x 0, x 1,...,x n f(x) p n (x) = f[x 0, x 1,..., x n, x]w n (x),

Similar documents
u x + u y = x u . u(x, 0) = e x2 The characteristics satisfy dx dt = 1, dy dt = 1

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ

F(jω) = a(jω p 1 )(jω p 2 ) Û Ö p i = b± b 2 4ac. ω c = Y X (jω) = 1. 6R 2 C 2 (jω) 2 +7RCjω+1. 1 (6jωRC+1)(jωRC+1) RC, 1. RC = p 1, p

Lund Institute of Technology Centre for Mathematical Sciences Mathematical Statistics

An Example file... log.txt

This document has been prepared by Sunder Kidambi with the blessings of

Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER

SME 3023 Applied Numerical Methods

SKMM 3023 Applied Numerical Methods

SKMM 3023 Applied Numerical Methods

Proving observational equivalence with ProVerif

SME 3023 Applied Numerical Methods

Arbeitstagung: Gruppen und Topologische Gruppen Vienna July 6 July 7, Abstracts

2 Hallén s integral equation for the thin wire dipole antenna

ÆÓÒ¹ÒØÖÐ ËÒÐØ ÓÙÒÖÝ

INRIA Sophia Antipolis France. TEITP p.1

a P (A) f k(x) = A k g k " g k (x) = ( 1) k x ą k. $ & g k (x) = x k (0, 1) f k, f, g : [0, 8) Ñ R f k (x) ď g(x) k P N x P [0, 8) g(x)dx g(x)dx ă 8

Applications of Discrete Mathematics to the Analysis of Algorithms

Periodic monopoles and difference modules

«Û +(2 )Û, the total charge of the EH-pair is at most «Û +(2 )Û +(1+ )Û ¼, and thus the charging ratio is at most


Lecture 16: Modern Classification (I) - Separating Hyperplanes

MATH2111 Higher Several Variable Calculus Integration

Multi-agent learning

I118 Graphs and Automata

PH Nuclear Physics Laboratory Gamma spectroscopy (NP3)

Random Signals and Systems. Chapter 3. Jitendra K Tugnait. Department of Electrical & Computer Engineering. Auburn University.

ÁÒØÖÓÙØÓÒ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ ÁÒÜ ½ ÁÒØÖÓÙØÓÒ ¾ ÈÖÓÐÑ ØØÑÒØ ÓÚÖÒ¹ ÐØÖ Ò ËÑÙÐØÓÒ Ê ÙÐØ ÓÒÐÙ ÓÒ

A Language for Task Orchestration and its Semantic Properties

II. FOURIER TRANSFORM ON L 1 (R)

STA 256: Statistics and Probability I

µ(, y) Computing the Möbius fun tion µ(x, x) = 1 The Möbius fun tion is de ned b y and X µ(x, t) = 0 x < y if x6t6y 3

Planning for Reactive Behaviors in Hide and Seek

FINAL REVIEW Answers and hints Math 311 Fall 2017

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx

Chebyshev Spectral Methods and the Lane-Emden Problem

1 Review of di erential calculus

Continuous r.v practice problems

ALLEN. Pre Nurture & Career Foundation Division For Class 6th to 10th, NTSE & Olympiads. å 7 3 REGIONAL MATHEMATICAL OLYMPIAD-2017 SOLUTION

ECE 4400:693 - Information Theory

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane.

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval KSU. Today

Seminar to the lecture Computer-based Engineering Mathematics

Lecture 10, Principal Component Analysis

Multiple Integrals. Introduction and Double Integrals Over Rectangular Regions. Philippe B. Laval. Spring 2012 KSU

Let X and Y denote two random variables. The joint distribution of these random

Green s function, wavefunction and Wigner function of the MIC-Kepler problem

OVER 150 J-HOP To Q JCATS S(MJ) BY NOON TUESDAY CO-ED S LEAGUE HOLDS MEETING

MATH 411 NOTES (UNDER CONSTRUCTION)

Multiple Integrals. Chapter 4. Section 7. Department of Mathematics, Kookmin Univerisity. Numerical Methods.

2 (Statistics) Random variables

2016 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 2016

Queues, Stack Modules, and Abstract Data Types. CS2023 Winter 2004

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

5 Operations on Multiple Random Variables

Metric Spaces. Exercises Fall 2017 Lecturer: Viveka Erlandsson. Written by M.van den Berg

Math 554 Integration

Maryam Pazouki ½, Robert Schaback

Personalizing Declarative Repairing Policies for Curated KBs. Ioannis Roussakis Master s Thesis Computer Science Department, University of Crete

Chapter 5: Numerical Integration and Differentiation

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai

arxiv:hep-ph/ v1 10 May 2001

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)


e x3 dx dy. 0 y x 2, 0 x 1.

Numerical solution of system of linear integral equations via improvement of block-pulse functions

Improving the Berlekamp algorithm for binomials x n a

Loop parallelization using compiler analysis

Homework 9 (due November 24, 2009)

Problem Max. Possible Points Total

P1 Calculus II. Partial Differentiation & Multiple Integration. Prof David Murray. dwm/courses/1pd

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration.

