Laser-driven undulator source

Similar documents
Space Charge in High Current Lower Energy Electron Bunches

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

X-ray Free-electron Lasers

Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator

4 FEL Physics. Technical Synopsis

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Acceleration at the hundred GV/m scale using laser wakefields

Toward a high quality MeV electron source from a wakefield accelerator for ultrafast electron diffraction

The Production of High Quality Electron Beams in the. Laser Wakefield Accelerator. Mark Wiggins

An Introduction to Plasma Accelerators

Laser-driven soft-x-ray undulator source

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

Harmonic Lasing Self-Seeded FEL

Linac optimisation for the New Light Source

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

BEAM DIAGNOSTICS CHALLENGES

External injection of electron bunches into plasma wakefields

Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov

Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator

Active plasma lenses at 10 GeV

Introduction to plasma wakefield acceleration. Stuart Mangles The John Adams Institute for Accelerator Science Imperial College London

Generation and characterization of ultra-short electron and x-ray x pulses

Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises

Longitudinal and transverse beam manipulation for compact Laser Plasma Accelerator based free-electron lasers

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

Layout of the HHG seeding experiment at FLASH

Laser-driven intense X-rays : Studies at RRCAT

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I

First operation of a Harmonic Lasing Self-Seeded FEL

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

KE opportunity: Compact radiation source based on a laser-plasma wakefield accelerator

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

Ultra-Short Low Charge Operation at FLASH and the European XFEL

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Ultrashort electron source from laser-plasma interaction

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

Markus Roth TU Darmstadt

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

WG2 on ERL light sources CHESS & LEPP

Part V Undulators for Free Electron Lasers

Tunable, all-optical quasi-monochromatic Thomson X-ray source

Mapping plasma lenses

Compact ring-based X-ray source with on-orbit and on-energy laser-plasma injection

Undulator Commissioning Spectrometer for the European XFEL

Experimental study of nonlinear laser-beam Thomson scattering

3rd International Conference on Frontiers of Plasma Physics and Technology. Summary by David Neely

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

The X-ray FEL Oscillator: Parameters, Physics, and Performance

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

Simulations and Performance

Low slice emittance preservation during bunch compression

Vertical Polarization Option for LCLS-II. Abstract

arxiv: v1 [physics.acc-ph] 1 Jan 2014

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme.

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac

A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling

Undulator radiation from electrons randomly distributed in a bunch

Femto-second FEL Generation with Very Low Charge at LCLS

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

SCSS Prototype Accelerator -- Its outline and achieved beam performance --

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010

SINBAD. Ralph W. Aßmann Leading Scientist, DESY. LAOLA Collaboration Meeting, Wismar

Dielectric Accelerators at CLARA. G. Burt, Lancaster University On behalf of ASTeC, Lancaster U., Liverpool U., U. Manchester, and Oxford U.

Electron acceleration regime envisioned at ELI-Beamlines in the Czech Republic and test experiments.

Studies with Ultra-Short Pulses

Laser Ion Acceleration: Status and Perspectives for Fusion

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

The UCLA/LLNL Inverse Compton Scattering Experiment: PLEIADES

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory

Enhanced Betatron Radiation from a Laser Wakefield Accelerator in a Long Focal Length Geometry

GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

Emittance preserving staging optics for PWFA and LWFA

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

Review of Laser Wakefield Accelerators. Victor Malka. Laboratoire d Optique Appliquée.

