Doing small systems: Fluctuation Relations and the Arrow of Time

Similar documents
Quantum Fluctuation Relations and the Arrow of Time

arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012

Fluctuation Theorem for Arbitrary Open. Quantum Systems. Peter Hänggi, Michele Campisi, and Peter Talkner

Fluctuation, Dissipation and the Arrow of Time

Fluctuation, Dissipation and the Arrow of Time

Gert-Ludwig Ingold. Differences can be negative. Motivation. Specific heat and dissipation. Path I. Path II. Casimir effect.

Fluctuation, Dissipation and the Arrow of Time

Nonequilibrium thermodynamics at the microscale

Irreversibility and the arrow of time in a quenched quantum system. Eric Lutz Department of Physics University of Erlangen-Nuremberg

Fluctuation Theorems of Work and Entropy in Hamiltonian Systems

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000

Beyond the Second Law of Thermodynamics

Fluctuation relations and nonequilibrium thermodynamics II

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio

Emergent Fluctuation Theorem for Pure Quantum States

LANGEVIN EQUATION AND THERMODYNAMICS

Stochastic equations for thermodynamics

arxiv: v2 [quant-ph] 1 Oct 2017

Stochastic thermodynamics

Energy Fluctuations in Thermally Isolated Driven System

Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences

Grand Canonical Formalism

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg

Information Thermodynamics on Causal Networks

J. Stat. Mech. (2011) P07008

Introduction to Fluctuation Theorems

Fluctuation theorem in systems in contact with different heath baths: theory and experiments.

Non-Equilibrium Fluctuations in Expansion/Compression Processes of a Single-Particle Gas

On thermodynamics of stationary states of diffusive systems. Giovanni Jona-Lasinio Coauthors: L. Bertini, A. De Sole, D. Gabrielli, C.

Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle

An Outline of (Classical) Statistical Mechanics and Related Concepts in Machine Learning

10. Zwanzig-Mori Formalism

(Dated: July 15, 2014)

Thermodynamic equilibrium

Second law, entropy production, and reversibility in thermodynamics of information

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

4.1 Constant (T, V, n) Experiments: The Helmholtz Free Energy

10. Zwanzig-Mori Formalism

The Kelvin-Planck statement of the second law

Dissipation and the Relaxation to Equilibrium

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors

Landauer s principle in the quantum domain

S = S(f) S(i) dq rev /T. ds = dq rev /T

arxiv: v3 [cond-mat.stat-mech] 7 Jan 2015

TOWARD THERMODYNAMICS FOR NONEQUILIBRIUM STEADY STATES OR TWO TWISTS IN THERMODYNAMICS FOR NONEQUILBRIUM STEADY STATES

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

I.D The Second Law Q C

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry

Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood

Aspects of nonautonomous molecular dynamics

From Particles to Fields

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

summary of statistical physics

The Jarzynski Equation and the Fluctuation Theorem

Principle of Minimal Work Fluctuations

Coupled quantum oscillators within independent quantum reservoirs

Collaborations: Tsampikos Kottos (Gottingen) Chen Sarig (BGU)

Properties of the boundary rg flow

Thermodynamics of feedback controlled systems. Francisco J. Cao

Quantum Dissipation: A Primer

Fluctuation theorem between non-equilibrium states in an RC circuit

arxiv: v1 [cond-mat.stat-mech] 6 Nov 2015

Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova

Linear-response theory and the fluctuation-dissipation theorem: An executive summary

Non-equilibrium phenomena and fluctuation relations

Lecture 5: Temperature, Adiabatic Processes

Quantum Thermodynamics

Thermal energies of classical and quantum damped oscillators coupled to reservoirs

Breaking and restoring the

Best-fit quasi-equilibrium ensembles: a general approach to statistical closure of underresolved Hamiltonian dynamics

Lecture 10 Planck Distribution

arxiv: v1 [cond-mat.stat-mech] 10 Aug 2015

Preliminary Examination - Day 1 Thursday, August 9, 2018

The correlation between stochastic resonance and the average phase-synchronization time of a bistable system driven by colour-correlated noises

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge

Fluctuation theorems. Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009

Even if you're not burning books, destroying information generates heat.

