Physics 2020 Lab 5 Intro to Circuits

Similar documents
Lab 4. Current, Voltage, and the Circuit Construction Kit

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives

A model for circuits part 2: Potential difference

Circuits. PHY2054: Chapter 18 1

2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter.

Power lines. Why do birds sitting on a high-voltage power line survive?

Physics Circuits: Series

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I

Name Date Time to Complete

ConcepTest PowerPoints

Note-A-Rific: Kirchhoff s

ConcepTest Clicker Questions. Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli

Review of Circuit Analysis

Name: Block: Date: NNHS Introductory Physics: MCAS Review Packet #4 Introductory Physics, High School Learning Standards for a Full First-Year Course

Multi-loop Circuits and Kirchoff's Rules

MasteringPhysics: Assignment Print View. Problem 30.50

Introduction. Pre-lab questions: Physics 1BL KIRCHOFF S RULES Winter 2010

Lab 8 Simple Electric Circuits

The Digital Multimeter (DMM)

Relating Voltage, Current and Resistance

Physics 102 Lab 4: Circuit Algebra and Effective Resistance Dr. Timothy C. Black Spring, 2005

ELECTRICITY UNIT REVIEW

University of Maryland Department of Physics

In this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY.

ConcepTest PowerPoints

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER

Greek Letter Omega Ω = Ohm (Volts per Ampere)

4.2 Graphs of Rational Functions

Tactics Box 23.1 Using Kirchhoff's Loop Law

Sierzega: DC Circuits 4 Searching for Patterns in Series and Parallel Circuits

Circuit Lab Free Response

This week. 3/23/2017 Physics 214 Summer

This week. 6/2/2015 Physics 214 Summer

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

7th Grade Task for today:

- Memorize the terms voltage, current, resistance, and power. - Know the equations Ohm s Law and the Electric Power formula

Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.

Name Date Time to Complete. NOTE: The multimeter s 10 AMP range, instead of the 300 ma range, should be used for all current measurements.

University of Maryland Department of Physics

CHAPTER 1 ELECTRICITY

B: Know Circuit Vocabulary: Multiple Choice Level 1 Prerequisites: None Points to: Know Circuit Vocabulary (Short Answer)

Circuits. 1. The Schematic

Test Review Electricity

Materials Needed 1 D-Cell battery 6 6-inch pieces of wire 3 flashlight light bulbs 3 light bulb holders (optional)

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Industrial Electricity

Lesson Plan: Electric Circuits (~130 minutes) Concepts

Lab 4 Series and Parallel Resistors

Notes: Ohm s Law and Electric Power

Physics 220: Worksheet 7

Parallel Resistors (32.6)

Agenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws

physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION

Parallel Resistors (32.6)

Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Resistive Touchscreen - expanding the model

Answer Key. Chapter 23. c. What is the current through each resistor?

Notebook Circuits With Metering. 22 February July 2009

ELECTRICITY. Prepared by: M. S. KumarSwamy, TGT(Maths) Page

Which one of the following graphs correctly shows the relationship between potential difference (V) and current (I) for a filament lamp?

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Resistance Learning Outcomes

Material World: Electricity

Measurement of Electrical Resistance and Ohm s Law

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

EXPERIMENT 9 Superconductivity & Ohm s Law

Unit 6 Current Electricity and Circuits

Resistance, Ohm s Law and Kirchoff s Laws

Now let s look at some devices that don t have a constant resistance.

Resistance Learning Outcomes. Resistance Learning Outcomes. Resistance

University of Maryland Department of Physics. Spring 2009 Final Exam 20. May (175 points) Post grades on web? (Initial, please) Yes No

Review of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance.

Electrical measurements:

CLASS X- ELECTRICITY

Let s go to something more concrete

Electric Circuits Part 2: Kirchhoff s Rules

Electricity and Magnetism Module 4 Student Guide

Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena.

Title of Activity: Let there be Light! Introduction to Ohm's Law and basic series circuits.

Science Practice Exam. Chapters 5 and 14

Electric Charges & Current. Chapter 12. Types of electric charge

Direct-Current Circuits. Physics 231 Lecture 6-1

Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction.

DC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy

b. Which bulb is brightest? Justify your answer.