MEEN 618: ENERGY AND VARIATIONAL METHODS

NPTEL COURSE ON MATHEMATICS IN INDIA: FROM VEDIC PERIOD TO MODERN TIMES

Topics in Probability and Statistics

Chapter 4: Interpolation and Approximation. October 28, 2005

Review for the Final Test

18.06 Quiz 2 April 7, 2010 Professor Strang

106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM Fermat s Theorem f is differentiable at a, then f (a) = 0.

SOLUTIONS OF SELECTED PROBLEMS

Math Final Solutions - Spring Jaimos F Skriletz 1

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

Multi-electron and multi-channel effects on Harmonic Generation

Statistical machine learning and kernel methods. Primary references: John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline.

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Optimal back-to-front airplane boarding

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

Multi Variable Calculus

First Order Differential Equations

16.2. Line Integrals

arxiv:cs.na/ v2 14 Oct 2003

Lecture 11: Regression Methods I (Linear Regression)

CHM320: MATH REVIEW. I. Ordinary Derivative:

Immerse Metric Space Homework

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form

Chapter 5 Joint Probability Distributions

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

Transcription:

ÛÜØ Þ ÜÒ Ô ÚÜ Ô Ü Ñ Ü Ô Ð Ñ Ü ÜØ º½ ÞÜ Ò f Ø ÚÜ ÚÛÔ Ø Ü Ö ºÞ ÜÒ Ô ÚÜ Ô Ð Ü Ð Þ Õ Ô ÞØÔ ÛÜØ Ü ÚÛÔ Ø Ü Ö L(f) = f(x)dx ÚÜ Ô Ü ÜØ Þ Ü Ô, b] Ö Û Þ Ü Ô Ñ ÒÖØ k Ü f Ñ Df(x) = f (x) ÐÖ D Ü Ü ÜØ Þ Ü Ô Ñ Ü ÜØ Ñ Ð Ñ Ü ÜØ ºD k (f) = D(D k f) ÐÖ k ÜÕÒ Ü Ü ÜØ ºL(αf + βg) = αl(f) + βl(g) Ñ Ò ÛÒ Ñ ÜÒ Ð Ñ Ü Ô Ð L Ü Ô Ð Ü ÜØ Ñ ºÑ Ô Ð Ø p, b] Ö Û ÞÜ Ò ÚÛÔ Ø f Þ e(x) = f(x) p(x) ÐÖ Ü Ò e ÜÝ L(f) L(p) = L(e) p ÐÖ f ÐÖ Ü Ò p(x) = n j=0 f(x j)l j (x) Ñ Ò ºp Ñ Ô Ð Ø ÐÖ f ÚÛÔ Ø Ü Û Ý j = 0,,..., n L(l j ) = w j Ñ x 0, x,...,x n Þ ÛÔ f ÐÝ ÚÐ ØÜ Ô Ñ Ô Ð Ø Ñ ºL(p) Ý ÐÖ L(f) Þ ÜÖ ÐÝ Ý E(f) = L(f) L(p) = L(e) ºL(f) L(p) Ó Û E(f) Þ ÜÒ Ô Ü º¾ Þ ÛÔ f ÐÝ ÚÐ ØÜ Ô Ñ Ô Ð Ø P n, b] Ö Û Ü f Þ x 0, x,...,x n ³ ÛÜØ µ º½ Õ Ô Ø ÐÖ º, b] Ö ÛÐ Þ Ý µ f(x) p n (x) = fx 0, x,..., x n, x]w n (x), Ó ºw n (x) = n j=0 (x x j) ÜÝ d fx fx dx 0,..., x n, x] = lim 0,...,x n,x+h] fx 0,...,x n,x] h 0 h = lim h 0 fx 0,...,x n, x, x + h] = fx 0,...,x n, x, x], ½