Lecture 9 Overview (Ch. 1-3)

Entropy and the second law of thermodynamics

arxiv: v1 [quant-ph] 9 Jul 2013

Maxwell's Demon in Biochemical Signal Transduction

Hardwiring Maxwell s Demon Tobias Brandes (Institut für Theoretische Physik, TU Berlin)

Stochastic Behavior of Dissipative Hamiltonian Systems with Limit Cycles

9.1 System in contact with a heat reservoir

A mathematical introduction to coarse-grained stochastic dynamics

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

COARSE-GRAINING AND THERMODYNAMICS IN FAR-FROM-EQUILIBRIUM SYSTEMS

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution

Finite Temperature Field Theory

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

First Problem Set for Physics 847 (Statistical Physics II)

Averaging II: Adiabatic Invariance for Integrable Systems (argued via the Averaging Principle)

the renormalization group (RG) idea

3.320: Lecture 19 (4/14/05) Free Energies and physical Coarse-graining. ,T) + < σ > dµ

From fully quantum thermodynamical identities to a second law equality

Second Law of Thermodynamics: Concept of Entropy. While the first law of thermodynamics defines a relation between work and heat, in terms of

Characteristics of Work Fluctuations in Chaotic Systems

Statistical Mechanics and Thermodynamics of Small Systems

140a Final Exam, Fall 2006., κ T 1 V P. (? = P or V ), γ C P C V H = U + PV, F = U TS G = U + PV TS. T v. v 2 v 1. exp( 2πkT.

Transcription:

Doing small systems: Fluctuation Relations and the Arrow of Time Peter Hänggi, Institut für Physik, Universität Augsburg M. Campisi, P. Hänggi, and P. Talkner Colloquium: Quantum fluctuation relations: Foundations and applications Rev. Mod. Phys. 83, 771 791 (2011); Addendum and Erratum: Quantum fluctuation relations: Foundations and applications Rev. Mod. Phys. 83, 1653 (2011). M. Campisi and P. Hänggi Fluctuation, Dissipation and the Arrow of Time Entropy 13, 2024 2035 (2012).

Sekhar Burada Michele Campisi Gert Ingold Eric Lutz Manolo Morillo Peter Talkner Acknowledgments

Second Law Rudolf Julius Emanuel Clausius (1822 1888) Heat generally cannot spontaneously flow from a material at lower temperature to a material ilat higher h temperature. William Thomson alias Lord Kelvin (1824 1907) No cyclic process exists whose sole effect is to extract heat from a single heat bath at temperature T and convert it entirely to work. δq = T ds (Zürich, 1865)

The famous Laws Equilibrium Principle -- minus first Law An isolated, macroscopic system which is placed in an arbitrary initial state within a finite fixed volume will attain a unique state of equilibrium. Second Law (Clausius) For a non-quasi-static process occurring in a thermally isolated system, the entropy change between two equilibrium states is non-negative. Second Law (Kelvin) No work can be extracted from a closed equilibrium system during a cyclic variation of a parameter by an external source.

MINUS FIRST LAW vs. SECOND LAW -1st Law 2nd Law

Entropy S content of transformation Verwandlungswert d S = δq rev T ; δq irrev < δq rev V 2,T 2 I δq Γ rev Γ irrev T 0 V 1,T 1 S(V 2,T 2 ) S(V 1,T 1 ) Z Z S(V 2,T 2 ) S(V 1,T 1 )= Γ irrev Γ rev δq I C C = Γ 1 rev + Γ irrev T S δq t 0 NO! T

Small system single realizations 1-st. 1 st law: E ω = 4Q ω + 4W ω h...i U = 4Q Q + 4W! random quantities Note: 4Q = U 4W U =? & 4 W =? weak coupling: 4Q = 4 Q bath 2 nd law: SA B REV 4Q T S REV A B = 4Q T = X ( 0) IRREV + U 4W T = 4 Q bath T + + X IRREV IRREV X ; for weak coupling

What are fluctuation and work theorems about? Small systems: fluctuations may become comparable to average quantities. Can one infer thermal equilibrium properties from fluctuations in nonequilibrium processes?