LCLS Commissioning Status

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

Numerical studies of density transition injection in laser wakefield acceleration

stabilized 10-fs lasers and their application to laser-based electron acceleration

M o n o e n e r g e t i c A c c e l e r a t i o n o f E l e c t r o n s b y L a s e r - D r i v e n P l a s m a W a v e

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

ICFA ERL Workshop Jefferson Laboratory March 19-23, 2005 Working Group 1 summary Ilan Ben-Zvi & Ivan Bazarov

FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II

Laser wakefield electron acceleration to multi-gev energies

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

Beam manipulation with high energy laser in accelerator-based light sources

LOLA: Past, present and future operation

SUPPLEMENTARY INFORMATION

Transcription:

Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G. Tsakiris, F. Krausz and S. Karsch Max-Planck-Institut für Quantenoptik T. P. Rowlands-Rees and S. M. Hooker University of Oxford U. Schramm Forschungszentrum Dresden, Rossendorf FLS Workshop, Stanford, 04.03.2010

Laser-wakefield electron acceleration laser power: ~ TW to PW energy: ~ J pulse length: ~ 5-50 fs gas jet or capillary: plasma acc. gradient: 10-100 GV/m few cm γ few-100 MeV- GeV electrons M. Fuchs, FLS 2010

Duration of the accelerated bunch )*'+,"!&!$-.)/&#,"!$&0&'!"#1"& 2"3$!$-.)/&4/$%$&5&617!"#$%& '(!#$ 9(99!$ 8&$&9(-,/&!$-.)/:&;&61&0&<=&>#?? PIC simulation (M. Geissler) M. Fuchs, FLS 2010

M. Fuchs, FLS 2010 Experimental setup: LWFA ATLAS 1 J 35 fs

M. Fuchs, FLS 2010 Experimental setup: LWFA ATLAS 1 J 35 fs

M. Fuchs, FLS 2010 Measured Electron Spectra at MPQ Electron energy [MeV] 210 150 100 Consecutive laser shots

M. Fuchs, FLS 2010 Measured Electron Spectra J. Osterhoff, A.Popp, et al.,!"#!!"!"!#$%##&!'&##$(

Setup Undulator Radiation M. Fuchs, FLS 2010

M. Fuchs, FLS 2010 Setup Undulator Radiation field gradient: 500 T/m aperture 6 mm

M. Fuchs, FLS 2010 Setup Undulator Radiation L = 30 cm!u = 5mm K = 0.55 gap = 1.2mm

M. Fuchs, FLS 2010 Setup Undulator Radiation! divergence = 2 mrad FWHM pointing stability = 1.4 mrad rms # ($"" (""" (mm) " '"" &"" %""!! $"" #!! "! (mm) "

M. Fuchs, FLS 2010 Setup Undulator Radiation 1.32 mrad (mm) 5mm 5 0 no lenses 8000 7000 intensity [a.u.] 6000 5000 4000 3000 2000!5 1000!5 with Magnetic 0 Lenses 5 (mm) 2.49 mrad

M. Fuchs, FLS 2010 Setup Undulator Radiation 1.32 mrad (mm) 0.12 mrad 0!5 5mm 5 with Magnetic Lenses!5 0 5 0.25 mrad with lenses (mm) 2.49 mrad x 10 4 3.5 8000 7000 3 6000 2.5 5000 2 4000 1.5 3000 1 2000 0.5 1000 0 intensity [a.u.]

M. Fuchs, FLS 2010 Setup Undulator Radiation Energy [MeV] 220 150 100

Measured Undulator Spectrum w Transmission Grating transmitted radiation (0.th order) ±1st diffraction orders

Measured Undulator Spectrum Observation angle (mrad) 2.0 1.0 0 40 35 30 25 20 15 10 5 CCD counts (arb. units) -1.0 30 20 λ res = 10 0 10 20 30 Wavelength (nm) λ u 2nγ 2 (1+ K2 ) 2 + γ2 Θ 2 0 MF et al., Nature Phys. 5, 826 (2009)

Undulator Wavelength vs Electron Energy 40 Undulator wavelength (nm) 35 30 25 20 15 150 160 170 180 190 200 210 λ res = Electron energy (MeV) λ u 2nγ 2 (1+ ) K2 2 + γ2 Θ 2

Electron- & Undulator Spectrum Electron Undulator spectrum spectrum Counts [arb.units.] 3.0 2.0 1.0 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 20% (FWHM) 100 150 200 Energy [MeV] 250 0.1 0 350 400 450 500 550 600 650 9 17 λ [nm]