¾ Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ Ó Ð º½µ f (x) p n (x) = fx 0,...,x n, x, x]w n (x) + fx 0, x,...,x n, x]w n (x). Ð ÛÔ ³ ÛÜØ ÐÝ º ØÝÒ ØÐ E(f) = Df Dp n = f (x) P n (x) = f(n+) (ξ) (n + )! w n(x)+ f(n+) (η) (n + )! w n (x), ξ, η (, b). º¾µ Ñ Ü Ñ Ó Ø Ð Ð ÚÐ ØÜ Ô Þ ÛÔÒ Þ ÞÜ Ô Þ Ý Ð Ñ Ú Ü Ñ ÞÜ Ô Þ Ñ Ý Ò ÛÔ Ó Ò Þ Ý ÚÐ ØÜ Ô Þ ÛÔ Þ Ð ÔÓ ÔÝ Ü Ò Þ ÛÜ Ð Ò µ º½ ÐÝ Ó Ò Ó Ð ÝÐ k Ü Ö w n (x) = w n (x k ) µ º¾ Þ Ð Ð º µ E(f) = f(n+) (η) (n + )! w n(x k ) = f(n+) (η) (n + )! n j=0, j k (x k x j ). Ó Ò ÜÛÒ ºw n(x) = 0 ÛÔ ÞÜ Ô Þ Ý Ð ÞÜ Ô Þ ÜÝØ µ º¾ Þ Ð Ð Ð ÔÓ Ó Ý Ü Ü Ò Þ ÛÜ Ð Ò µ º½ ÐÝ º µ E(f) = f(n+) (ξ) (n + )! w n(x) = f(n+) (ξ) (n + )! n (x x j ). j=0 º Ý Þ ÜÖÔ n ÐÝ Ñ ÜÖ Ò Ü Ö D(f) ¹Ð Ü Û D(p n ) Þ Ý Ô ºD(f) ¹Ð ÜÖ Ð D(p 0 ) = 0 Ó Ò Ñ Ð ÛÒ n = 0 Ü Ö p (x) = f(x 0 )+fx 0, x ](x x 0 ) ÞÒ ºD(f) ¹Ð Þ Ô Ý Þ ÜÖ ÞÝ Ð ÛÔ n = Ü Ö x 0 ÛÔ ÞÜ Ô Þ ÜÖ ºD(p ) = fx 0, x ] Ð ÛÔ º µ f (x 0 ) fx 0, x 0 + h] = f(x 0 + h) f(x 0 ). h µ º Ø ÐÖ Ý Þ ÜÖ º µ E(f) = hf (η). ¹Ü Ô Þ ÛÔ x = x + h x 0 = x h Þ ÛÔ ÞÜ ÐÖ Þ ÝÖÔ ÞÜ ÜÖ ÜÛÒ º ÚÐ Ø º µ f (x) fx h, x + h] = f(x + h) f(x h). h µ º Ø ÐÖ Ý Þ ÜÖ º µ E(f) = 6 h f (ξ).

Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ ÞÜ ÔÐ Ý fx 0, x ] Lgrnge ØÝÒ Ø ÐÖ Þ Ö ÞØÒ ÓÔ n = Ü Ö Þ Ú Þ Ö Û Þ ÛÔ Ð Ð Ü Û ÛÐ Ò ÝÜØ Ó Ð ºx Ó Ð x 0 Ó ÞÒ ÕÒ ÛÔ º ÝÐ ÜÖ Ñ ÔÐ Û Ó ºÓ Û x x 0 ÝÜØ Ý ÔÞ ÞÒ Þ Þ ÜÖ Þ Ð ÛÔ n = Ü Ö p (x) = f(x 0 ) + fx 0, x ](x x 0 ) + fx 0, x, x ](x x 0 )(x x ), x = x 0 +h x = x 0 +h Ü Ô Ñ ºp (x) = fx 0, x ]+fx 0, x, x ](x x 0 x ) Ð ÛÔ º µ f (x 0 ) 3f(x 0) + 4f(x 0 + h) f(x 0 + h). h º½¼µ E(f) = 3 h f (η). º½½µ f (x) f(x 0 + h) f(x 0 h). h Ð ÛÔ Ý Þ ÜÖ Ð ÛÔ x = x 0 + h x = x 0 h Ü Ô Ñ º½¾µ E(f) = 6 h f (η). ÐÖÒÒ ÚÐ ØÜ Ô Ò Ô Ð Ø ÞÜ Ö Þ ÜÒ Ô Ü Ð Þ ØÕ Ô Þ Õ Ô Ð ÛÐ ÜÝØ º½ µ p n (x) = n j=0 fx 0, x,...,x j ]w j (x), w (x), w j (x) = (x x j )w j (x), j. ÜÞ º½ µ e n (x) = fx 0, x,...,x n, x]w n (x). Ý Ü Ü Ð Ô ÐÖ ÑÝÐ ºÜÞ ÜÕÒ Þ Ü Ô Ñ Ü Û Ý Ð ÞÜÝØ Ò µ º½ Õ Ô Ô Ü ºÑ ÒÖØ ÜØÕÒ µ º½ Õ Ô Ý ÛÐ Ò ÝÜØ Þ d dx fx 0,...,x n, x] = fx 0,...,x n, x, x]. Ñ ÛÞÒ k > Ü Ö Ô º½ µ d k dx kfx 0, x,...,x n, x] = k!fx 0, x,...,x n, x,...,x]. }{{} k ºÑ ÒÖØ k Þ ØÐ Þ Ø ÚÜ Ü f ÚÛÔ Ø Ý ÔÞ

Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ k ÐÖ ÚÛ Ô d k dx kfx 0,...,x n, x] = d ( ) d k dx dx k fx 0,...,x n, x] = d dx ((k )!fx 0,...,x n, x,...,x]. }{{} k ÓÒÕÔ ºy () = = y (k) = x ÜÝ fx 0,...,x n, y (),...,y (k) ] ÐÖ Þ ÓÒÕÔ Ð ÜÝ Ñ ÔÞÝÒ k ÐÝ ÚÛÔ Ø ρ ρ(y (),...,y (k) ) = fx 0,..., x n, y (),...,y (k) ] Ð ÛÔ ÞÜÝÜÝ ÐÐ ÝÒÞÝÔ º(y (j) = x) x ÐÝ ÚÛÔ Ø Ñ Ò d dx ρ(y(),...,y (k) ) = k dρ dy (j) dy (j) dx = k dρ dy = kfx 0,...,x (j) n, x, x,...,x], }{{} º ÔÖ Þ Ô k º½ µ f (k) (x) n j=0 fx 0, x,..., x j ] dj dx j w j (x). Ð ÛÔ µ º½ ¹ µ º½ Þ Õ ÔÒ º½ µ E(f) = dk dx k (fx 0,..., x n, x]w n (x)). Ý f ÐÝ k ÜÕÒ ÞÜ ÔÐ Ü Ü Û º½ µ f (k) (x) k!fx 0, x,...,x k ]. Ü Ñ Ü Û ºx 0, x,..., x k Þ ÛÔ Þ Ð Ò Ð Ò Ô Ò Ö ÛÐ Ý x ÜÝ µ º½ Õ Ô ÐÝ ³ ÛÜØ º ØÝÒ ÐÝ Ú Þ µ º½ Õ Ô º Ó Û Ö Û ÐÝ ºn = k Ü Ö Þ ÜÒ Ô ÚÜ Ô º Þ ÛÔ f ÐÝ ÚÐ ØÜ Ô Ñ Ô Ð Ø p n, b] Ö Û Ø ÚÜ ÚÛÔ Ø f Þ º½ µ I(f) = ³ ÛÜØ µ º½ Õ Ô Ø ÐÖ º, b] Ö ÛÐ Þ Ý µ x 0, x,...,x n f(x) p n (x) = fx 0,...,x n, x]w n (x), f(x)dx = p n (x)dx + Ó Ð ºw n (x) = n j= (x x j) ÜÝ fx 0, x,...,x n, x]w n (x)dx

Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ º¾¼µ E(f) = I(f) I(p n ) = fx 0, x,...,x n, x]w n (x)dx ØÐ Ö Û ÓÒ Õ Ý w n ÚÛÔ ØÐ, b] Ö Û Ñ º Õ Ô ÝØÐ ÓÞ Ô Ñ Ü Ñ ÜÛÒ º¾½µ E(f) = fx 0, x,...,x n, η] ÐÜ Ô Ó Ý ÐÝ Ñ Ô ÜÖ ØÝÒ w n (x)dx Þ Ø ÚÜ Þ Ü Ô n+ Ý f ÚÛÔ ØÐ Ð Õ Ô Ñ ºη (, b) ÞÒ ÕÒ ÛÔ Ü Ö º¾¾µ E(f) = (n + )! f(n+) (ξ) Ü ÖÝ ξ (, b) ÛÔ ÞÒ Û w n (x)dx. µ º¾¼ Þ ÝØÐ Ð Ô w n(x)dx = 0 Ð, b] Ö Û Ö Û ÓÒ Õ Ó w n ÚÛÔ ØÐ Ñ fx 0,...,x n, x]fx 0,..., x n, x n+ ] + fx 0,...,x n, x n+, x](x x n+ ). ÓØ E(f) = fx 0, x,...,x n+ ]w n (x)dx + º¾ µ E(f) = Ð ÛÔ µ º¾¾ Õ Ô Þ ÚÔ fx 0, x,...,x n+ ](x x n+ )w n (x)dx. Ó Ð ÔÞ Ô Ø ÐÖ ÕØ Ð Ý Ó Ý Ü ÐÜ Ô fx 0, x,...,x n+, x]w n+ (x)dx., b] Ö Û Ö Û ÓÒ Õ Ý w n+ ÚÛÔ ØÐÝ Ü Ð ÓÞ Ô x n+ ÛÔ Þ Ñ º¾ µ E(f) = fx 0, x,...,x n+, η] w n+ (x)dx Ñ ÝÜÐ Ð Ô Þ Ø ÚÜ Þ Ü Ô n + Ý f ÚÛÔ ØÐ Ð Õ Ô Ñ ºη (, b) ÞÒ ÕÒ ÛÔ Ü Ö º¾ µ E(f) = (n + )! f(n+) (ξ) Ü ÖÝ ξ (, b) ÛÔ ÞÒ Û w n+ (x)dx. Þ Ý Þ ÜÖÔ Þ Ü ÛÒ ÚÜ Ô Þ Õ Ô Ð ÛÐ ÞÔÒ ÐÖ µ º½ Õ Ô ÝÒÞÝÔ ºµ º¾ ¹ µ º¾¾ Þ Õ Ô Þ ÞÜ Ö Ü Û

Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ ÕØ ÐÖÒÒ ÚÐ ØÜ Ô Ñ Ô Ð Ø ÞÜ Ö ÚÜ Ô Þ Õ Ô º º½ f(x) = f(x 0 ) + fx 0, x](x x 0 ), I(p 0 ) f(x 0 )dx = f(x 0 )(b ). º¾ µ º¾ µ E(f) = f (ξ) Ð ÛÔ x 0 = Ñ I(f) f()(b ). µ º¾¾ Õ Ô ÝÒÞÝÔ º, b] Ö Û w 0 (x) = x 0 (x )dx = f (ξ)(b ). ºÑ Ô ÐÒ Þ Ý Þ ÜÛÔ ÚÜ Ô Þ Ý (I) Ð ÛÔ x 0 = +b Ñ ( ) + b º¾ µ I(f) f (b ). w (x) = ( ) x +b b Ð ÛÔ x = x 0 Ü Ô º w 0(x)dx = ( ) x +b = 0 Ó µ º¾ Õ Ô ÝÒÞÝÔ º, b] Ö Û 0 (II) º¾ µ E(f) = 4 f (ξ)(b ) 3. ºÖÚÒ Þ ÛÔ Þ Ý Þ ÜÛÔ ÚÜ Ô Þ Ý Ô Ý Ü ÐÖÒÒ ÚÐ ØÜ Ô Ñ Ô Ð Ø ÞÜ Ö ÚÜ Ô Þ Õ Ô º º¾ f(x) = f(x 0 ) + fx 0, x ](x x 0 ) + fx 0, x, x]w (x), I(p 0 ) = (f(x 0) + fx 0, x ](x x 0 ))dx = f(x 0 )(b ) + fx 0, x ](b )(b + x 0 ). Ð ÛÔ x = b ¹ x 0 = Ñ (III) º ¼µ I(f) (b )(f() + f(b)). µ º¾¾ Õ Ô ÝÒÞÝÔ º, b] Ö Û w (x) = (x )(x b) 0 º ½µ E(f) = f (ξ)(b ) 3. º ØÜ ÐÐ Þ ÜÛÔ ÚÜ Ô Þ Ý

Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ ÔÝ ÐÖÒÒ ÚÐ ØÜ Ô Ñ Ô Ð Ø ÞÜ Ö ÚÜ Ô Þ Õ Ô º º f(x) = f(x 0 ) + fx 0, x ]w 0 (x) + fx 0, x, x ]w (x) + fx 0, x, x, x]w (x), I(p 0 ) = (f(x 0) + fx 0, x ](x x 0 ) + fx 0, x, x ](x x 0 )(x x ))dx = f(x 0 )(b ) ( + fx 0, x ](b )(b + x 0 ) ) +fx 0, x, x ] (b x0 ) (b x 6 + x 0 ) ( x 0) ( x 6 + x 0 ). Ü Ô x = x Ü Ô º w (x) = 0 Ð ÛÔ x = b ¹ x = +b º ¾µ I(f) (b ) f() + f ( +b ( ( = b 6 f() + 4f +b ) ) + f(b), º µ E(f) = w 3 (x)(x x 3 )w (x) = (x ) ( x +b ) f() + 6 ( f(b) f ( +b x 0 = Ñ ) (IV ) (x b) ) + f(b) )] fx 0, x, x, x 3, x]w 3 (x)dx = 90 f(4) (ξ)(b ) 5. º(Simpson s rule) Ó ÕØÒ Õ ÐÐ Þ ÜÛÔ Þ ÜÛÔ ÚÜ Ô Þ Ý Þ Ý ÐÝ ÐÖÒÒ ÚÐ ØÜ Ô Ñ Ô Ð Ø ÞÜ Ö ÚÜ Ô Þ Õ Ô º º f(x) = f(x 0 ) + fx 0, x ]w 0 (x) + fx 0, x, x ]w (x) + fx 0, x, x, x 3 ]w (x) +fx 0, x, x, x 3, x]w 3 (x), ÚÛÔ Ø ºw 3 (x) = (x ) (x b) Ð ÛÔ x = x 3 = b ¹ x 0 = x = Ñ (V ) Ý Ý Ð µ º¾¾ Õ Ô ÝÒÞÝÔ Ó Ð, b] Ö Û Þ º µ I(f) b (b ) (f() + f(b)) + (f () f (b)), º µ E(f) = 70 f(4) (ξ)(b ) 5. Ñ Ø Ð Ò Ý ØÜ ÐÐ Ð Ô ºÓÛ ÞÒ ØÜ ÐÐ Þ ÜÛÔ ÚÜ Ô Þ Ý ÜÝ x = b x = y = 0 Ñ ÜÝ ÐÖ Ü Ò ØÜ Ý ÐÜ Ô Þ Ü ÜÝ Ó Ý Ý Ñ Ý ÞÒ Ó (b, f(b)) (, f()) Þ ÛÔ Ü Ü Ö º ÚÛÔ Ø Þ ÝÐ Þ ÜÖ ÔÐ Û (I) (V ) Ñ ÜÛÒ Ü Ö Ô Þ ØÝ ÚÜ Ô Þ Õ Ô Ü Ö k ÜÖÒ ÜÝ (b ) k ÑÜ Þ Ñ ÐÐ Ð Ñ º Ð Ö Þ Ý ÐРе Þ ÞÒ ÖÐ ºÐ b Ö Û Ü ÜÝ Û Ð ÛÔ Ð Ó Ð º¹Ò Ð ÑÐÝ ÜØÕÒ Ñ Ý Ü k > ¹Ý Ó Ò Ó ÐÖ ÜÞ º Ô Û Ý Ñ Ó Û Ü ÐÖ Ñ Ö Û Ü Ö

Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ Þ Ý Ñ Õ Ñ Ý Ü Ó Û Ñ Ò Ð Ü Ý Ñ Ö Û n ¹Ð, b] Ö Û Þ ÛÐ Ô º Ó Û Ñ Ö Û n Ð Ö Û ÞÛ Ð ÐÖ (I) (V ) Ñ ÜÛÒ ÐÖ Ñ ÕÕ Ò ÚÜ Ô Þ Õ Ô ÞÖ ÞØÔ j = x j = + jh Û Ð Þ ÛÔ ºh = b Ý Ü ÐÖ Ñ Ö Û N ¹Ð, b] N º0,,...,N Ñ Ô ÐÒ Þ Ý (I) º º xj º µ µ º¾ ¹ µ º¾ Þ Õ Ô Ø ÐÖ Ñ Ð ÛÒ x j, x j ] Ö Û Ð x j f(x)dx = (x j x j )d(x j ) + f (ξ(x j x j ) = hf(x j ) + f (ξ)h. I(f) h Ñ ÝÜÐ Ð Ô N f(x j ), ÞÜ Ô Ô Ô Ý Ó Ò Ð N f(x)dx = N xj x j f(x)dx ¹Ý Ó Ò E(f) = h f (ξ)(b ). f (ξ j )h µ º¾ ¹Ò ÞÐ ÛÞÒ Ý Þ Õ Ô ºµ º Þ Ñ ÛÒ ξ (, b) Ñ Û Ø ÚÜ ÖÚÒ Þ ÛÔ Þ Ý (II) º º º µ I(f) h N ( xj + x j f ), E(f) = b 4 f (ξ)h. Ð ÛÔ µ º¾ ¹ µ º¾ Þ Õ ÔÒ Ñ ØÜ Þ Õ Ô (III) º º Ð ÛÔ µ º ½ ¹ µ º ¼ Þ Õ ÔÒ º µ I(f) h N f(x j ) + f(x j ) = h(f(x 0) + f(x N )) + h N f(x j), E(f) = b f (ξ)h. Ó ÕØÒ Õ Þ Õ Ô (IV ) º º º µ Ð ÛÔ µ º ¹ µ º ¾ Þ Õ ÔÒ I(f) h f() + f(b) + N 6 f(x j) + 4 N f ( x j +x j ) ], E(f) = b 80 f(4) (ξ) h4. 4

Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ ÞÔÛ ÞÒ Ñ ØÜ Þ Õ Ô (V ) º º Ð ÛÔ µ º ¹ µ º Þ Õ ÔÒ º ¼µ I(f) h(f() + f(b)) + h N f(x j) + h(f () f (b)), E(f) = b 70 f(4) (ξ)h 4. Ñ ÝÐ ÝÒ Ñ Ð Ø Ñ ÐÜ Ô Ü Û º ÐÜ Ô ÐÝ Ü Û Ò Ü Ý ÓØ Ý Ò Ý ÐÖ ÓÞ Ô Ñ ÝÐ ÝÒ Ñ Ð Ø Ñ ÐÜ Ô Ü Û Ü ÛÐ Ñ Ò Û Ñ Ø Ö Ô ÜÝ Þ Ý Þ Ð Ð Ô Ô Þ Û Ò ÜÞ Ñ ÐÒ Ò Ò Ð Ø ÐÜ Ô Ð Ü Û ÞÞÐ Ó Ô Ô Ý Þ Ö Þ ºÑ ÝÐ ÝÒ Ñ Ð Ø Ñ ÐÜ Ô R = {(x, y) x b, c y b} ÜÒ Ð Ü Ý Ò ÝÐ Ó ÐÒ R ÜÝ f(x, y)dxdy Þ Ý Ñ Ó ÕØÒ Õ Û Ü ÖÔ Ð Ø ÐÜ Ô Ü ÛÐ ºÑ Ö Û < b c < d Ü Ö Ñ ÖÚ ÐÝ Ñ Ñ ÒÐÝ m n Ü Ú Newton-cotes R º ½µ º ¾µ R { h = b n k = d c m Ü Ú Ò ÞÜÝÜÝ ÐÜ Ô Ð Ø ÐÜ Ô Þ Þ Ô f(x, y)dx = ( d f(x, y)dy c ) dx d f(x, y)dy Ý ÜÒ Ð µ º ¾ ¹ Ò ÔØ ÐÜ Ô Ý Ð Ó ÕØÒ Õ Û ÝÒÞÝÔ c j = 0,,,..., m Ð Ü Ö y j = c + jk ºÖ Û x ÜÝ d c = k 3 f(x, y)dy f(x, y 0 ) + m f(x, y j) + 4 m f(x, y j ) + f(x, y m ) ] (d c)k4 80 4 f(x,µ) y 4, Ó Ð (c, d) Ö Û µ ÛÔ Ý Ü Ö º µ d c = k 3 f(x, y)dydx + k 3 f(x, y 0 )dx + k 3 f(x, y m )dx m (d c)k4 80 f(x, y j )dx + 4k 3 4 f(x, µ) y 4 m f(x, y j )dx