Equilibrium versus nonequilibrium processes Isothermal quasistatic process: e βh(t 0) /Z(t 0 ) BATH β weak contact SYSTEM H(t 0 ) xx xx xxquasixxstatic e βh(t f ) /Z(t f ) BATH β weak contact SYSTEM H(t f ) Non-equilibrium process: H(t 0 ) H(t f ) F = w = w p tf,t 0 (w) =? pdf of work t 0 t f t

T H = H(z, λ t ) λ 0 eq. ρ 0 (z) = e βh(z,λ 0 ) Z(λ 0 ) λ τ non-eq ρ τ (z) e βh(z,λ τ ) Z(λ τ ) λ : [0, τ] R protocol t λ t

CLASSICAL WORK p z τ z 0 ϕ t,0 [z 0 ; λ] εz 0 W [z 0 ; λ] = H(z τ, λ τ ) H(z 0, λ 0 ) = ϕ τ t,0 [εz τ ; λ] εz τ q dt λ H(ϕ t,0 [z 0 ; λ], λ t ) t λ t p[w ; λ] = dz 0 ρ 0 (z 0 )δ[w H(z τ, λ τ ) + H(z 0, λ 0 )] Work is a RANDOM quantity

MICROREVERSIBILITY OF TIME DEPENDENT SYSTEMS p z τ z 0 ϕ t,0[z 0; λ] Classical q ε(q, p) = (q, p) εz 0 ϕ τ t,0[εz τ ; λ] εϕ t,0 [z 0 ; λ] = ϕ τ t,0 [εz τ ; λ] εz τ i ψt = Ut,0[λ] i f Quantum Θ i Uτ t,0[ λ]θ f Θ f Θ = Time reversal operator U t,τ [λ] = Θ U τ t,0 [ λ]θ

INCLUSIVE VS. EXCLUSIVE VIEWPOINT C. Jarzynski, C.R. Phys. 8 495 (2007) H(z, λ t ) = H 0 (z) λ t Q(z) W = dtq t λ t = H(z τ, λ τ ) H(z 0, λ 0 ) Not necessarily of the textbook form d(displ.) (force) W 0 = dtλ t Qt = H 0 (z τ ) H 0 (z 0 ) z t = {H(z t, λ t ); z} G.N. Bochkov and Yu. E. Kuzovlev JETP 45, 125 (1977)

JARZYNSKI EQUALITY C. Jarzynski, PRL 78 2690 (1997) e βw = e β F F = F (λ τ ) F (λ 0 ) = β 1 ln Z(λ τ ) Z(λ 0 ) Z(λ t ) = dz e βh(z,λt) Since exp is convex, then W F Second Law

Canonical initial state Exclusive Work: p[w 0 ; λ] p[ w 0 ; λ] = eβw 0 Bochkov-Kuzovlev-Crooks e βw 0 = 1 Bochkov-Kuzovlev G.N. Bochkov, Y.E. Kuzovlev, Sov. Phys. JETP 45, 125 (1977); G.N. Bochkov, Y.E. Kuzovlev, Physica A 106, 443 (1981)

INCLUSIVE, EXCLUSIVE and DISSIPATED WORK W diss = W F e βw diss = 1 W, W 0, W diss are DISTINCT stochastic quantities p[x; λ] p 0 [x; λ] p diss [x; λ] They coincide for cyclic protocols λ 0 = λ τ M.Campisi, P. Talkner and P. Hänggi, Phil. Trans. R. Soc. A 369, 291 (2011)

GAUGE FREEDOM H (z, t) = H(z, t) + g(t) W = W + g(τ) g(0) F = F + g(τ) g(0) W, F are gauge dependent: not true physical quantities WARNING: be consistent! use same gauge to calculate W and F e βw = e β F e βw = e β F The fluctuation theorem is gauge invariant! Gauge: irrelevant for dynamics crucial for ENERGY-HAMILTONIAN connection

GAUGE FREE vs. GAUGE DEPENDENT EXPRESSIONS OF CLASSICAL WORK H = H 0 (z) λ t Q(z) + g(t) Inclusive work: W = H (z τ, τ) H (z 0, 0), g-dependent W phys = dtq t λt, g-independent W phys = W g(τ) + g(0) Exclusive work: W 0 = H 0 (z τ, λ τ ) H 0 (z 0, λ 0 ) = dtλ t Q t, g-independent Dissipated work: W diss = H (z τ, τ) H (z 0, 0) F, g-independent

QUANTUM WORK FLUCTUATION RELATIONS H(z, λ t ) H(λ t ) ρ(z, λ t ) ϱ(λ t ) = e βh(λt) Z(λ t ) Z(λ t ) Z(λ t ) = Tre βh(λt) [ ϕ t,0 [z 0 ; λ] U t,0 [λ] = T exp i W [z 0 ; λ]? t 0 ] dsh(λ s )

W[λ] = U t,0 [λ]h(λ t)u t,0 [λ] H(λ 0 ) = H H t (λ t ) H(λ 0 ) = t 0 dt λ t H H t (λ t ) λ t