Energy-dependent Influence of Magnetic Lenses 1.2 mm horizontal envelopeσ e,x position of CCD 190 MeV 1.2 mm 1.2 mm vertical envelope 1 m σ e,y s undulator beam size: (at position s) Σ und (s) = σ 2 ph (s)+σ2 e(s) 1.2 mm 210 MeV s single electron 1.2 mm electron beam emission 240 MeV 1.2 mm s

System Response Function Normalized on-axis flux [arb.units.] 1.0 0.8 0.6 0.4 0.2 120 160 200 240 280 Energy [MeV]

Filtered Electron Spectrum Counts [arb.units.] 3.0 2.0 1.0 10% (FWHM) 100 150 200 250 Energy [MeV]

Filtered Electron Spectrum Counts [arb.units.] 3.0 2.0 1.0 100 150 200 10% (FWHM) 250 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 20% (FWHM) Energy [MeV] 0 350 400 450 500 550 600 650 Undulator λ spectrum λ 1 γ 2 dλ λ 2 dγ γ

Tuning of the Undulator Radiation tuning by moving the lens position:! changing the response curve M. Fuchs, FLS 2010

Tunability of the Source 1 Normalised on-axis flux [arb. units] 0.8 0.6 0.4 0.2 0 50 100 150 200 250 300 Electron energy [MeV]

Properties of the Undulator Source 1$"#(%$@&%"@+")+A-&@A2-&)A&8B&-1 #)"9!$&A'$%")+A-:&@$)$,)$@&(-@(!")A%&#'$,)%"&+-&C=&D&A>&&&&,A-#$,()+3$&!"#$%&#/A)# #/A)E)AE#/A)&2"3$!$-.)/&3"%+")+A-&A>&FD )(-"9!$&+-&2"3$!$-.)/&9*&,/"-.+-.&!$-#G&'A#+)+A-# 106 photons in the fundamental (whole CCD) on-axis peak intensity: 10,000 photons/(shot mrad2 0.1%b.w.) (1 pc charge in effective spectrum) '$%>$,)!*&#*-,/%A-+H$@&)A&)/$&!"#$%&4'(1'E'%A9$&$I'$%+1$-)#7& '(!#$&@(%")+A-&+-)%+-#+,"!!*&>$2&<=&>#&4"!%$"@*&#'A-)"-$A(#& %"@+")+A-7 M. Fuchs, FLS 2010

Focussing of Undulator Radiation by Focussing the Electron Beam: (X-ray) lens-less focussing Electron beam trajectories x- plane 5 µm y- plane 5.5 µm 210 MeV, no energy spread M. Fuchs, FLS 2010

LWFA-forgiving Setup for Undulator Radiation Applications undulator radiation sample undulator dipole magnet electron beam compact setup possible for short undulator (hard focussing) no lossy X-ray optics necessary for LWFA beams tolerates fluctuations in energy and pointing (unlike for example Bragg-crystals as focussing elements) M. Fuchs, FLS 2010

WG8 Charge: Overview Laser Wakefield Accelerator Source Spontaneous Source FEL 500 ev 50 kev Demo-VUV 5 kev Electrons 550 MeV 100 pc 5% 5.5 GeV 300 pc 5% parameters: ongoing research 1.7 GeV 1 nc 0.1% Driverlaser 200 TW 4J /20fs 3 PW 60J /20fs 200 TW 4J /20fs 3 PW 60J /20fs Timeline near term 2 years long term >5 years near term 4 years long term >7 years -> Timeline refers to demonstration of the source and first experiments -> FAR from being user facilities!! M. Fuchs, FLS 2010