½¼ Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ x i = +ih µ º ÝÒ ÐÜ Ô Ð Ð Ó ÕØÒ Õ Û ÐÝ Ü Û Þ Ý Ð ÖØÔ Ý Ö 0 i n ÜÝ f(x, y j )dx f(x 0, y j ) + n f(x i, y j ) + 4 n = h 3 i= i= ] f(x i, y j ) + f(x n, y j ) b 80 h4 4 f(ξ,y j ) x 4 ÐÖ Ó ÞÔ Ð Ø ÐÜ Ô ÐÝ Ü Û Õ ξ (, b) ÛÔ Ý Ü Ö d º µ º µ c f(x, y)dydx f(x 0, y 0 ) + n f(x i, y 0 ) + 4 n = hk 9 i= i= +4 m f(x 0, y j ) + f(x 0, y m ) + 4 m f(x i, y 0 ) + f(x n, y 0 ) + m n i= f(x i, y j ) + 8 m i= f(x 0, y j ) n f(x i, y j ) +8 m n f(x i, y j ) + 6 m n f(x i, y j ) + m f(x n, y j ) i= i= ] +4 m f(x n, y j ) + m f(x i, y m ) + 4 n f(x i, y m ) + f(x n, y m ) + E, k(b )h4 540 4 f(ξ 0,y 0 ) x 4 i= + m k(b )h4 E = 540 4 f(ξ j,y j ) x 4 + 4 m (d c)(b ) º µ E = h 4 4 f 80 Þ ÜÛÐ Ñ Ô Ô ÖÒ Ô º I 0.5 0.5 9 4 i=0 j=0 i= ÐÖ Ô ÞÔ E Ý ÜÝ ] 4 f(ξ j,y j ) + 4 f(ξ m,y m ) x 4 x 4 (d c)k4 80 4 f(x, µ) dx y 4 Ò Þ Ð ÞÔÞ Ô Ý R Ñ Þ Þ Ø ÚÜ 4 f 4 f y 4 ].0.5.4 6m 4 f (d c)(b )k4 (η, µ) x4 80.0 x (η, µ) + f 4 k4 4 y 4 f (η, µ) y4 ] ( η, µ) 4 x 4 Ñ k = d c m ÚÔ ºR Ñ Þ η, µ, η, µ Þ ÛÔ Ó Ý Ü Ö ln(x + y)dydx Ð Ø ÐÜ Ô ÔÐ Ó ÞÔ º½ Ò w ij ln(x i +y j ) = k = 0.5 h = 0.5 m = n = ÔÐ Ó ÞÔ ÜÝ º0.49554387

½½ Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ f x 4 (x, y) = 6 3 f = f = (x+y) 4 x 3 (x+y) 3 x f = (x+y) x x+y Ó Ð f = ln(x+y) Ó ÞÔ ÞÒ ÛÒ E Ý Ó Ð f = y 4 ] E (y y 0 )(x 4 x 0 ) h 4 4 f (η, µ) 80 x + k 4 4 f ( η, µ) 4 x 4 0.5 0.6 0.5 4 6 mx 80 (x,y) R + 0.5 4 96 mx (x+y) 4 (x,y) R 8 6 + ] 96 600 60000 56 mx (x+y) 4 = 43 + 3 ] 600 80000 8 (x 0 +y 0 4.7 0 6 ) 4 (x+y) 4 ] 96 (x+y) 4 º0.4955 Þ ÜØÕ 5 ÞÐÖ Õ ÔÒ ÑÖ ØÚ ÛÔ I Ó Ð Ñ ÐÜ Ô Ü ÛÐ Þ Ð Ð Ð ÜÝØ Ñ Ð Ø Ñ ÐÜ Ô Ü ÛÐ Ô ÜÝ Ý ÐÝ Ð ÐÜ Ô ÞÜ ÐÖ ÝÖÔ ºÑ ÝÐ ÝÒ Ñ ÐÜ Ô ÜØ Ñ ÜÒ ÐÜ Ô Þ ÜÖ ÐÝÒÐ ÝÖÔÝ Ý ÐÝ Þ ÑÚÒÚÐ ºÓ ÕØÒ Õ Þ Õ Ô Ý Ò Ý Þ Ñ ÔÝ ÔØÐ ºI = ºÕ Þ ÝÒ Ò Þ ÐÖ ÜÞ Þ Ý ÝÒÞÝ Ð ÜÝØ Ð Ø.0.5.4.0 ln(x + y)dydx Ð Ø ÐÜ Ô ÔÐ Ó ÞÔ º¾ Ò R = {(x, y).4 x ÚÜ Ô Ñ Þ Þ ÔÝÔ I Ð Ø ÐÜ Ô Ü ÛÐ Õ Þ Ý Þ Ý Ö Þ Ü Ô Ð ºR = {(u, v) u, v } ¹Ð {.0,.0 y.5} u = (x.4.0) Ý µ ÚÜ Ô ÔÞÝÒ Ô Ý º.0.4 v = ÐÖ ÞÜ ÒÝ Ö (y.0.5).5.0 I = 0.075 ln(0.3u + 0.5v + u)dvdu. Ð ÛÔ Ó ÛÖ ÝÒÞÝ Ð I Ý Ð ÛÔ v ¹Ð Ñ u ¹Ð n = 3 Ü Ö Õ ÐÝ Þ Ô Þ ÝÒÞÝ Ð ÓÞ Ô Ý Ö ºÞ ÜØÕ 8 ÞÐÖ Õ ÔÒ ÐÝ ØÚ Þ ÛÔ I ÔÐ Ò Ý Ó 0.49554533 Ð Ø ÐÜ Ô Þ ÜÖ Ð Ñ Ô Ô ÖÒ Ô ÐÐ ÜÞ ÜÛÒ ÓÔ ÞÔ Ý Ö º µ º µ d(x) c(x) d (y) c (y) f(x, y)dxdy f(x, y)dxdy. Þ Þ Ó ÕØÒ Õ ÐÐ ÑÖØ Ö ÝÒÞÝÔ Ô µ º ÕÒ Ñ Ð Ø Ñ ÐÜ Ô Þ ÜÖ Ð Ò x Ü Ú ÐÖ Ñ ÖÚ Ð Þ Ö ÛÔ Ü Ú ÝÖÔ ºÑ ÔÞÝÒ Þ ÞÖ Û