WORK IS NOT AN OBSERVABLE P. Talkner et al. PRE 75 050102 (2007) Work characterizes PROCESSES, not states! (δw is not exact) Work cannot be represented by a Hermitean operator W W [z 0 ; λ] w = Em λτ E λ 0 n two-measurements E λt n =instantaneous eigenvalue: H(λ t ) ψ λt n = E λt n ψ λt n

Probability of inclusive quantum work recall: H(λ t )ϕ n,ν (λ t ) = e n (λ t )ϕ n,ν (λ t ), P n (t) = ν ϕ n,ν(λ t ) ϕ n,ν (λ t ) 1st measurement of energy: e n (λ 0 ) with prob p n = Tr P n (t 0 )ρ(t 0 ), state after measurement: ρ n = P n (t 0 )ρ(t 0 )P n (t 0 )/p n t 0 t f : ρ n (t f ) = U tf,t 0 ρ n U t f,t 0, i U t,t0 / t = H(λ t )U t,t0, U t0,t 0 = 1 2nd measurement of energy: e m (t f ) with prob. p(m n) = Tr P m (t f )ρ n (t f ) p tf,t 0 (w) = n,m δ(w [e m (λ τ ) e n (λ 0 )])p(m n)p n J. Kurchan, arxiv:cond-mat/0007360

Characteristic function of work G tf,t 0 (u) = dw e iuw p tf,t 0 (w) = e iuem(t f ) e iuen(t0) TrP m (t f )U tf,t 0 ρ n U t + f,t 0 p n m,n = m,n Tre iuh(t f ) P m (t f )U tf,t 0 e ih(t 0) ρ n U + t f,t 0 p n = Tre iuh H(t f ) e iuh(t 0) ρ(t 0 ) e iuh(t f ) e iuh(t 0) t0 H H (t f ) = U t f,t 0 H(t f )U tf,t 0, ρ(t 0 ) = n P n (t 0 )ρ(t 0 )P n (t 0 ), ρ(t 0 ) = ρ(t 0 ) [ρ(t 0 ), H(t 0 )] P. Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008) P.Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102(R) (2007)

Work is not an observable Note: G tf,t 0 (u) is a correlation function. If work was an observable, i.e. if a hermitean operator W existed then the characteristic function would be of the form of an expectation value G W (u) = e iuw = Tre iuw ρ(t 0 ) Hence, work is not an observable. P. Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008) P.Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102(R) (2007)

Choose u = iβ e βw = dw e βw p tf,t 0 (w) = Gt c f,t 0 (iβ) = Tre βh H(t f ) e βh(t0) Z 1 (t 0 )e βh(t 0) = Tre βh(t f ) /Z(t 0 ) = Z(t f )/Z(t 0 ) = e β F quantum Jarzynski equality

u u + iβ and time-reversal Z(t 0 )G c t f,t 0 (u) = Tr U + t f,t 0 e iuh(t f ) U tf,t 0 e i( u+iβ)h(t 0) = Tr e i( u+iβ)h(t f ) e βh(t f ) U + t 0,t f e i( u+iβ)h(t 0) U t0,t f = Z(t f )G c t 0,t f ( u + iβ) p tf,t 0 (w) p t0,t f ( w) = Z(t f ) Z(t 0 ) eβw β( F w) = e Tasaki-Crooks theorem white P. Talkner, and P. Hänggi, J. Phys. A 40, F569 (2007).

PROBLEM Projective quantum measurement of: E =TOTAL energy N = TOTAL number of particles in MACROSCOPIC systems!!!

Measurements A projective measurement of an observable A = i a ip A i, P A i P A j = δ i,j P A i : ρ i P A i ρp A i while a force protocol is running leads to a change of the statistics of work but leaves unchanged the Crooks relation and the Jarzyninski equality. M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 105, 140601 (2010); M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. E 83, 041114, (2011).

