtiv map f : V G,,, p is alld a pair sum lablig if th idud dg futio, f : EG Z 0 dfid f uv f E G is ithr of th form is o-o ad or k, k,, kq / k, k,, k( q)/ k( q)/ aordig as q is v or odd. A graph with a pair sum lablig dfid o it is alld a pair sum graph. Thorm. []. Ay path is a pair sum graph. Thorm. []. Ay yl is a pair sum graph.. O Stadard Graphs Hr w ivstigat pair sum lablig bhavior of C@ P m ad K K. Thorm.. If is v, C@ P m is a pair sum graph. Proof. Lt C b th yl uuu uu ad lt Pm b th path vv v m. m 0 mod4 Cas. Copyright 0 SiRs.

68 R. PONRAJ ET AL. Dfi m f : V C @ P,,, m i,i m m i i,i m 4 m i i,i m 4 m i i m i,i im i,i. Hr @,5, 7,, m, 5,, m m 4, m 8,, m 4 m 4, m 8,, m 4,. f E C P m Thrfor f is a pair sum lablig. Cas. m mod4 Dfi m f : V C @ P,,, m i,i m 4 m i i,i m 4 m i i,i m m i i m i,i i m i,i Hr Figur. A pair sum lablig of C @ P. 8 9 @, 5, 7,, m, m m, 0,, f E C P m,5, 7,, m m m m, m0,, m ( ),. H f is a pair sum lablig. Cas. m mod4 Labl th vrtx ui i, vi i m as i Cas. Th labl m to vm. Cas 4. m mod4 Assig th labl m to v m ad assig th labl to th rmaiig vrtis as i Cas. Illustratio. A pair sum lablig of C @ P 8 9 is show i Figur. Thorm.. K K is pair sum graph if is v. Proof: Lt u, u,, u b th vrtis of K ad u, v, w, z. b th vrtis i K. Lt V K K V K V K ad EK,,,,, : K uv wz uui vui wui zui i. Dfi f : V K K,,, 4 i i, i i i,i,, f z Hr f E K K,, 5,,,, 5,,,, 5,,,, 5,, 4, 8,,, 4, 8,,,,,,,,,,,,. Copyright 0 SiRs.

R. PONRAJ ET AL. 69 Thrfor f is a pair sum lablig. Illustratio. A pair sum lablig of K8 K is show i Figur. 4. O Subdivisio Graph Hr w ivstigat th pair sum lablig bhavior of SG for som stadard graphs G. Thorm 4.. SL is a pair sum graph, whr L is a laddr o vrtis. Proof. Lt Lt i, i, i, j, j :, V S L u v w a b i j i i, i i : E S L u w wv i ua au vbbv :i. i i, i i, i i, i i Cas : is v. Wh =, th proof follows from th Thorm.. For >, Dfi f : VSL,,,, 5, i0, i 0, 5, 5 i0, i, i0, i0, i0 5, i0, i0, i i i i i i i 0i, i i i i i f a f a i i f a i i f b f b i i f b 0i 5, i. Wh = 4,, 4,5,8,0,6, 0, 4, 8, 4, 5, 8, 0, 6, 0, 4, 8. f E S L For > 4, f Figur. A pair sum lablig of K +K. 8 ESL f ESL 4 6,6,40,44,48,8, 6, 6, 40, 44, 48, 8, 46,56,60,64,68,58, 46, 56, 60, 64, 68, 58,, 04,04,00, 06,0,0, 04, 04, 00, 06, 0, 0. Thrfor f is a pair sum lablig. Cas. is odd. Clarly SL P ad h graph Thorm.. For >, Dfi SL is a pair sum 5 f : V S L,,, f a 6,, 9 0 0, i i i f a i i 0i 0, i 6 0 i, i Copyright 0 SiRs.

70 R. PONRAJ ET AL. 60 i,i i 0i, i i 0i, i i, f v 0 0, f b 6 f b 4, f w 4 8, f w 8 f a 0i, i i f a 0i, i i f b 0i4, i i f b 0i4, i. i ad Thrfor f E S L,, 4, 6, 9,8, 0,,, 4, 6, 9, 8, 0 5 f E S L f E S L 4,0,4,8,4,6, 4, 0, 4, 8, 4, 6 wh > 5, f ESL f ESL5 40,50,54,58,6,5, 40, 50, 54, 58, 6, 5, 60,70,74,78,8,7, 60, 70, 74, 78, 8, 7,, 00,00,06, 0,08,08, 00, 00, 06, 0, 08, 08. Th f is a pair sum lablig. Illustratio. A pair sum lablig of 7 i Figur. Thorm 4.. Proof. Lt S C K is a pair sum graph S L is show ui :i wi, vi :i V S C K Lt Figur. A pair sum lablig of i i: u w i vw i E S C K uu i : :. i i i i Cas. is v. Dfi f : S C K,,, 4 i i,i i,i i, i i i i i,i, i i i i i,i Hr 7 S L. 4,8,,, 4 4 4, 8,,, 4 4,8,4,,54, 8, 4,, 5 4 5,5 6,5 0,,7 f E 5, 5 6, 5 0,, 7. Th f is pair sum lablig. Cas. is odd. Dfi Copyright 0 SiRs.