Lab 5 RC Circuits. What You Need To Know: Physics 212 Lab

College Physics B - PHY2054C

PH 102 Exam I N N N N. 3. Which of the following is true for the electric force and not true for the gravitational force?

Current Electricity. ScienceLinks 9, Unit 4 SciencePower 9, Unit 3

A Review of Circuitry

2/25/2014. Circuits. Properties of a Current. Conservation of Current. Definition of a Current A. I A > I B > I C B. I B > I A C. I C D. I A E.

Physics 214 Spring

Physics 9 Wednesday, November 28, 2018

Electricity. dronstudy.com

Brian Blais Quick Homemade Guide to Circuits

Part 4: Electricity & Magnetism

Physics 2080 Extra Credit Due March 15, 2011

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis

Electric Power * OpenStax HS Physics. : By the end of this section, you will be able to:

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test

Transcription:

Physics 2020 Lab 5 Intro to Circuits Name Section Tues Wed Thu 8am 10am 12pm 2pm 4pm Introduction In this lab, we will be using The Circuit Construction Kit (CCK). CCK is a computer simulation that allows you to build electrical circuits that behave like real circuits. We ll be using this simulation to learn more about circuits and the concepts of voltage and current. The simulation is available on the web at http://phet.colorado.edu if you d like to try it out. Take about 5 minutes to play with the sim before you begin. Below, write down some of the types of actions you can perform in the sim. What kinds of objects can you connect? What qualities of objects can you change? What sorts of visualizations does the sim provide? Do they show you anything interesting or surprising? We ll be using the voltmeter and the ammeter in this lab. We will not be using the non- contact ammeter. In some cases, the lab will ask you to draw a schematic of your circuit. By schematic we mean that you should use symbols to represent resistors, light bulbs, and batteries rather than literal pictures. We will be using the following symbols: Page 1 of 8

Part I: Light Bulbs 1. Suppose you are given a battery, a light bulb, and a few pieces of wire. Without using CCK, how would you connect the light bulb to the battery to make it light up? Draw a picture showing your solution. 2. Now use CCK to light up one light bulb with one battery. Draw a picture of your solution. Once you ve gotten it to work, compare it to your picture. Are they the same? If not, how are they different and why? 3. Use CCK to light up two bulbs at the same time with one battery. Find at least two different ways to make it work. Do the bulbs have the same brightness in either case? Make a schematic of each of your solutions. Page 2 of 8

Part II: Measuring Current and Voltage We can measure current with a device called an ammeter (as shown on the right). The ammeter has to be part of the circuit for this to work; we need to hook it up so that current can come in one end and go out the other end. We can measure voltage differences with a voltmeter (as shown on the left). The voltmeter has a black and a red lead. To find out the voltage difference between two points on a circuit, put one lead on one point and the other lead on the other point. The voltmeter cannot be part of the circuit for it to work. 1. In CCK, set up a circuit that has one light bulb and one battery. Measure and record the current going into the light bulb and the current coming out of the light bulb. Current going in: Current going out: How do these two numbers compare? Does that make sense? Why or why not? 2. Next, measure and record the voltage difference across the light bulb. After you measure the voltage difference, swap the red and black leads (put the black lead on the point on the circuit where the red one was, and vice versa) and record the new reading. Voltage difference: Voltage difference (swapped): What happened to your measurement? Why? 3. Now measure the voltage difference across the battery. Under the Advanced controls try adjusting the wire resistivity to more than zero. Now compare the voltage across the bulb and battery. Why do you think the voltage is different? 4. See if you can find the missing voltage using your voltmeter. If you find it, say where. Page 3 of 8