½¾ Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ d(x) = h 3 { c(x) f(x, y)dydx k(x) 3 f(x, c(x)) + 4f(x, c(x) + k(x)) + f(x, d(x))]dx k() (f(, c()) + 4f(, c() + k()) + f(, d())) 3 h = b + 4k(+b) 3 f( + h, c( + h)) + 4f( + b, c( + h) + k( + h)) + f( + h, d( + h))] + k(b) 3 f(b, c(b)) + 4f(b, c(b) + k(b)) + f(b, d(b))] }. h = b n J = 0 J = 0 ºµ º ÕÒ Ð Ø ÐÜ Ô ÐÝ Þ ÜÖ Ð ÓÞ Ô Ò Ü Ú ºI = d(x) c(x) (Ó Ý Ü Ü ÐÝ ÑÛÒ ). ( Ü ÐÝ ÑÛÒ ). ( ¹ Ü ÐÝ ÑÛÒ ). J 3 = 0 For i = 0,,,..., n, do x = + ih Hx = d(x) c(x) m k = f(x, c(x)) + f(x, d(x)), k = 0 f(x, y)dydx Ü ÛÐ ÑÞÜ Ð º½ ÑÞ Ü Ð n, m Ñ Ñ ÒÐÝ Ñ ÜØÕÒ, b ÚÛ Þ ÛÔ ÐÛ ºI ÜÖÐ ÜÛ J ÜØÕÒ ÐØ (Ñ Þ Ò ÛÒ Þ ÛÔ ÐÝ Ñ Õ Ü Ö) (Ñ ¹ Þ Ò ÛÒ Þ ÛÔ ÐÝ Ñ Õ Ü Ö) k 3 = 0 For j =,,..., m, do y = c(x) + j Hx z = f(x, y) If j mod = 0, k + z k else k 3 + z k 3 L = (k + k + 4k 3 ) Hx 3 ( ) d(xi ) f(x i, y)dy Ý Ò L : ÜÖ c(x i ) If i = 0 or i = n, J + L J elseif i mod = 0, J + L J, else J 3 + L J 3 J = (J + J + 4J 3 ) h 3 print J. Stop.

½ Þ ÜÒ Ô ÚÜ Ô Ü º ÛÜØ Ñ Þ ÐÖ f(x, y) = e y x ÚÛÔ Ø Ü Ö ÑÞ Ü Ð ÑÝ Ô Ñ º Ò Þ Ò ÐÜ Ô ÜÖ º R = {(x, y) 0. x 0.5, x 3 y x }, 0.5 x 0. x 3 e y x dydx 0.0333054 Ð ÛÔ n = m = 5 ÜÝ º0.0333056 Þ ÜØÕ 7 ÞÐÖ Õ ÔÒ ÐÝ ØÚ Þ ÛÔ Ñ ÜÒ Ñ Ð Ü Ô Þ ÜÖ ÐÖ Ñ Ð ÜÞ º Ó ÞÔ ÜÝ ÛÜØ ÖÚ Ý ÑÞÜ Ð Ø Ö Ñ Ñ Ð Ø Ñ Ð Ü Ô Þ ÜÖ º½ Ð ÜÞ Ý Þ ÜÖ n = m = 3..4..3 xy dydx º½. x.0 x (x + y )dydx º¾ 0. 0. º e y x dxdy º 0 0 n = Ó ÞÔ ÜÝ ÛÜØ ÖÚ Ý ÑÞÜ Ð Ø Ö Ð Ø Ð Ü Ô Þ ÜÖ º¾ Ð ÜÞ Ý Þ ÜÖ 3, m = 5 π y cos( x)dydx. 0 0 ÝÐ ÝÒ Ð Ü Ô Þ ÜÖ Ð Ó ÕÒ Õ ÐÐ ÝÒÞÝ 0 0 0.5 e xyz dxdydz, º Ð ÜÞ ºÑ Ý Ñ ÛÐ Ý ÐÝÐ Ñ Ô Ý Ñ Ü Ú ÐÖ Ñ Ö Û Þ ÛÐ ÜÝ Ý Ð ÝÒ Ð Ü Ô Þ ÜÖ Ð Ð Ø Ð Ü Ô Þ ÜÖ ÐÝ ÑÞÜ Ð Ò ÑÞÜ Ð Ô º Ð ÜÞ d(x) f(x,y) c(x) e(x,y) H(x, y, z)dzdydx. Ü Ú Ò