R. PONRAJ ET AL. 7 Hr, 4 f : V S C K,, 4, i i i i 4i,i, i i i i,i i i i,i i,i i f, 4,, 7. E S C K 8,8 6, 4 0, 40 6 8, 86,, 4 0, 46,,, 6,,,, 6,,, 4,, 7 Th f is pair sum lablig. Illustratio 4. A pair sum lablig of SC7K is show i Figur 4. Figur 4. A pair sum lablig of S CK 7. Lt Thorm 4.. S PK is a pair sum graph. Proof. Lt V S P K u :i w v :i i i, i i i: E S P K uu i u w : i vw : i. i i i i Cas. is v. Wh =, th proof follows from Thorm.. For >, Dfi f : VSP K,,, 4, Hr i i i 5i,i (5i), i 5i,i i 5i,i 4, 5 i i 6, 6 i i i i 5i 4, i 5i 4, i 5 5, 5i 5, i 4,,, 9,5,7,9,,, 9, 5, 7, 9. f E S PK For > 4, 4 0, 5, 7, 9 0, 5, 7, 9 7 5 0,5 5,5,5 f E S P K f E S PK 0, 5, 7, 9 0, 5,, 9,, 50, 55, 5, 5. Th f is pair sum lablig. Cas. is odd. Si SPK P, whih is a pair sum graph Thorm.. For >, Dfi Copyright 0 SiRs.

7 R. PONRAJ ET AL. 4 f : V S PK,,,, 8 8 0i, i i 5i5,i i 0i, i i i 5i5,i, f w 5 6 5i7,i i i 5i7,i 9, 9 Figur 5. A pair sum lablig of Thorm 4.4. ST 5i8,i i i 0i6, i i 0i4, i 5i8,i i i 0i6, i Hr i 0i4, i f ESPK,,,,,, 4, 4,5, 5, 5 fespk 5 fespk 4, 5 8,,, 5, 8,,, 5 i 0i, i Wh > 5, i 0i, i fespk 6,,,5 i 0i, i 6,,, 56,4,4,45 i 0i, i 6, 4, 4, 45,, 59,54,5,5, 59, 54, 5, 5. i 0 i, i Th f is pair sum lablig. i 0 i, i Illustratio 5. A pair sum lablig of SPK 8 is show i Figur 5. For = 4, 8 S PK. is a pair sum graph whr is a triagular sak with triagl. Proof. Lt V ST ui :i vi :i wi :i ad E S T uu :i i i viwi, viwi : i u v, u v : i. i i i i Cas. is v. Wh =, Dfi f(u ) = 7, f(u ) = 6, f(u) =, f( u 4 ) = 6, f(u 5 ) = 7, f(v ) = 5, f(v ) =, f(v ) = 4, f(v 4 ) = 5, f(w ) =, f(w ) =. Wh >, Dfi f : V S T,,, 5, 6 7, 6 7 T Copyright 0 SiRs.