PART III: Ohm s Law Ohm s Law tells us that in most circuits, voltage, current, and resistance are related through a simple formula: V = IR. Let s check to make sure our simulation follows this rule. Build a circuit with one resistor and one battery. You get to choose the resistance of the resistor and the voltage of the battery. If your circuit catches fire, turn down the battery voltage until it stops burning. 1. Write down the resistance of the resistor, and then measure and record the voltage difference across the resistor and the current through the resistor. Resistance: Voltage difference: Current: Is Ohm s Law satisfied? Show your reasoning. 2. Use Ohm s Law to figure out the default resistance of one of the CCK light bulbs. Build whatever circuit is necessary to do so. Include a schematic of your circuit with your answer. Circuit: Light bulb resistance: PART IV: The Series Circuit We ve mostly been working with the simplest possible circuit so far: one with a single battery and a single light bulb or resistor. A more complicated circuit is the series circuit, which has two or more resistors in a row. If we have a few resistors in series with resistances R 1, R 2, etc, we can treat them as being equivalent to one resistor with resistance R eff. Your next task is to determine the rule for how resistors in series combine. For example, if you have two resistors in series with resistances R 1 and R 2, what is R eff? What if you have three resistors (R 1, R 2, R 3 ) in a row? 1. Build some series circuits and make measurements to determine the rule for combining resistors in series. Draw pictures of two circuits that you used to determine the rule and then write the rule for combining resistors in series. Page 4 of 8

Circuit 1: Circuit 2: Rule for combining resistors in series: Below, write down any relevant measurements that you made and show that they obey Ohm s Law Page 5 of 8

PART V: The Parallel Circuit A circuit that has two resistors parallel (with the right and left ends connected together) is called a parallel circuit because the current can flow in two parallel paths around the circuit. If we have a few resistors in parallel with resistances R 1, R 2, etc, we can also treat them as being equivalent to one resistor with resistance R eff. Your next task is to determine the rule for how resistors in parallel combine. For example, if you have two resistors in parallel with resistances R 1 and R 2, what is R eff? What if you have three resistors (R 1, R 2, R 3 ) in parallel? 1. Build some parallel circuits and make whatever measurements you need to determine the rule for combining resistors in parallel. If you do not find the rule, discuss it with your TA. (Below, write down the rule, and draw pictures of two circuits that you used to determine it. ) Circuit 1: Circuit 2: Rule for combining resistors in parallel: Write down in the space below all relevant measurements that you made, and show that they obey Ohm s Law. Page 6 of 8

PART VI: Conservation of charge You know already that certain quantities, like momentum and energy, are conserved. These things cannot be created from nothing or destroyed. We have also stated that charge is conserved, meaning the net charge (magnitude of positive charge minus magnitude of negative charge) can never be created or destroyed. Current, meanwhile, is the flow of charge through a circuit. In this section, we will examine the consequences of conservation of charge on the flow of current. 1. Suppose you have a circuit in front of you, with the opportunity to take some measurements. If charge cannot be created or destroyed, what do you think this tells us about what the current does at a junction in the circuit? 2. Build the following circuits and measure the currents through all the light bulbs and the battery. Write down on the pictures of the circuits the measurements you take. What do you notice? (Note: Quantities like light bulb resistance and battery voltage can be adjusted in CCK. For these circuits, just use the default values.) 3. What does the conservation of charge tell us about how current behaves at a junction in a circuit? PART VII: Changing the Voltage 1. Using one of the circuits you constructed above, add a second battery at some point in the circuit. Measure the voltage and the current in this circuit and compare your answers with the values you recorded for the original configuration. Explain the differences that you find. Experiment by inserting the battery at another point in the circuit or in the opposite direction and record what you find. (It is possible to add a battery to any branch of a series or parallel circuit, but applying Ohm s law to a parallel circuit can get complicated.) Page 7 of 8

Potential Exam Questions: Not required for the lab and will not be graded, but if you have extra time, try these examples of potential exam questions. 1. Consider two resistors in series. The first is twice the resistance of the second. If electric current flows (left to right) through these resistors, the current through the 2nd resistor (labeled R) is... A) equal to B) twice as large as C) half as large as D) 1/3 as large as E) different than, but not by a factor of 2 or 3...the current through the first resistor. 2R R 2. Normal light bulbs are wired up inside like this: Glass bulb Metal ring (Insulator ) Metal bottom Given this, which arrangement(s) shown below will light the bulb? AA AA AA AA AA AA #1 #2 #3 #4 #5 A) None of the arrangements above will light the bulb B) Only one of the circuits shown lights the bulb. C) Exactly two of the circuits work, but the other three fail. D) More than two of the circuits work (but not all of them) E) All of the arrangements above will light up the bulb Page 8 of 8