Microcanonical initial state ρ(t 0 ) = ω 1 E (t 0)δ(H(t 0 ) E), ω E (t 0 ) = Tr δ(h(t 0 E)) = e S(E,t 0)/k B ω E (t 0 ): Density of states, S(E, t 0 ): Entropy p mc t f,t 0 (E, w) = ω 1 E (t 0)Tr δ(h H (t f ) E w)δ(h(t 0 ) E) pt mc f,t 0 (E, w) pt mc 0,t f (E + w, w) = ω E+w (t f ) = e [S(E+w,t f ) S(E,t 0 )]/k B ω E (t 0 ) P.Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008)

OPEN QUANTUM SYSTEM: WEAK COUPLING β H S(λ t) H SB H B H(λ t ) = H S (λ t ) + H B + H SB p[ E, Q; λ] = E = Em λτ E λ 0 n ϱ(λ 0 ) = e βh(λ 0) /Y (λ 0 ) system energy change E B = E B µ E B ν = Q bath energy change δ[ E Em λτ + E λ 0 n ]δ[q + Eµ B Eν B ]p mµ nν [λ]pnν 0 m,n,µ,ν p[ E, Q; λ] p[ E, Q; λ] = eβ( E Q F S ) E = w + Q F S = β 1 ln Z S(λ τ ) Z S (λ 0 ) p[w, Q; λ] p[ w, Q; λ] = eβ(w F S ) P. Talkner, M. Campisi, P. Hänggi, J.Stat.Mech. (2009) P02025

Small system single realizations 1-st. 1 st law: E ω = 4Q ω + 4W ω h...i U = 4Q Q + 4W! random quantities Note: 4Q = U 4W U =? & 4 W =? weak coupling: 4Q = 4 Q bath 2 nd law: SA B REV 4Q T S REV A B = 4Q T = X ( 0) IRREV + U 4W T = 4 Q bath T + + X IRREV IRREV X ; for weak coupling

OPEN QUANTUM SYSTEM: STRONG COUPLING β H S(λ t) H SB H B H(λ t ) = H S (λ t ) + H SB + H B w = Em λτ E λ 0 n = work on total system=work on S Y (λ t ) = Tre βh(λt) = partition function of total system Z S (λ t ) = Y (λ t) Z B Tr S e βh S (λ t) = partition function of S F S (λ t ) = β 1 ln Z S (λ t ) proper free energy of open system p[w; λ] p[ w; λ] = Y (λ τ ) Y (λ 0 ) eβw = Z(λ τ ) Z(λ 0 ) eβw = e β(w F S ) M. Campisi, P. Talkner, and P. Hänggi, Phys. Rev. Lett. 102 210401 (2009)

Partition function Z S (t) = Y(t) Z B where Z B = Tr B e βh B

Quantum Hamiltonian of Mean Force where also Z S (t) := Y (t) Z B = Tr S e βh (t) H (t) := 1 β ln Tr Be β(h S (t)+h SB +H B ) Tr B e βh B e βh (t) Z S (t) = Tr Be βh(t) Y (t) M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009).

Free energy of a system strongly coupled to an environment Thermodynamic argument: F total system free energy F B bare bath free energy. F S = F F 0 B With this form of free energy the three laws of thermodynamics are fulfilled. G.W. Ford, J.T. Lewis, R.F. O Connell, Phys. Rev. Lett. 55, 2273 (1985); P. Hänggi, G.L. Ingold, P. Talkner, New J. Phys. 10,115008 (2008); G.L. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 0611505 (2009).

S vn = - k Tr (ρ s lnρ s ) S (T) C. Hörhammer & H. Büttner, arxiv:0710.1716? δq/ds vn k T ln 2?

Finite bath coupling Thermal Casimir forces and quantum dissipation Introduction Quantum dissipation H S γ H SB H B Thermal Casimir effect Conclusions T The definition of thermodynamic quantities for systems coupled to a bath with finite coupling strength is not unique. P. Hänggi, GLI, Acta Phys. Pol. B 37, 1537 (2006)

An important difference Route I E. = E S = H S = Tr S+B(H S e βh ) Tr S+B (e βh ) Quantum Brownian motion and the 3 rd law Route II Z = Tr S+B(e βh ) Tr B (e βh B ) U = lnz β Specific heat and dissipation Two approaches Microscopic model Route I U = H H B B ] = E S + [ H SB + H B H B B Route II specific heat density of states Conclusions For finite coupling E and U differ!