R. PONRAJ ET AL. 7,5,7,8,,,5,8,,, 6,0 f E S T, 5, 7, 8,,, 5, 8,,, 6, 0. For > 4 fest fest4,8,40, 4, 46,50,, 8, 40, 4, 46, 50, 5, 58, 60, 6, 66, 70, 5, 58, 60, 6, 66, 70,, 08,0,00,08,04,00, 08, 0, 00, 08, 04, 00. Th f is pair sum lablig. Cas. is odd. Clarly ST C6, ad h ST is a pair sum graph Thorm.. For >, Dfi 6 f : V S T,,, 5 C 8,, 5 5, 4 4 5 i i i i i i i i i i i i 5, 7 4, 7, i i i i i i i5 i, i i i 4 5, 0 4, 4 5, 4 5 5, 5, 5, i 5, 9 i 8,, i 5 i, i Hr =,,,4,5,7,8,,7,9,, 4, 5, 7 8,, 7, 9. f E S T 5 i, i Figur 6. A pair sum lablig of S T. For >, fest fest,, 4, 5, 8, 9,,, 4, 5, 8, 9, 56,58,59,50,5,54, 56, 58, 59, 50, 5, 54. 4, 4, 44, 45, 48, 49, 4, 4, 44, 45, 48, 49,, Th f is pair sum lablig. Illustratio 6. A pair sum lablig of ST 5 i Figur 6. Thorm 4.5. SQ is a pair sum graph. Proof. Lt i : V S Q u i vi :i wi :i ad ES( Q) uu i i :i ui wi, v iwi :i ui wi, wi vi :i vv i i :i vivi : i. is show Cas. is v. Wh =, Dfi f(u ) =, f(u ) = 6, f(u ) =, f(u 4 ) = 6, f(u 5 ) =, f(w ) = 9, f(w ) =, f(w ) = 4, f(w 4 ) = 9, f(v ) = 7, f(v ) = 5, f(v ) =, f(v 4 ) =, f(v 5 ) = 5, f(v 6 ) = 7. Wh >, Dfi 7 f : V S Q,,,, 6 i 8, 6, 8 4i 8, i i 4i6, i 5 Copyright 0 SiRs.

74 R. PONRAJ ET AL. Hr i 4i6, i i 4i8, i, 9 4, 9 i 4i4, i i 4i4, i i 4i4, i i 4i4, i, 5 7, 5, 7 i 4i, i i 4 i, i i 4i, i i 4i, i i i i 4, i 4i, i f E S Q,, 5, 5, 7, 7,8, 8,,,4, 46, 6,7, 7 8,, 6,8,0,4, 40,4 8,, 6, 8, 0, 4, 40, 4 46,50,54,56,58,6,68,70 46, 50, 54, 56, 58, 6, 68, 70 74, 78,8,86,84, 90, 96, 98 74, 78, 8, 86, 84, 90, 96, 98,, 48,44,40,48, 46,4,46,44 48, 44, 40, 48, 46, 4, 46, 44. Th f is pair sum lablig. Cas. is odd. SQ is a pair sum graph follows from Thorm..Wh >. Dfi 7 f : V S Q,,, 6, 7, 8,, 8 4 i 4i0, i i 4i, i i 4i0, i 4i 4i, i 5, 4, 0 5,, 0 i 4i0, i i 8 4 i, i i 4i0, i i 8 4 i, i 6, f v 5 8, f 7 v 7 f 5 v 7 0, 6 4, 6 9 8 i i 4 6, 7 i i i i 4i, i 4i 4, i 5 i i 4i, i 5 4i 4, i 7 4i 6, i 9 For =,,,6,8,9,,,5,0,4,8, 4 4 f E S Q,, 6, 8, 9,,, 5, 0,, 8, 4. >, Copyright 0 SiRs.

R. PONRAJ ET AL. 75 Figur 7. A pair sum lablig of 4 S Q. i Figur 7. 5. Akwldgmts W thak th rfrs for thir valuabl ommts ad suggstios. fes( Q f ESQ 46,50,54,56,58,6,68,70, 6, 74,78,8,84,86,90,96,98, 4,48,4,4 44, 40, 4 46, 50, 54, 5 58, 6, 68, 70, 74, 78, 8, 84, 86, 90, 96, 98,, 4 4,4 0,4 6,4 4, 6, 4 4, 4, 48, 4, 4. Th f is pair sum lablig Illustratio 7. A pair sum lablig of 4 S Q is show REFERENCES [] R. Poraj ad J. V. X. Parthipa, Pair Sum Lablig of Graphs, Th Joural of Idia Aadmy of Mathmatis, Vol., No., 00, pp. 587-595. [] R. Poraj, J. V. X. Parthipa ad R. Kala, Som Rsults o Pair Sum Lablig, Itratioal Joural of Math- 4, 00, pp. 5-6. matial Combiatoris, Vol. [] R. Poraj, J. V. X. Parthipa ad R. Kala, A Not o Pair Sum Graphs, Joural of Sitifi Rsarh, Vol., No., 0, pp. -9. [4] R. Poraj ad J. V. X. Parthipa, Furthr Rsults o Pair Sum Lablig of Trs, Applid Mathmatis, Vol., No. 0, 0, pp. 70-78. doi:0.46/am.0.077 [5] F. Harary, Graph Thory, Narosa Publishig Hous, Nw Dlhi, 998. Copyright 0 SiRs.