WG8 Charge: Scaling Laws Design/Timelime Scalings LWFA energy gain: LWFA max. acc. electrons: W P [GW] N max P [GW] Gordienko, Pukhov W. Lu Cost/Efficiency Undulator Design values 500 ev 50 kev FEL Design values 5 kev Demo Problems Solutions 1D FEL theory e-folding length: Pierce parameter: undulator length: JKLM&NOPLQ&4>#&1A@$7 IA (17kA) simulation MPQ test case ρ 1 γ ( I I A σ 2 x ) 1/3 λ 4/3 u L sat (15 25) L gain 1 nc/10 fs = 100 ka M. Fuchs, FLS 2010

M. Fuchs, FLS 2010 WG8 Charge: Costs / Efficiencies Design/Timelime Scalings Cost/Efficiency Undulator Design values 500 ev 50 kev Design values 5 kev Demo Problems Solutions Lasers: 200 TW, 4 J / 20 fs state of the art 1.5 M! (Optimistic) Efficiency estimation Wall Plug -> Laser: 10 % consider 60 % into pumping diode Laser -> Electron Beam:10 % => Total Wall Plug Efficiency: 1% 3 PW, 60 J / 20 fs in development 10 M! + vacuum chambers & equipment

M. Fuchs, FLS 2010 Spontaneous Undulator Radiation Design/Timelime Scalings Cost/Efficiency Undulator Design values 500 ev 50 kev Design values 5 kev Demo Problems Solutions 5 mm period, K = 0.55 1 m undulator (use focussing of photon beam by hard-focussing of electron beam) 500 ev 50 kev electrons energy 550 MeV 5.5 GeV acc length 3 cm 50 cm norm. emittance 1 mm mrad 1 mm mrad charge 100 pc 300 pc energy spread 5% 5% photon beam pulse duration 10 fs 10 fs peak ph/sec/0.1% b.w. 8.4 *10 17 2.5 *10 18 av. ph/sec/0.1% b.w. 8.4 *10 4 2.5 *10 4 laser power 200 TW 3 PW rep. rate 10 Hz 1 Hz

FEL: Design Values Design/Timelime Scalings Cost/Efficiency Undulator Design values 500 ev 50 kev Design values 5 kev Demo Problems Solutions 5 mm period, K = 0.55 6 m undulator: saturation 5 kev Demo-VUV electrons energy 1.7 GeV?? acc length 15 cm?? emittance 1 mm mrad?? charge 1 nc?? energy spread 0.1%?? photon beam Pierce parameter 0.15% pulse duration 4 fs?? peak ph/sec/0.1% b.w. 1 *10 26?? av. ph/sec/0.1% b.w. 4 *10 11?? laser power 3 PW 200 TW rep. rate 1 Hz 10 Hz )*!+,-./,!$%&'()"!*++()&!,-.)&/!'&##0(* - no wakefield-effects in undulator included - no start-2-end simulation M. Fuchs, FLS 2010

M. Fuchs, FLS 2010 Problems Design/Timelime Scalings Cost/Efficiency Undulator Design values 500 ev 50 kev Design values 5 kev Demo Problems Solutions stability (MPQ*) - pointing: 1mrad (rms) - variation in charge: 40 % - variation in energy: 6 % energy spread 3.5 % (rms) => FAR from being user facility!! need more accelerated charge (up to 1 nc) higher electron energies * J. Osterhoff, A.Popp, et al.,!"#!!"!"!#$%##&!'&##$(

Solutions Design/Timelime Scalings Cost/Efficiency Undulator Design values 500 ev 50 kev Design values 5 kev Demo Problems Solutions Stability MORE LASER POWER (not driving the driver laser at its spec-limits) -> decrease fluctuations Decouple injection from acceleration: counter-prop. pulses density downramp n Principle: Plasma wave courtesy: V. Malka Injector: plasma ramp courtesy: W. Leemans electrons Pump beam z Injection beam More charge/ higher electron energies MORE LASER POWER LOA: 1%-rms energy spread (10 pc) C.Rechatin et al, PRL 102 (2009) LBNL: 0.5-1 nc from backside of gasjet low longitudinal and transverse momentum C.Geddes et al, PRL 100 (2008) M. Fuchs, FLS 2010