Strong coupling: Example Fluctuation Theorem for Arbitrary Open Quantum Systems Peter Hänggi, Michele Campisi, and Peter Talkner System: Two-level atom; bath : Harmonic oscillator H = ɛ ( 2 σ z + Ω a a + 1 ) ( + χσ z a a + 1 ) 2 2 H = ɛ 2 σ z + γ ɛ = ɛ + χ + 2 ( e βω ) β artanh sinh(βχ) 1 e βω cosh(βχ) γ = 1 ( 1 2e βω 2β ln cosh(βχ) + e 2βΩ ) (1 e βω ) 2 Z S = Tre βh S S = F S T F S = k b T ln Z S C S = T S S T M. Campisi, P. Talkner, P. Hänggi, J. Phys. A: Math. Theor. 42 392002 (2009)

Entropy and specific heat Fluctuation Theorem for Arbitrary Open Quantum Systems Peter Hänggi, Michele Campisi, and Peter Talkner χ/ε Ω / ε 1 0 1 (a) 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 χ/ε Ω / ε 1 0 1 (a) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Ω/ɛ = 3 Ω / ε 0 0 0.6 1.2 k B T/ε Ω / ε 0 0 0.6 1.2 k B T/ε Ω / ε (b) 2 Ω / ε (b) 2 1.8 χ/ε 0 S S =0 1.6 1.4 1.2 1 0.8 χ/ε 0 C S =0 1.5 1 Ω/ɛ = 1/3 S S <0 0.6 0.4 C S <0 0.5 0.2 0 Ω / ε 0 0.6 1.2 k B T/ε 0 Ω / ε 0 0.6 1.2 k B T/ε

USING EXCLUSIVE WORK H(q, p; λ t ) = H 0 (q, p) λ t Q(q, p) λ t = 0 at t = 0; Protocol: λ t : 0 t = τ ϱ 0 (q, p) = e βh 0(q,p) /Z 0 (β) = F.-T. P[Γ, λ] = P[ Γ, λ]e βw 0 B.-K. (1977) W 0 = τ 0 dtλ t Q t λt = λ τ t = e βw 0 λ = 1 equality (2 nd Law) with exp(x) exp( x ) = e βw 0 λ e βw 0 λ = 0 β W 0 λ W 0 λ 0 inequality

ARROW OF TIME + : movie in forward direction : movie in backward direction frame t : λ t and Q t Forward: βw 0 1 Backward: After Seeing movie βw 0 1 (W 0 is odd under time reversal!) Prior: P(+) = 1/2; P( ) = 1/2 Posterior: P(+ W 0 ) = P(W 0 +)P(+) = P(W 0 ) P(W 0 +)P(+) = P(W 0 +)P(+) + P(W 0 )P( )

ARROW OF TIME F.-T.: P(W 0 +) P(W 0 ) = exp(βw 0) W 0 Odd: P( W 0 ) = P(W 0 +) = P(+ W 0 ) = 1 e βw 0 + 1 1 0.75 P (+ W0) 0.5 0.25 0 10 5 0 5 10 W 0 [k BT ]

ARROW OF TIME 1) H 0 (q, p) H (q, p; t) : emergence of an arrow 2) preparation, here canonical determines its direction conventional : coarsegrainingofquantities< > breakingdet. balance Stoßzahlansatz initiali i molecular l chaos (Bogoliubov) Fokker Planck eqs.; master eqs. All containad hoc elements that induce thetime arrow : future past

Summary Classical and quantum mechanical expressions for the distribution of work for arbitrary initial states The characteristic function of work is given by a correlation function Work is not an observable. Fluctuation theorems (Crooks and Jarzynski) for thermal equilibrium states and microscopic reversibility Open Systems Strong coupling: Fluctuation and work theorems Weak coupling: Fluctuation theorems for energy and heat as well as work and heat Measurements do not affect Crooks relation and Jarzynski equality

References P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E, 75, 050102(R) (2007). P. Talkner, P. Hänggi, J Phys. A 40, F569 (2007). P. Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008). P. Talkner, P.S. Burada, P. Hänggi, Phys. Rev. E 78, 011115 (2008). P. Hänggi, G.-L. Ingold, P. Talkner, New J. Phys. 10, 115008 (2008). P. Talkner, M. Campisi, P. Hänggi, J. Stat. Mech., P02025 (2009). G.-L. Ingold, P. Talkner, P. Hänggi, Phys. Rev. E 79, 0611505 (2009). M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009). M. Campisi, P. Talkner, P. Hänggi, J. Phys. A 42, F392002 (2009). M. Campisi, D. Zueco, P. Talkner, Chem. Phys. 375, 187 (2010). M. Campisi, P. Talkner, P. Hänggi, Phil. Trans. Roy. Soc. 369, 291 (2011). M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 105, 140601 (2010). M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011). M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. E, 83, 041114 (2011). J. Yi, P. Talkner, Phys. Rev. E 83, 41119 (2011). J. Yi, P. Talkner, M. Campisi, Phys. Rev. E, 84, 011138 (2011).